Electronic Supplementary Information

Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol

Sho Yamaguchi,^a Shu Fujita,^a Kiyotaka Nakajima,^b Seiji Yamazoe,^c Jun Yamasaki,^d Tomoo Mizugaki^{a,e} and Takato Mitsudome^{*a}

*E-mail: mitsudom@cheng.es.osaka-u.ac.jp

^aDepartment of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

^bInstitute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan ^cDepartment of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

^dResearch Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan

^eInnovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

Table of Contents

- 1. Characterization of conventional Ni catalysts
- 2. Characterization of Ni phosphide catalysts
- 3. Comparison of nano-Ni₂P/HT with previously reported catalysts
- 4. Gram-scale experiments
- 5. Recycling experiments
- 6. Characterization of spent Ni phosphide catalysts

References

1. Characterization of conventional Ni catalysts

Fig. S1 Transmission electron microscopy (TEM) image of Ni/HT-Red.

The observation of Ni(II) in the XPS spectrum indicates that the supported Ni(0) nanoparticles must be oxidized, probably, during the XPS sampling (Fig. S2).

Fig. S2 X-ray photoelectron spectroscopy (XPS) spectra of Ni 2p of Ni/HT-Red.

2. Characterization of Ni phosphide catalysts

Fig. S3 X-ray diffraction (XRD) pattern of (i) hydrotalcite (HT) and (ii) fresh nano-Ni₂P/HT.

Fig. S4 XPS spectra of (a) Ni 2p and (b) P 2p of nano-Ni₂P/HT.

Fig. S5 Extended X-ray absorption fine structure (EXAFS) fitting curves in *k*-space (upper panel) and *R*-space (lower panel): (a) Ni foil and (b) nano-Ni₂P/HT.

Sample	Shell	CN ^a	R (Å) b	DW ^c	R factor (%)	
Ni foil	Ni–Ni	9.8 ± 0.1	2.48 ± 0.001	0.006 ± 0.00006	0.8	
nano-Ni ₂ P/HT	Ni–P	3.0 ± 0.3	2.20 ± 0.002	0.009 ± 0.001	- 3.4	
	Ni–Ni	2.7 ± 0.3	2.57 ± 0.002	0.012 ± 0.001		
bulk Ni ₂ P (ideal)	Ni–P ^d	2.2	2.24			
	Ni–Ni ^e	6.7	2.65			

Table S1 Curve fitting of Ni K-edge EXAFS spectra for Ni foil, nano-Ni₂P, and nano-Ni₂P/HT.

^{*a*}Coordination number. ^{*b*}Bond distance. ^{*c*}Debye–Waller factor. ^{*d*}Average for Ni–P bonds with lengths less than 2.3 Å. ^{*e*}Average for Ni–Ni bonds with lengths less than 2.7 Å.

Fig. S6 Crystal structure of Ni_2P with a (300) plane.

3. Comparison of nano-Ni₂P/HT with previously reported catalysts

	<u> </u>	5	5	
Catalyst	Conditions	Yield of D-	TON	Ref.
		sorbitol [%]		
nano-Ni ₂ P/HT	3 wt% D-glucose, 6.6 mol% Ni	99	15	This work
	100 °C, 20 bar, 2 h			
nano-Ni ₂ P/HT	3 wt% D-glucose, 13 mol% Ni	90	6.9	This work
	25 °C, 50 bar, 72 h			
nano-Ni ₂ P/HT	50 wt% D-glucose, 2.0 mol% Ni	92	46	This work
	100 °C, 50 bar, 18 h			
nano-Ni ₂ P/HT	20 wt% D-glucose, 0.10 mol% Ni	85	852	This work
	100 °C, 50 bar, 32 h			
Co-B amorphous	50 wt% D-glucose, 12 mol% Co	89 ^a	-	S1
alloy	120 °C, 40 bar, 6 h			
Raney Ni-P	50 wt% D-glucose, 10 mol% Ni	56 ^{<i>a</i>}	-	<i>S2</i>
	120 °C, 40 bar, 6 h			
Ni-B/SiO ₂	50 wt% D-glucose, 3.7 mol% Ni	80 ^a	-	<i>S3</i>
amorphous alloy	100 °C, 40 bar, 6 h			
Commercial	40 wt% D-glucose, 2.1 mol% Ni	35	16	<i>S4</i>
Ni/SiO ₂	120 °C, 120 bar, 5 h			
Ni/Al ₂ O ₃	40 wt% D-glucose, 0.16 mol% Ni	28	172	<i>S4</i>
	120 °C, 120 bar, 5 h			
Commercial	20 wt% D-glucose, 3.4 mol% Ni	60	18	<i>S5</i>
Ni/SiO ₂	120 °C, 120 bar, 5 h			
Ni/SiO ₂	20 wt% D-glucose, 1.1 mol% Ni	42	39	<i>S5</i>
	120 °C, 120 bar, 5 h			
Ni powder	10 wt% D-glucose, 10 mol% Ni	7	0.23	<i>S6</i>
	120 °C, 30 bar, 2 h			
Ni-Al (alumel)	10 wt% D-glucose, 10 mol% Ni	4	0.28	<i>S6</i>
	120 °C, 30 bar, 2 h			

Table S2 Hydrogenation of D-glucose using various Ni or Co catalysts in batch systems.

Ni-B amorphous	20 wt% D-glucose, 22 mol% Ni 85^a		-	<i>S</i> 7			
alloy	120 °C, 40 bar, 2 h						
Ni/Cu/Al	4.7 wt% D-glucose, 15.5 mol% Ni	69	4.5	<i>S8</i>			
	125 °C, 30 bar, 3 h						
Ni nanoparticles	1.2 wt% D-glucose, 1.2 mol% Ni	93	81	<i>S9</i>			
/AlOH	130 °C, 20 bar, 24 h						
Ni-Co nanoalloy	25 wt% D-glucose, 11 mol% Ni, Co	97	8.5	<i>S10</i>			
	90 °C, 30 bar, 4 h						
Ni/NiO	4.5 wt% D-glucose, 4.3 mol% Ni	88	20	<i>S11</i>			
	150 °C, 50 bar, 4 h						
Ni-P amorphous	10 wt% D-glucose, 27 mol% Ni	94 ^{<i>a</i>}	-	<i>S12</i>			
alloy in the	100 °C, 40 bar, 4 h						
presence of Pd							

_

^{*a*} Glucose conversion.

4. Gram-scale experiments

The nano-Ni₂P/HT catalyst (3.0 mol%) was applied to a gram-scale reaction using 3.0 g of D-glucose (40 mL distilled water, 40 bar H₂, 80 °C, 24 h). After the hydrogenation reaction, the autoclave was cooled in an ice-water bath and the H₂ gas was carefully released. The solid catalyst was removed from the reaction mixture by suction filtration and washed several times with water. The High-performance liquid chromatography refractive index detection (HPLC-RID) analysis of the filtrate showed the almost complete conversion of D-glucose to D-sorbitol (>99% yield), while a trace amount of D-mannitol was formed as a byproduct (Fig. S7). After evaporation of the filtrate to remove water, remaining trace water was removed as an azeotrope with toluene to give 3.0 g of pure D-sorbitol (>99% isolated yield).

Fig. S7 High-performance liquid chromatography refractive index detection (HPLC-RID) chromatogram of the products from the gram-scale hydrogenation of D-glucose to D-sorbitol (Scheme 1a).

5. Recycling experiments

After the hydrogenation reaction was completed, the catalyst was separated from the reaction mixture by centrifugation, washed with deionized water, and reused in the next cycle without any pretreatment. This experiment was repeated four times.

6. Characterization of spent Ni phosphide catalysts

Fig. S8 XPS spectra of (a) Ni 2p and (b) P 2p of spent nano-Ni₂P/HT.

Fig. S9 (a) TEM image and (b) size distribution histogram of spent nano-Ni₂P/HT.

Fig. S10 Energy dispersive X-ray spectroscopy (EDX) analysis of spent nano-Ni₂P/HT in the regions indicated by green circles.

References

- S1 (a) H. Li, H. Li, W. Wang and J.-F. Deng, *Chem. Lett.*, 1999, 28, 629–630. (b) H. Li, H. Li and M. Wang, *Appl. Catal. A*, 2001, 207, 129–137. (c) H. Li and J.-F. Deng, *J. Chem. Technol. Biotechnol.*, 2001, 76, 985–990.
- S2 H. Li, W. Wang and J. F. Deng, J. Catal., 2000, 191, 257–260.
- S3 H. Li, H. Li and J.-F. Deng, *Catal. Today*, 2002, 74, 53–63.
- S4 B. Kusserow, S. Schimpf and P. Claus, *Adv. Synth. Catal.*, 2003, **345**, 289–299.
- S5 S. Schimpf, C. Louis and P. Claus, *Appl. Catal. A*, 2007, **318**, 45–53.
- S6 J. Zhang, L. Lin, J. Zhang and J. Shi, *Carbohydr. Res.*, 2011, **346**, 1327–1332.
- S7 (a) J. Guo, Y. Hou, C. Yang, Y. Wang, H. He and W. Li, *Catal. Commun.*, 2011, 16, 86–89.
 (b) J. Guo, Y. Hou, C. Yang, Y. Wang and L. Wang, *Mater. Lett.*, 2012, 67, 151–153.
- S8 J. Zhang, S. Wu, Y. Liu and B. Li, *Catal. Commun.*, 2013, **35**, 23–26.
- S9 R. Rodiansono and S. Shimazu, Bull. Chem. React. Eng. Catal., 2013, 8, 40–46.
- S10 Q. Dong, Y. Huang, H. Yang, J. Pei, K. Li, M. Yuan, W. Xiao, W. Ni and Z. Hou, *Top. Catal.*, 2017, 60, 666–676.
- S11 H. Singh, A. Rai, R. Yadav and A. K. Sinha, *Mol. Catal.*, 2018, **451**, 186–191.
- S12 Y. Yang, H. Gu, Q. Zhang, H. Li and H. Li, ACS Appl. Mater. Interfaces, 2020, 12, 26101–26112.