Supporting Information

The sustainable synthesis of levetiracetam by an enzymatic dynamic kinetic resolution and an *ex-cell* anodic oxidation

Sebastian Arndt,^{a,†} Birgit Grill,^{b,†} Helmut Schwab,^{b,c} Georg Steinkellner,^{b,d} Urška Pogorevčnik,^b Dominik Weis,^a Alexander M. Nauth,^a Karl Gruber,^b Till Opatz,^a Kai Donsbach,^e Siegfried R. Waldvogel^{*,a} and Margit Winkler^{*,b,c}

Table of contents

1	General considerations
2	Calculations of <i>E</i> factors (EF) and atom efficiencies (AE)
3	Used chemicals
4	Biocatalyst production
5	Screening for (S)-selective NHase
6	Characterisation of <i>Ct</i> NHase
7	Homology modelling and docking
8	Typical methods for screening40
9	Mutant libraries41
10	Typical method for preparative scale reactions47
11	Calibrations49
12	Cyclic voltammetry
13	Representative procedures (RP)53
14	Synthesis of the reference standard53
15	Synthesis of over-oxidation product54
16	Electrolysis cells used55
17	Experimental section for the electrochemical synthesis of etiracetam
18	Experimental section for the ruthenium catalysis61
19	Experimental part for the NaIO $_3$ recycling65
20	NMR Spectra, GC and HPLC chromatograms69
21	References

1 General considerations

All reagents were used in analytical or sufficiently pure grades. Solvents were purified by standard methods.¹

Electrochemical reactions were carried out at boron-doped diamond (BDD) anodes. The BDD electrodes were obtained in DIACHEM[©] quality from CONDIAS GmbH, Itzehoe, Germany. The BDD had a 15 µm diamond layer on silicon support. Stainless steel of the type EN1.4401; AISI/ASTM (V4A) was used as cathodes. Nafion[™] N324 from DuPont was used as membrane. A galvanostat HMP4040 from Rhode&Schwarz was employed. NMR spectra were recorded on a Bruker Avance III HD 300 (300 MHz) equipped with 5 mm BBFO head with z gradient and ATM at 25 °C. Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl₃ in CDCl₃ as deuterated solvent. Liquid chromatography photodiode array analysis was performed by using a DUGA-20A₃ device from Shimadzu, which was equipped with a C18 column from Knauer (Eurospher II, 100-5 C18, 150x4 mm). The column was conditioned at 25 °C and the flow rate was set to 1 mL/min. The aqueous eluent was buffered by formic acid (0.8 mL/2.5 L) and stabilised by acetone (5 vol%). Gas chromatography was performed using a GC 2010 device from Shimadzu, which was equipped with a Varian capillary column ZB-5MSi (Serial No. 334634), operating with H_2 as carrier gas. Chiral HPLC was performed with a Daicel CHIRALPAK IB-3 column. The injection volume was V = 10 μ L, and the eluent was composed of 10% isopropanol and 90% hexane/ethanol. The detection followed by a photodiode array detector at λ = 210.1 nm. Infrared spectra were recorded on an ATR IR device of the type ALPHA from Bruker. Cyclic voltammetry was conducted on an AUTO LAB PGstat 204 from Metrohm AG, Herisau, Switzerland. Design-of-Experiments plans were created and analysed with the software Minitab19 from Minitab Inc.

2 Calculations of *E* factors (EF) and atom efficiencies (AE)

 $AE = \frac{M(desired \ product)}{M(all \ products)}$

$$EF = \frac{m(raw materials) - m(desired product)}{m(desired product)}$$

Please note that,

- a) yields, solvents, catalysts and reagents for the work-up/purification are not considered in the calculations for the atom efficiency.
- b) water is not considered in the calculations for the *E*-factor. The comparability of routes strongly depends on the starting material chosen for the synthesis and on the scale of the reaction. The amount of a reagent was estimated if not mentioned in the report. Flash column chromatography was generally not considered in the calculations, since no amounts of the stationary phase and the mobile phase were given in the reports. For these reasons, the calculated EF values should be considered only as a rough classification.
- c) in the following tables a comma is used as the decimal separator.

2.1 α-Halogenation – nucleophilic substitution pathway²

HO reactant	+ O cat	Br N + ⊨O alyst	Br ₂ reagent y	solvent-free rield not mentioned (100% assumed)	→ H0	Br	+ HBr
Reactants				Products			
Formula	C ₄ H ₈ O ₂	C ₄ H ₄ BrNO ₂	Br ₂	Formula	C ₄ H ₇ BrO ₂	BrH]
MW	88,11	177,98	159,81	MW	167,00	80,91	
Limiting?	Yes	No	No	Equivalents			
Equivalents	1,00	0,00	1,10	%Completion			
Sample Mass				Expected Mass	1895,47kg	918,35kg	
%Weight				Expected Moles	11,35kmol	11,35kmol	
Molarity				Measured Mass			
Density				Purity			
Volume				Product Mass			
Reactant Moles	11,35kmol	56,18mol	12,52kmol	Product Moles			
Reactant Mass	1000,00kg	10,00kg	2000,00kg	%Yield			

AE = 167.00 : (167.00 + 80.91) = 67%

AE = 195.06 : (195.06 + 18.02) = 92%

EF = (1000 + 800 + 100 + 100 - 1150.47) : 1150.47 = 0.74 [kg/kg]

Reactants									Products					
Formula	C ₆ H ₁₁ BrO ₂	C ₄ H ₇ NO	CH₃NaO	HNaO	CIH	C ₇ H ₈	C ₂ H ₆ O	CH ₂ Cl ₂	Formula	C ₈ H ₁₃ NO ₃	BrNa	CH₄O	C ₂ H ₆ O	CINa
MW	195,06	85,11	54,02	40,00	36,46	92,14	46,07	84,93	MW	171,20	102,89	32,04	46,07	58,44
Limiting?	Yes	No	No	No	No	No	No	No	Equivalents					
Equivalents	1,10	1,00	1,07	2,20	5,00	2,71	2,19	13,33	%Completion	88,00%				
Sample Mass	252,00g	100,00g		103,35g		293,48g	118,35g		Expected Mass	176,94g	120,85g	37,63g	54,11g	68,64g
%Weight									Expected Moles	1,03mol	1,17mol	1,17mol	1,17mol	1,17mol
Molarity									Measured Mass					
Density					1,19g/mL	867,00mg/mL	789,00mg/mL	1,33g/mL	Purity					
Volume					180,00mL	338,50mL	150,00mL	1,00kmL	Product Mass					
Reactant Moles	1,29mol	1,18mol	1,25mol	2,58mol	5,88mol	3,19mol	2,57mol	15,66mol	Product Moles					
Reactant Mass	252,00g	100,00g	67,70g	103,35g	214,20g	293,48g	118,35g	1,33kg	%Yield					

AE = 171.20 : (171.20 + 102.89 + 32.04 + 46.07 + 58.44) = 42%

EF = (252 + 100 + 67.7 + 103.35 + 214.2 + 293.48 + 118.35 + 1330 - 176.94) : 176.94 = 13.0 [g/g]

	re	ea	C	ta	nt	t		
_								

reagent reagent solvent

Reactants					Products		
Formula	C ₈ H ₁₃ NO ₃	C ₈ H ₁₁ N	C ₆ H ₁₅ N	C ₇ H ₈	Formula	C ₁₆ H ₂₄ N ₂ O ₃	C ₁₄ H ₂₈ N ₂ O ₃
MW	171,20	121,18	101,19	92,14	MW	292,38	272,39
Limiting?	Yes	No	No	No	Equivalents		
Equivalents	1,00	0,60	0,50	12,55	%Completion	49,10%	
Sample Mass		31,43g	21,87g	500,00g	Expected Mass	62,05g	117,74g
%Weight					Expected Moles	212,24 _{mmol}	432,25 _{mmol}
Molarity					Measured Mass		
Density				867,00mg/mL	Purity		
Volume				576,70mL	Product Mass		
Reactant Moles	432,25mmol	259,35mmol	216,13mmol	5,43mol	Product Moles		
Reactant Mass	74.00a	31.43a	21.87a	500.00a	%Yield		

AE = 292.38 : (292.38 + 272.39) = 52%

EF = (74 + 31,43 + 21,87 + 500 - 62.05) : 62.05 = 9.1 [g/g]

reactar	nt	rea	agent rea	agent s	solvent	solvent	solvent			
			(esti	mated)						
Reactants	-			-			Products			
Formula	C ₁₆ H ₂₄ N ₂ O ₃	HNaO	СІН	CH ₂ Cl ₂	C₂H ₆ O	C ₇ H ₈	Formula	C ₈ H ₁₃ NO ₃	C ₈ H ₁₁ N	CINa
MW	292,38	40,00	36,46	84,93	46,07	92,14	MW	171,20	121,18	58,44
Limiting?	Yes	No	No	No	No	No	Equivalents			
Equivalents	1,00	4,37	1,00	27,49	3,85	8,26	%Completion	87,10%		
Sample Mass			8,77g	561,26g	42,61g	182,94g	Expected Mass	35,85g	29,14g	14,05g
%Weight							Expected Moles	209,42mmol	240,44mmol	240,44mmol
Molarity							Measured Mass			
Density				1,33g/mL	789,00mg/mL	867,00mg/mL	Purity			
Volume				422,00mL	54,00mL	211,00mL	Product Mass			
Reactant Moles	240,44mmol	1,05mol	240,44mmol	6,61mol	924,83mmol	1,99mol	Product Moles			
Reactant Mass	70,30 _g	42,00g	8,77g	561,26 _g	42,61g	182,94 _g	%Yield			

AE = 171.20 : (171.20 + 121.18 + 58.44) = 49%

EF = (70.3 + 42 + 8.77 + 561.26 + 42.61 + 182.94 - 35.85) : 35.85 = 24.3 [g/g]

184,28mmol

16,24g

AE = 170.21 : (170.21 + 46.07 + 18.02) = 73%

21,10g

123,25mmol

Reactant Moles

Reactant Mass

EF = (21.1 + 2.12 + 166.48 + 190.32 + 4.7 + 16.24 + 192.01 - 12.38) : 12.38 = 46.9 [g/g]

3,61mol

166,48g

2,16mol

190,32g

80,99mmol

4,70g

12,33mmol

2,12g

Product Moles

%Yield

11,27mol

192,01g

						N		
→~~ ₀ +	HCN +	NH ₃	+ NaCl	+ CH ₂ Cl ₂	2	\rightarrow	+	H ₂ O
reactant	reagent	reagent	work-up	solvent	:	NH ₂		
Reactants						Products		
Formula	C₃H ₆ O	CHN	H₃N	CINa	CH ₂ Cl ₂	Formula	C ₄ H ₈ N ₂]
MW	58,08	27,03	17,03	58,44	84,93	MW	84,12	
Limiting?	Yes	No	No	No	No	Equivalents		
Equivalents		1,05	1,29	0,13	2,32	%Completion	94,00%	
Sample Mass						Expected Mass	360,79 _g	
%Weight						Expected Moles	4,29 _{mol}	
Molarity						Measured Mass		
Density						Purity		
Volume						Product Mass		
Reactant Moles	4,56mol	4,81mol	5,87mol	612,60mmol	10,60mol	Product Moles		
Reactant Mass	265,00g	130,00g	100,00g	35,80g	900,00g	%Yield		

2.2 Strecker synthesis – amine alkylation pathway³

AE = 84.12 : (84.12 + 18.02) = 82%

EF = (265 + 130 + 100 + 35.8 + 900 - 360.79) : 360.79 = 2.97 [g/g]

Reactants						Products		
Formula	C ₄ H ₈ N ₂	H ₂ O	C ₁₆ H ₃₆ CIN	HNaO	CIH	Formula	C ₄ H ₁₀ N ₂ O	CINa
MW	84,12	18,02	277,92	40,00	36,46	MW	102,14	58,44
Limiting?	Yes	No	No	No	No	Equivalents		
Equivalents			0,00	0,04	0,04	%Completion	95,00%	
Sample Mass		77,10g				Expected Mass	415,24g	250,09g
%Weight						Expected Moles	4,07 _{mol}	4,28 _{mol}
Molarity						Measured Mass		
Density						Purity		
Volume						Product Mass		
Reactant Moles	4,28mol	4,28mol	12,95mmol	175,01mmol	164,57mmol	Product Moles		
Reactant Mass	360,00g	77,10g	3,60g	7,00g	6,00g	%Yield		

AE = 102.14 : 102.14 = 100%

EF = (360 + 77.11 + 3.6 + 7 + 6 - 415.24) : 415.24 = 0,09 [g/g]

H ₂ N NH ₂	+ HO		OH +	MeOH +	+ NH ₃	H ₂ N	+ NH ₂ +	H ₂ N	ŇH ₂	+ HO OH OH + NH ₃
reactant		reagent		solvent	reagent					
Reactants					Products					_
Formula	C ₄ H ₁₀ N ₂ O	C ₄ H ₆ O ₆	CH₄O	H ₃ N	Formula	C ₄ H ₁₀ N ₂ O	C ₄ H ₁₀ N ₂ O	C ₄ H ₆ O ₆	H ₃ N	
MW	102,14	150,09	32,04	17,03	MW	102,14	102,14	150,09	17,03	
Limiting?	Yes	No	No	No	Equivalents					
Equivalents		0,38	27,82	0,75	%Completion	46,30%				
Sample Mass					Expected Mass	185,66 _g	401,00g	589,25g	66,87g	
%Weight					Expected Moles	1,82 _{mol}	3,93 _{mol}	3,93 _{mol}	3,93 _{mol}	
Molarity					Measured Mass					
Density					Purity					
Volume					Product Mass					
Reactant Moles	3,93 _{mol}	1,50 _{mol}	109,23 _{mol}	2,94 _{mol}	Product Moles					
Reactant Mass	401,00 _g	225,00g	3,50 _{kg}	50,00g	%Yield					

AE = 102.14 : (102.14 + 102.14+ 150.09 + 17.03) = 28%

E-Factor = (401 + 225 + 3500 + 50 - 185,66) : 185,66 = 21.5 [g/g]

H ₂ N NH ₂ reactant	+ EtOH	+ HC t react	il		CI
Reactants				Products	
Formula	C ₄ H ₁₀ N ₂ O	C ₂ H ₆ O	CIH	Formula	C ₄ H ₁₁ CIN ₂ O
MW	102,14	46,07	36,46	MW	138,60
Limiting?	Yes	No	No	Equivalents	
Equivalents		7,75	1,15	%Completion	96,00%
Sample Mass				Expected Mass	238,39g
%Weight				Expected Moles	1,72mol
Molarity				Measured Mass	
Density				Purity	
Volume				Product Mass	
Reactant Moles	1,79mol	13,89mol	2,06mol	Product Moles	
Reactant Mass	183,00g	640,00g	75,00g	%Yield	

AE = 138.60 : 138.60 = 100%

EF = (183 + 640 + 75) : 238.39 = 2.76 [g/g]

	+ NaHCO	3 + EtOF	H + 0	F0			NaCl + H	I₂CO₃ +	H ₂ O
reactant	reagent	solver	nt reag	ent	но—/				
Reactants					Products				
Formula	C ₄ H ₁₁ CIN ₂ O	CHNaO ₃	C ₂ H ₆ O	C ₄ H ₆ O ₂	Formula	C ₈ H ₁₆ N ₂ O ₃	CINa	CH ₂ O ₃	H ₂ O
MW	138,60	84,01	46,07	86,09	MW	188,23	58,44	62,02	18,02
Limiting?	Yes	No	No	No	Equivalents				
Equivalents			23,74	1,10	%Completion	90,00%			
Sample Mass		12,12g			Expected Mass	24,45g	8,43g	8,95g	2,60g
%Weight					Expected Moles	129,87mmol	144,31mmol	144,31mmol	144,31mmol
Molarity					Measured Mass				
Density			789,00mg/mL		Purity				
Volume			200,00mL		Product Mass				
Reactant Moles	144,31mmol	144,31mmol	3,43mol	159,14mmol	Product Moles				
Reactant Mass	20,00g	12,12 g	157,80g	13,70g	%Yield				

AE = 188.23 : (188.23 + 58.44 + 62.02 + 18.02) = 58%

EF = (20 + 12.12 + 157.8 + 13.7 - 24.45) : 24.45 = 7.33 [g/g]

AE = 170.21 : (170.21 + 18.03) = 90%EE = (20 + 0.8 + 172.4 - 10.67) : 10.67 = 17.24

EF = (20 + 0.8 + 173.4 - 10.67) : 10.67 = 17.2 [g/g]

2.3 Ugi three-component reaction⁴

→~~o +	CN	+ (COOH	+ F F	рн С		
	reactant	ſ	eactant	SOIVE	Draduata		
Reactants		0.11.11	0.11.110	<u> </u>	Producis		1
Formula	C ₃ H ₆ O	C ₉ H ₉ N	C ₄ H ₉ NO ₂	C ₂ H ₃ F ₃ O	Formula	$C_{16}H_{22}N_2O_2$	
MW	58,08	131,18	103,12	100,04	MW	274,36	
Limiting?	Yes	No	No	No	Equivalents		
Equivalents	1,00		1,00	139,14	%Completion	20,00%	
Sample Mass		131,00mg	103,00mg	13,90g	Expected Mass	54,80mg	
%Weight					Expected Moles	199,72µmol	
Molarity					Measured Mass		
Density				1,39g/mL	Purity		
Volume				10,00mL	Product Mass		
Reactant Moles	998,62µmol	998,62µmol	998,83µmol	138,94mmol	Product Moles		
Reactant Mass	58,00mg	131,00mg	103,00mg	13,90g	%Yield		

AE = 274.36 : 274.36 = 100%

EF = (0.058 + 0.131 + 0.103 + 13.9 - 0.0548) : 0.0548 = 258 [g/g]

AE = 274.36 : (274.36 + 82.03 + 32.04) = 71%

EF = (1.5 + 9.32 + 1.3 + 0.1 + 0.05 - 1.1) : 1.1 = 10.2 [g/g]

Reactants			-									Products		
Formula	C ₁₆ H ₂₂ N ₂ O ₂	C ₆ H ₆ O ₃ S	H ₂ O	C ₇ H ₈	HNaO	H ₃ N	CH₄O	CNa ₂ O ₃	CIH	Na ₂ O ₄ S	CH ₂ Cl ₂	Formula	C ₈ H ₁₃ NO ₃	C ₈ H ₁₁ N
MW	274,36	158,17	18,02	92,14	40,00	17,03	32,04	105,99	36,46	142,04	84,93	MW	171,20	121,18
Limiting?	Yes	No	No	No	No	No	No	No	No	No	No	Equivalents		
Equivalents		12,66	4,01	114,88	8,23	3,84	13,56	4,12			1074,17	%Completion	49,00%	
Sample Mass			263,00mg	38,58g	1,20g	238,43mg	1,58g	1,59g	4,43g	517,69mg	332,50g	Expected Mass	305,75mg	441,69mg
%Weight									3,00%			Expected Moles	1,79 _{mmol}	3,64 _{mmol}
Molarity					1,00м	7,00м		1,00м				Measured Mass		
Density			1,00g/mL	867,00mg/mL			792,00mg/mL				1,33g/mL	Purity		
Volume			263,00mmL	44,50 _{mL}	30,00 _{mL}	2,00mL	2,00 _{mL}	15,00 _{mL}			250,00 _{mL}	Product Mass		
Reactant Moles	3,64mmol	46,15mmol	14,60mmol	418,72mmol	30,00mmol	14,00mmol	49,44mmol	15,00mmol	3,64mmol	3,64mmol	3,92mol	Product Moles		
Reactant Mass	1,00g	7,30g	263,00mg	38,58g	1,20g	238,43mg	1,58g	1,59g	132,88mg	517,69mg	332,50g	%Yield		

AE = 171.20 : (171.20 + 121.18) = 59%

EF = (1 + 7.3 + 0.263 + 38.58 + 1.2 + 0.23843 + 1.58 + 1.59 + 0.13288 + 0.51769 + 332.5 - 0.30575) : 0.30575 = 1258.89 [g/g]

Reactants							Products	
Formula	C ₈ H ₁₃ NO ₃	H ₂ O ₄ S	CH₄O	H ₃ N	CH ₂ Cl ₂	C₃H ₆ O	Formula	C ₈ H ₁₄ N ₂ O ₂
MW	171,20	98,07	32,04	17,03	84,93	58,08	MW	170,21
Limiting?	Yes	No	No	No	No	No	Equivalents	
Equivalents		0,11	21,51		5,61	12,45	%Completion	67,80%
Sample Mass		201,30 _{mg}	13,46 _g		9,31g		Expected Mass	2,25g
%Weight				30,00%			Expected Moles	13,24mmol
Molarity							Measured Mass	
Density		1,83g/mL	792,00mg/mL		1,33g/mL	785,00mg/mL	Purity	
Volume		110,00mmL	17,00mL	7,50mL	7,00mL	18,00mL	Product Mass	
Reactant Moles	19,53 _{mmol}	2,05 _{mmol}	420,20 _{mmol}	19,53 _{mmol}	109,62 _{mmol}	243,29 _{mmol}	Product Moles	
Reactant Mass	3,34 ₉	201,30mg	13,46g	332,67mg	9,31g	14,13 _q	%Yield	

AE = 170.21 : (170.21 + 18.03) = 90%

EF = (3,34 + 0.2013 + 13.46 + 0.33267 + 9.31 + 14.13 - 2.25) : 2.25 = 17.12 [g/g]

 $\Pi(AE) = 38\%$; $\Sigma(E$ -factor) = 1544.21, total yield: 5%

2.4 Evans' auxiliary route⁵

AE = 239.65 : (239.65 + 137.65) = 64%

EF = (10 + 15.23 + 24.69 + 332.5 + 9.5 - 10.28) : 10.28 = 37.12 [g/g]

	rouotant	· · · · · · · · · · · · · · · · · · ·								
	Reactants						Products			
ſ	Formula	C ₁₁ H ₁₀ CINO ₃	HNa	C ₃ H ₇ NO	C ₄ H ₇ NO	CH ₂ Cl ₂	Formula	C ₁₅ H ₁₆ N ₂ O ₄	H ₂	CINa
	MW	239,65	24,00	73,09	85,11	84,93	MW	288,30	2,02	58,44
	Limiting?	Yes	No	No	No	No	Equivalents			
	Equivalents		1,29	24,76	1,19	30,02	%Completion	90,00%		
	Sample Mass			188,80 _g			Expected Mass	27,07 _g	210,30 _{mg}	6,10 _g
	%Weight						Expected Moles	93,88mmol	104,32mmol	104,32mmol
	Molarity						Measured Mass			
	Density			944,00mg/mL		1,33g/mL	Purity			
	Volume			200,00 _{mL}		200,00 _{mL}	Product Mass			
	Reactant Moles	104,32mmol	135,00mmol	2,58mol	124,55mmol	3,13mol	Product Moles			
	Reactant Mass	25,00g	3,24g	188,80g	10,60g	266,00g	%Yield			

AE = 288.30 : (288.30 + 2.02 + 58.44) = 83%

EF = (25 + 3.24 + 188.8 + 10.6 + 266 - 27.07) : 27.07 = 17.24 [g/g]

Reactants										Products				
Formula	C ₁₅ H ₁₆ N ₂ O ₄	C₂H₅I	C ₆ H ₁₈ NNaSi ₂	C ₂ H ₄ O ₂	C ₄ H ₈ O	C ₇ H ₈	CH ₂ Cl ₂	CHNaO ₃	MgO₄S	Formula	C ₁₇ H ₂₀ N ₂ O ₄	INa	C ₆ H ₁₉ NSi ₂	C ₂ H ₃ NaO ₂
MW	288,30	155,97	183,38	60,05	72,11	92,14	84,93	84,01	120,36	MW	316,36	149,89	161,40	82,03
Limiting?	Yes	No	No	No	No	No	No	No	No	Equivalents				
Equivalents		1,20	1,50	5,04	106,63	14,11	383,77	6,59		%Completion	81,00%			
Sample Mass				5,25g	133,35g	22,54g	565,25g		2,09g	Expected Mass	4,44g	2,60g	2,80g	1,42g
%Weight										Expected Moles	14,05 _{mmol}	17,34 _{mmol}	17,34 _{mmol}	17,34 _{mmol}
Molarity										Measured Mass				
Density				1,05g/mL	889,00mg/mL	867,00mg/mL	1,33g/mL			Purity				
Volume				5,00mL	150,00mL	26,00mL	425,00mL			Product Mass				
Reactant Moles	17,34mmol	20,77mmol	26,01mmol	87,42mmol	1,85mol	244,65mmol	6,66mol	114,28mmol	17,34mmol	Product Moles				
Reactant Mass	5,00g	3,24g	4,77g	5,25g	133,35g	22,54g	565,25g	9,60g	2,09g	%Yield				

AE = 316.36 : (316.36 + 149.89 + 161.40 + 82.03) = 45%

EF = (5 + 3.24 + 4.77 + 5.25 + 133.35 + 22.54 + 565.25 + 9.6 + 2.09 - 4.44) : 4.44 = 168.16 [g/g]

$$\begin{array}{c} & & \\ & & & \\ &$$

reactant	reagen	t solve	ent reager	nt work-u	up work	-up wo	ork-up	work-up	work-up				
Reactants										Products			
Formula	C ₁₇ H ₂₀ N ₂ O ₄	HLiO	C₄H ₈ O	H ₂ O ₂	СІН	Na ₂ O ₃ S	CH ₂ Cl ₂	C ₄ H ₈ O ₂	Na ₂ O ₄ S	Formula	C ₈ H ₁₃ NO ₃	C ₉ H ₉ NO ₂	CILi
MW	316,36	23,95	72,11	34,01	36,46	126,04	84,93	88,11	142,04	MW	171,20	163,18	42,39
Limiting?	Yes	No	No	No	No	No	No	No	No	Equivalents			
Equivalents		2,99	23,40	4,68		8,28	148,63	97,16		%Completion	85,00%		
Sample Mass			26,67g		576,22 _{mg}		199,50 _g	135,30 _g	2,24g	Expected Mass	2,30g	2,58g	669,97 _{mg}
%Weight										Expected Moles	13,43 _{mmol}	15,80 _{mmol}	15,80 _{mmol}
Molarity										Measured Mass			
Density			889,00mg/mL				1,33g/mL	902,00 _{mg/mL}		Purity			
Volume			30,00 _{mL}				150,00 _{mL}	150,00 _{mL}		Product Mass			
Reactant Moles	15,80 _{mmol}	47,19 _{mmol}	369,87 _{mmol}	74,00mmol	15,80 _{mmol}	130,91 _{mmol}	2,35 _{mol}	1,54 _{mol}	15,80 _{mmol}	Product Moles			
Reactant Mass	5,00g	1,13g	26,67g	2,52g	576,22mg	16,50g	199,50g	135,30g	2,24g	%Yield			

AE = 171.20 : (171.20 + 163.18 + 42.39) = 45%

EF = (5 + 1.13 + 26.67 + 2.52 + 0.57622 + 16.5+ 199.5 + 135.3 + 2.24 - 2.3) : 2.3 = 168.32 [g/g]

	+ NEt ₃	+	+	+ NH, I	4OH + K	K ₂ CO ₃ +	CH ₂ Cl ₂	+ Na ₂ SO ₄	+	\rightarrow	N O NH ₂	+ NEt ₃ H	CI + (о — он
reactant	reagent	solvent	reagent	wor	k-up w	ork-up	work-up	work-up	work-up)				
Reactants										Products				
Formula	C ₈ H ₁₃ NO ₃	C ₆ H ₁₅ N	C₄H ₈ O	C ₃ H ₅ ClO ₂	H₅NO	CK ₂ O ₃	CH ₂ Cl ₂	Na ₂ O ₄ S	C₃H ₆ O	Formula	C ₈ H ₁₄ N ₂ O ₂	C ₆ H ₁₆ CIN	C ₃ H ₆ O ₃	
MW	171,20	101,19	72,11	108,52	35,05	138,20	84,93	142,04	58,08	MW	170,21	137,65	90,08	
Limiting?	Yes	No	No	No	No	No	No	No	No	Equivalents				
Equivalents		1,06	8,44	1,04	4,64	1,03	80,43		46,28	%Completion	86,00%			
Sample Mass								4,15g	78,50g	Expected Mass	4,28g	4,02g	2,63g	
%Weight					25,00%					Expected Moles	25,12mmol	29,21mmol	29,21mmol	
Molarity										Measured Mass				
Density		726,00mg/mL	889,00mg/mL	1,14g/mL			1,33g/mL		785,00mg/mL	Purity				
Volume		4,30mL	20,00mL	2,90mL	19,00mL		150,00mL		100,00mL	Product Mass				
Reactant Moles	29,21 _{mmol}	30,85 _{mmol}	246,58mmol	30,46mmol	135,54 _{mmol}	29,96mmol	2,35 _{mol}	29,21 _{mmol}	1,35 _{mol}	Product Moles			1	
Reactant Mass	5,00g	3,12g	17,78g	3,31g	4,75g	4,14g	199,50g	4,15g	78,50g	%Yield			1	

AE = 170.21 : (170.21 + 137.65 + 90.08) = 43%

EF = (5 + 3.12 + 17.78 + 3.31 + 4.75 + 4.14 + 199.5 + 4.15 + 78.5 - 4.28) : 4.28 = 73.82 [g/g]

2.5 Sulfinimine-auxiliary route⁶

AE = 263.40 : (263.40 + 121.22) = 68%

EF = (10 + 11.42 + 97.68 + 18.6 + 10.1 + 270.6 + 5.16 - 9.03) : 9.03 = 45.91 [g/g]

			Jene					
Reactants					Products			
Formula C ₁₂	H ₂₅ NO ₃ S	CH₄O	CIH	C ₄ H ₁₀ O	Formula	C ₅ H ₁₄ CINO ₂	C₃H ₆ O	C ₄ H ₁₀ O ₂ S
MW 263	,40	32,04	36,46	74,12	MW	155,62	58,08	122,18
Limiting? Yes	;	No	No	No	Equivalents			
Equivalents		109,38		25,34	%Completion	75,00%		
Sample Mass			6,92 _g		Expected Mass	2,22g	1,10g	2,32g
%Weight			10,00%		Expected Moles	14,24mmol	18,98mmol	18,98mmol
Molarity					Measured Mass			
Density		792,00mg/mL		713,00mg/mL	Purity			
Volume		84,00mL	34,00mL	50,00mL	Product Mass			
Reactant Moles 18,9	98 _{mmol}	2,08 _{mol}	18,98 _{mmol}	480,96 _{mmol}	Product Moles			
Reactant Mass 5,00	0g	66,53g	692,08mg	35,65g	%Yield			

AE = 155.62 : (155.62 + 58.08 + 122.18) = 46%

E-Factor = (5 + 66.53 + 6.92 + 35.65 - 2.22) : 2.22 = 50.40 [g/g]

AE = 89.14 : (89.14 + 61.83 + 58.44 + 197.89 + 30.03) = 20%

EF = (2 + 0.03732 + 2.73 + 0.6 + 0.46855 + 81.18 - 0.85918) : 0.85918 = 100.28 [g/g]

Reactants						Products		
Formula	C ₄ H ₁₁ NO	C ₇ H ₈	нко	Na ₂ O ₄ S	C ₄ H ₆ Cl ₂ O	Formula	C ₈ H ₁₅ NO ₂	СІК
MW	89,14	92,14	56,11	142,04	140,99	MW	157,21	74,55
Limiting?	Yes	No	No	No	No	Equivalents		
Equivalents		6,71	2,99	1,15	1,09	%Completion	80,00%	
Sample Mass		69,36g				Expected Mass	14,11g	8,36g
%Weight						Expected Moles	89,75 _{mmol}	112,19 _{mmol}
Molarity						Measured Mass		
Density		867,00mg/mL				Purity		
Volume		80,00mL				Product Mass		
Reactant Moles	112,19mmol	752,76mmol	335,08mmol	129,55mmol	122,70mmol	Product Moles		
Reactant Mass	10,00g	69,36g	18,80g	18,40g	17,30g	%Yield		

AE = 157.21 : (157.21 + 2 * 74.55) = 51%

E-Factor = (10 + 69.36 + 18.8 + 18.4 + 17.3 - 14.11) : 14.11 = 8.49 [g/g]

reactant	solvent	reagent	reagen	t c	atalyst	work-up	work-up	work-up	worl	k-up			
Reactants										Products			
Formula	C ₈ H ₁₅ NO ₂	C ₇ H ₈	нко	KMnO ₄	C ₁₆ H ₃₆ BrN	Na ₂ O ₄ S	СІН	CH ₂ Cl ₂	Na ₃ O ₄ P	Formula	MnO ₂	СІК	C ₈ H ₁₃ NO ₃
MW	157,21	92,14	56,11	158,03	322,38	142,04	36,46	84,93	163,94	MW	86,94	74,55	171,20
Limiting?	Yes	No	No	No	No	No	No	No	No	Equivalents			
Equivalents		61,56	2,80	1,49	0,10			332,37	2,40	%Completion	100,00%		76,00%
Sample Mass				1,50g		903,46mg	773,01mg			Expected Mass	552,98mg	474,19mg	827,60mg
%Weight							30,00%			Expected Moles	6,36mmol	6,36mmol	4,83mmol
Molarity										Measured Mass			
Density		902,00mg/mL						1,33g/mL		Purity			
Volume		40,00mL					2,00mL	135,00mL		Product Mass			
Reactant Moles	6,36mmol	391,57mmol	17,82mmol	9,49mmol	620,40µmol	6,36mmol	6,36mmol	2,11mol	15,25mmol	Product Moles			
Reactant Mass	1,00g	36,08g	1,00g	1,50g	200,00mg	903,46mg	231,90mg	179,55g	2,50g	%Yield			

AE = 171.21 : (171.21 + 74.55 + 66.94) = 55%

EF = (1 + 36.08 + 1 + 1.5 + 0.2 + 0.90346 + 0.77301 + 179.55 + 2.5 - 0.8276) : 0.8276 = 269.07 [g/g]

Density		7 20,00 mg/mL	009,00mg/mL					1,33g/mL	7 64,00 mg/mL	Pully
Volume		4,30mL	20,00mL					150,00mL	100,00mL	Product Mass
Reactant Moles	29,21mmol	30,85mmol	246,58mmol	26,72mmol	136,00mmol	29,21mmol	29,21mmol	2,35mol	1,35mol	Product Moles
Reactant Mass	5,00g	3,12g	17,78g	2,90g	4,77g	4,15g	4,04g	199,50g	78,40g	%Yield

AE = 170.21 : (170.21 + 137.65 + 90.08) = 43%

EF = (5 + 3.12 + 17.78 + 2.9 + 4.77 + 4.15 + 4.04 + 199.5 + 78.4 - 3,23) : 3,23 = 97.97 [g/g]

 $\Pi(AE) = 0.8\%$; $\Sigma(E$ -factor) = 572.12, total yield: 18%

2.6 Ruthenium-catalysed route⁷

O II N reactant	Mg + reage	Br + CH	l₂Cl₂ + vent s	Et ₂ O + M w olvent (es	/lgSO ₄ + ork-up timated)	NH ₄ CI — work-up		ZH	+ BrMgOH
Reactants							Products		
Formula	C7H15NOS	C₃H₅BrMg	CH ₂ Cl ₂	C ₄ H ₁₀ O	MgO ₄ S	CIH₄N	Formula	C ₁₀ H ₂₁ NOS	BrHMgO
MW	161,26	145,28	84,93	74,12	120,36	53,49	MW	203,34	121,22
Limiting?	Yes	No	No	No	No	No	Equivalents		
Equivalents		2,02	1225,52	19,39		75,10	%Completion	87,00%	
Sample Mass			144,57g	2,00g	167,19mg		Expected Mass	245,73mg	168,37mg
%Weight							Expected Moles	1,21mmol	1,39mmol
Molarity							Measured Mass		
Density			1,33g/mL	713,00mg/mL			Purity		
Volume			108,70 _{mL}	2,80mL			Product Mass		
Reactant Moles	1,39 _{mmol}	2,80mmol	1,70 _{mol}	26,93 _{mmol}	1,39 _{mmol}	104,32 _{mmol}	Product Moles		
Reactant Mass	224,00mg	406,79mg	144,57g	2,00g	167,19mg	5,58g	%Yield		

AE = 203.34 : (203.34 + 121.21) = 63%

reagent

reactant

EF = (0.244 + 0.40679 + 144.57 + 2 + 0.16719 + 5.58 - 0.24573) : 0.24573 = 621.50 [g/g]

solvent

solvent

Reactants							Products		
Formula	C ₁₀ H ₂₁ NOS	CIH	C ₄ H ₈ O ₂	CH₄O	C ₄ H ₁₀ O	C ₆ H ₁₄	Formula	C ₆ H ₁₄ CIN	C ₄ H ₁₀ O ₂ S
MW	203,34	36,46	88,11	32,04	74,12	86,18	MW	135,63	122,18
Limiting?	Yes	No	No	No	No	No	Equivalents		
Equivalents		2,00	5,70	12,57	12,54	39,63	%Completion	89,00%	
Sample Mass		111,88mg				5,24g	Expected Mass	185,22mg	187,47mg
%Weight							Expected Moles	1,37mmol	1,53mmol
Molarity							Measured Mass		
Density			1,00g/mL	792,00mg/mL	713,00mg/mL	655,00mg/mL	Purity		
Volume			770,00mmL	780,00mmL	2,00mL	8,00mL	Product Mass		
Reactant Moles	1,53mmol	3,07mmol	8,74mmol	19,28mmol	19,24mmol	60,80mmol	Product Moles		
Reactant Mass	312,00 _{mg}	111,88 _{mg}	770,00 _{mg}	617,76 _{mg}	1,43g	5,24g	%Yield		

solvent

solvent

AE = 135.63 : (135.63 + 122.18) = 53%

EF = (0.312 + 0.11188 + 0.77 + 0.61776 + 1.43 + 5.24 - 0.18522) : 0.18522 = 44.79 [g/g]

CIH. NH2	+	C	I + KOF	H + Na ₂ S	60 ₄ + N	l(Bu) ₄ l + (+	NaH +	NH ₄ CI +	EtOAc +	MgSO ₄	- N	+	NaCl +	H ₂ + KCI
reactant		reagent	reage	nt reag	ent ca	atalyst s	solvent r	eagent	work-up v	vork-up	(estimated)				
Reactants								-			Products				
Formula	C ₆ H ₁₄ CIN	C ₄ H ₆ Cl ₂ O	нко	Na ₂ O ₄ S	C ₁₆ H ₃₆ IN	C ₇ H ₈	HNa	CIH₄N	C ₄ H ₈ O ₂	MgO ₄ S	Formula	C ₁₀ H ₁₇ NO	CINa	H ₂	СІК
MW	135,63	140,99	56,11	142,04	369,38	92,14	24,00	53,49	88,11	120,36	MW	167,25	58,44	2,02	74,55
Limiting?	Yes	No	No	No	No	No	No	No	No	No	Equivalents				
Equivalents		1,20	4,60		0,07	127,63	3,39	282,99	1666,30		%Completion	81,00%			
Sample Mass		62,37 _{mg}	95,14 _{mg}	52,36mg						44,37 _{mg}	Expected Mass	49,94 _{mg}	21,54 _{mg}	743,17 _{µg}	27,48 _{mg}
%Weight											Expected Moles	298,60µmol	368,64µmol	368,64µmol	368,64µmol
Molarity											Measured Mass				
Density						867,00mg/mL			902,00mg/mL		Purity				
Volume						5,00mL			60,00mL		Product Mass				
Reactant Moles	368,64µmol	442,36µmol	1,70mmol	368,64µmol	25,99µmol	47,05mmol	1,25mmol	104,32mmol	614,26mmol	368,64µmol	Product Moles				
Reactant Mass	50,00mg	62,37mg	95,14mg	52,36mg	9,60mg	4,34g	30,00mg	5,58g	54,12g	44,37mg	%Yield				

AE = 167.25 : (167.25 + 58.44 + 2.02 + 74.55) = 55%

EF = (0.05 + 0.06237 + 0.09514 + 0.05236 + 0.0096 + 4.34 + 0.03 + 5.58 + 54.12 + 0.04437 - 0.04994) : 0.04994 = 1288.22 [g/g]

 \rightarrow N^{O} + N^{O} + $NalO_3$

Reactants																Products			
Formula	C ₁₀ H ₁₇ NO	C ₅ H ₁₂ OSi	C ₇ H ₈	C46H65Cl2N2PRu	INaO ₄	CCI4	C ₂ H ₃ N	H ₂ NaO ₄ P	MgO₄S	Na ₂ O ₃ S ₂	CINa	C ₃ H ₈ O	CH ₂ Cl ₂	CHCI3	C ₂ H ₆ OS	Formula	C ₈ H ₁₃ NO ₃	C ₂ H ₄ O ₂	INaO ₃
MW	167,25	116,23	92,14	848,98	213,89	153,81	41,05	119,98	120,36	158,10	58,44	60,10	84,93	119,37	78,13	MW	171,20	60,05	197,89
Limiting?	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Equivalents			
Equivalents		10,00	486,73	0,05	4,51	37,43	69,33	213,78	14,33	38,23	29,50	488,58	67,51	2331,65		%Completion	90,00%		
Sample Mass			52,02g			6,68g	3,30g					34,06g	6,65g	322,84g	90,62mg	Expected Mass	178,72mg	69,66mg	229,54mg
%Weight																Expected Moles	1,04mmol	1,16mmol	1,16mmol
Molarity																Measured Mass			
Density			867,00mg/mL			1,59g/mL	786,00mg/mL					786,00mg/mL	1,33g/mL	1,49g/mL		Purity			
Volume			60,00mL			4,20mL	4,20mL					43,33mL	5,00mL	216,67mL		Product Mass			
Reactant Moles	1,16mmol	11,60mmol	564,57mmol	57,95µmol	5,24mmol	43,42mmol	80,41mmol	247,97mmol	16,62mmol	44,34mmol	34,22mmol	566,72mmol	78,30mmol	2,70mol	1,16mmol	Product Moles			
Reactant Mass	194,00mg	1,35g	52,02g	49,20mg	1,12g	6,68g	3,30g	29,75g	2,00g	7,01g	2,00g	34,06g	6,65g	322,84g	90,62mg	%Yield			

AE = 171.20 : (171.20 + 60.05 + 197.89) = 40%

 $\mathsf{EF} = 0.194 + 1.35 + 0.05202 + 0.04920 + 1.12 + 6.68 + 29.75 + 2 + 7.01 + 2 + 34.06 + 6.65 + 322.84 + 0.09062 - 0.17872) : 0.17872 = 2314.61 \ [g/g]$

С Л О О ОН	+ NEt ₃	+	+	+ NH CI	I₄OH +	K ₂ CO ₃ +	CH ₂ Cl ₂ +	MgSO ₄ work-up	+ EtOAc	+	$\rightarrow \sum_{0}^{N}$	+	NEt ₃ HCI	+	O OH + NH,	₄CI
reactant	reagent	solvent	reagent	rea	agent v	work-up	work-up	(estimated)	work-up	work-up						
Reactants					_						Products		-			
Formula	C ₈ H ₁₃ NO ₃	C ₆ H ₁₅ N	C ₄ H ₈ O	C ₃ H ₅ ClO ₂	H₅NO	CK ₂ O ₃	CH ₂ Cl ₂	MgO ₄ S	C ₄ H ₈ O ₂	C ₃ H ₆ O	Formula	C ₈ H ₁₄ N ₂ O ₂	C ₆ H ₁₆ CIN	C ₃ H ₆ O ₃	CIH₄N	
MW	171,20	101,19	72,11	108,52	35,05	138,20	84,93	120,36	88,11	58,08	MW	170,21	137,65	90,08	53,49	
Limiting?	Yes	No	No	No	No	No	No	No	No	No	Equivalents					
Equivalents		1,00	70,36	1,11	10,00	1,03	379,13	7,18	212,44	116,71	%Completion	45,00%				
Sample Mass			2,93g				18,62g		10,82g		Expected Mass	44,29mg	79,60mg	52,09mg	30,93mg	
%Weight											Expected Moles	260,23µmol	578,28µmol	578,28µmol	578,28µmol	
Molarity											Measured Mass					
Density		726,00mg/mL	889,00mg/mL				1,33g/mL		902,00mg/mL	784,00mg/mL	Purity					
Volume		88,70mmL	3,30mL				14,00mL		12,00mL	5,00mL	Product Mass					
Reactant Moles	578,28µmol	636,37µmol	40,69mmol	639,97µmol	5,78mmol	593,32µmol	219,25mmol	4,15mmol	122,85mmol	67,49mmol	Product Moles					
Reactant Mass	99,00mg	64,40mg	2,93g	69,45mg	202,57mg	82,00mg	18,62g	500,00mg	10,82g	3,92g	%Yield					

AE = 170.21 : (170.21 + 137.65 + 90.08 + 53.49) = 38%

 $\mathsf{EF} = (0.099 + 0.0644 + 2.93 + 0.06945 + 0.20257 + 0.082 + 18.62 + 0.5 + 10.82 + 3.92 - 0.04429) : 0.04429 = 841.34 \ [g/g]$

 $\Pi(AE) = 3\%$; $\Sigma(E$ -factor) = 5110.46, total yield: 25%

2.7 Transition metal-catalysed hydrogenation route⁸

AE = 116.12 : 116.12 = 100%

EF = (14 + 15.84 + 106.4 + 0.75511 + 5 - 7.64) : 7.64 = 17.59 [g/g]

Reactants								Products		
Formula	C₅H ₈ O ₃	C ₄ H ₇ NO	C ₇ H ₈	Cl ₃ OP	HKO₄S	CINa	MgO ₄ S	Formula	C ₉ H ₁₃ NO ₃	H ₂ O
MW	116,12	85,11	92,14	153,32	136,16	58,44	120,36	MW	183,21	18,02
Limiting?	Yes	No	No	No	No	No	No	Equivalents		
Equivalents		1,71	13,53	0,26	0,49	4,07		%Completion	40,00%	
Sample Mass		9,41g					7,77g	Expected Mass	4,73g	1,16g
%Weight					10,00%			Expected Moles	25,84mmol	64,59mmol
Molarity								Measured Mass		
Density		1,12g/mL	867,00mg/mL	1,64g/mL				Purity		
Volume		8,40mL	92,90mL	1,60mL	42,90mL			Product Mass		
Reactant Moles	64,59 _{mmol}	110,54 _{mmol}	874,14 _{mmol}	17,11 _{mmol}	31,51 _{mmol}	262,66mmol	64,59 _{mmol}	Product Moles		
Reactant Mass	7,50g	9,41g	80,54g	2,62g	4,29g	15,35 _g	7,77g	%Yield		

AE = 183.21 : (183.21 + 18.02) = 91%

EF = (7.5 + 9.41 + 80.54 + 2.62 + 4.29 + 15.35 + 7.77 - 4.73) : 4.73 = 25.93 [g/g]

reactant	solvent	solven	t catal	yst	reagen	nt	work-up	work-up	(estimated)			
Reactants									Products			
Formula	C ₈ H ₁₁ NO ₃	C₄H ₈ O	C₂H ₆ O	C ₇ H ₁₀ N ₂	C ₁₃ H ₂₂ N ₂	C ₆ H ₁₄	CH ₂ Cl ₂	Na ₂ O ₄ S	Formula	C ₈ H ₁₂ N ₂ O ₂	C ₁₃ H ₂₄ N ₂ O	
MW	169,18	72,11	46,07	122,17	206,33	86,18	84,93	142,04	MW	168,20	224,35	
Limiting?	Yes	No	No	No	No	No	No	No	Equivalents			
Equivalents		41,71	3,19	0,10	1,01	25,72	105,98		%Completion	100,00%		
Sample Mass			1,74g			26,20g	106,40g	1,68g	Expected Mass	1,99 _g	2,65g	
%Weight									Expected Moles	11,82mmol	11,82mmol	
Molarity									Measured Mass			
Density		888,90mg/mL	789,00mg/mL			655,00mg/mL	1,33g/mL		Purity			
Volume		40,00 _{mL}	2,20 _{mL}			40,00 _{mL}	80,00mL		Product Mass			
Reactant Moles	11,82 _{mmol}	493,10 _{mmol}	37,68 _{mmol}	1,23 _{mmol}	11,92 _{mmol}	304,02 _{mmol}	1,25 _{mol}	11,82 _{mmol}	Product Moles			
Reactant Mass	2,00g	35,56g	1,74g	150,00mg	2,46g	26,20g	106,40g	1,68g	%Yield			

AE = 168.20 : (168.20 + 224.35) = 43%

EF = (2 + 35.56 + 1.74 + 0.15 + 2.46 + 26.2 + 106.4 + 1.68 - 1.98) : 1.98 = 87.98 [g/g]

Reactants										Products	
Formula	C ₈ H ₁₂ N ₂ O ₂	Cl ₂ CoH ₁₂ O ₆	C ₃₄ H ₃₆ P ₂	H ₂	C₄H ₈ O	Zn	CH₄O	C ₅ H ₁₀ O ₂	C ₇ H ₁₆	Formula	C ₈ H ₁₄ N ₂ O ₂
MW	168,20	237,92	506,61	2,02	72,11	65,38	32,04	102,13	100,21	MW	170,21
Limiting?	Yes	No	No	No	No	No	No	No	No	Equivalents	
Equivalents		0,00	0,00		0,15	0,01	40,93	17,54	1,14	%Completion	96,00%
Sample Mass	200,00g	170,00mg	380,00mg	2,40g		466,00mg			136,00g	Expected Mass	194,30g
%Weight										Expected Moles	1,14mol
Molarity										Measured Mass	
Density					889,00mg/mL		792,00mg/mL	880,00mg/mL	680,00mg/mL	Purity	
Volume					14,00mL		1,97kmL	2,42kmL	200,00mL	Product Mass	
Reactant Moles	1,19mol	714,52µmol	750,08µmol	1,19mol	172,60mmol	7,13mmol	48,67mol	20,85mol	1,36mol	Product Moles	
Reactant Mass	200,00g	170,00mg	380,00mg	2,40g	12,45g	466,00mg	1,56kg	2,13kg	136,00g	%Yield	

AE = 170.21 : 170.21 = 100%

EF = (200 + 0.17 + 0.38 + 2.4 + 12.45 + 0.466 + 1560 + 2130 + 136 - 194.3) : 194.3 = 19.80 [g/g]

 $\Pi(AE) = 39\%$; $\Sigma(E$ -factor) = 151.30, total yield: 18%

2.8 Strecker synthesis – EDKR – oxidation route

О + К	(CN + /	/NH \ +	MeOH +	NaHSO ₃	+ EtOAc	+ Na ₂ S	O₄ →	N	+ K ₂ SO ₄	
reactant rea	igent re	eagent	solvent	reagent	work-up	o work-	up			
Reactants								Products		
Formula C	C ₃ H ₆ O	CKN	C₄H ₉ N	CH₄O	HNaO₃S	C ₄ H ₈ O ₂	NaO ₄ S	Formula	C ₈ H ₁₄ N ₂	K₂O₄S
MW 5	58,08	65,12	71,12	32,04	104,05	88,11	119,05	MW	138,21	174,25
Limiting?	Yes	No	No	No	No	No	No	Equivalents		
Equivalents		1,82	0,91				0,14	%Completion	86,00%	
Sample Mass				9,91 _g	32,19 _g	27,26g		Expected Mass	36,78 _g	53,91 _g
%Weight								Expected Moles	266,08 _{mmol}	309,40 _{mmol}
Molarity								Measured Mass		
Density								Purity		
Volume								Product Mass		
Reactant Moles 3	309,40mmol	562,38mmol	281,20mmol	309,40mmol	309,40mmol	309,40mmol	42,00mmol	Product Moles		
Reactant Mass 1	17,97g	36,62g	20,00g	9,91g	32,19g	27,26g	5,00g	%Yield		

AE = 138.21 : (138.21 + 174.25) = 44%

EF = (17.97 + 36.62 + 20 + 9.91 + 32.19 + 27.26 + 5 - 36.78) : 36.78 = 3.0 [g/g]

AE = 156.23 : 156.23 = 100%

EF = (6.91 + 2.6 + 2.9 + 8.5 - 5.23) : 5.23 = 3,00 [mg/mg]

H_2N	+ NalO ₄	+ RuO ₂	+	→ + H ₂ ¢)	H_2N	+
reactant	repla	ced by water	solv	vent reage	ent		
Reactants		-		Products	-		
Formula	C ₈ H ₁₆ N ₂ O	C ₄ H ₈ O ₂	H ₂ O	Formula	C ₈ H ₁₄ N ₂ O ₂		
MW	156,23	88,11	18,02	MW	170,21		
Limiting?	Yes	No	No	Equivalents			
Equivalents		21,27	2,60	%Completion	76,00%		
Sample Mass			29,98mg	Expected Mass	82,80mg		
%Weight				Expected Moles	486,47µmol		
Molarity				Measured Mass			
Density		902,00mg/mL		Purity			
Volume		1,33mL		Product Mass			
Reactant Moles	640,09µmol	13,62mmol	1,66mmol	Product Moles			
Reactant Mass	100,00mg	1,20g	29,98mg	%Yield			

AE = 170.21 : (170.21 + 2.02) = 99%

EF = (100 + 1200 + 29.98 - 82.8) : 82.8 = 15,06 [mg/mg]

 $\Pi(AE) = 44\%$; $\Sigma(E$ -factor) = 21.06, total yield: 44%

 H_2

3 Used chemicals

(*S*)-2-Aminobutanamide hydrochloride [7682-20-4] 1,4-Dibromobutane [110-52-1] Acetonitrile [75-05-8] Dichloromethane [75-09-2] Levetiracetam [102767-28-2] Magnesium sulphate [7487-88-9] Methanol [67-56-1] Sodium bisulphate monohydrate [10034-88-5] Sodium thiosulphate pentahydrate [10102-17-7] Sodium carbonate [497-19-8] Sodium hydroxide [1310-73-2]

Sodium iodate [7681-55-2] Sodium periodate [7790-28-5] Sodium sulphate [7757-82-6] Phosphorus(V) oxide [1314-56-3] Ruthenium(IV) oxide hydrate [12036-10-1] Nitric acid (\geq 65 %) [7697-37-3] Hydrochloric acid (\sim 37 %) [7647-01-0] Sulphuric acid (\geq 95 %) [7664-93-9] Caffeine [58-08-2] abcr GmbH, 98% Merck-Schuchardt Fisher Scientific, ≥99,9% Fisher Scientific, ≥99.8% Acros Organics Acros Organics, 97% VWR Chemicals, 100.0% Merck, >99 %; Acros Organics, 99+% Acros Organics, 99,5% Acros Organics, 99,5% Honeywell, Pellets, $\geq 98\%$; VWR Chemicals, Pellets, 99,2% Alfa Aesar, 99% Fisher Scientific, 99% Merck Alfa Aesar, 98% Aldrich Sigma-Aldrich **Fisher Scientific Fisher Scientific** BASF (donation)

PART I: ENZYMATIC DYNAMIC KINETIC RESOLUTION

4 Biocatalyst production

4.1 Expression in shaking flasks

Cultivation was performed typically in a total volume of 400 mL LB medium, using 1 L baffled Erlenmeyer flasks at 37 °C in LB-Amp and induction was performed at an OD_{600} of 0.8-1.0 with IPTG (0.1 mM) and FeSO₄ (1 mM) or CoCl₂ (1 mM) at 20 °C. Cultures were harvested after ~24 h by centrifugation at 5,000 *g* and 4 °C for 15 min. The supernatant was discarded and 1.2-3.0 g of pellets were stored at -20 °C or further processed.

4.2 Cell lysis by sonification

The pellets were resuspended in 25 mL of Tris-butyrate buffer (50/40 mM, pH 7.2), and lysed on ice by sonication for 6 min at 70-80% duty cycle and 7-8 output control. Cell-free extracts were obtained after centrifugation at 48,250 *g* and 4 °C for 1 h and filtered through 0.45 μ m

syringe filters. Protein concentration was determined using the Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific).

5 Screening for (S)-selective NHase

5.1 Analytical scale hydrolysis

50 μ L NHase-CFE (3.7-12.7 mg/mL) was mixed with 450 μ L substrate solution (11.1 mM of (*rac*)-**7** in sodium phosphate buffer, (50 mM, pH 7.2) and incubated for 16 h at 25 °C and 300 rpm in Eppendorf thermomixers. The reactions were stopped by the addition of 1 mL ethanol and vortexing. After centrifugation of precipitated protein, the supernatants were analysed by HPLC. The results are summarised in Table S1.

NHase	Active site metal	Active site Expr. NHase metal [µg/mL]		Hydrolysis of (<i>rac</i>)-7			
			[%]	ee _P			
GhNHase (Gordonia hydrophobica)	Fe	340	14	78 (S)			
PkNHase (Pseudomonas kilonensis)	Fe	291	8	71 (S)			
PmNHase (Pseudomonas marginalis)	Fe	190	3	67 (S)			
ReNHase (Rhodococcus erythropolis)	Fe	287	18	16 (S)			
CtNHase (Comamonas testosteroni)	Со	340	11	89 (S)			
KoNHase (Klebsiella oxytoca)	Со	289	5	79 (S)			
NaNHase (Nitriliruptor alkaliphilus)	Со	102	1	22 (S)			

Table S1. Screening cell free extracts for nitrile hydratase activity towards hydrolysis of racemic 6.

5.2 Chiral analysis of (*R*)- and (S)-8 by HPLC

(*R*)- and (*S*)-**8** were separated by a Chiralpak AD-RH (150 x 4.6 mM, 5 μ m) using Na-borate buffer, (20 mM, pH 8.5), and acetonitrile in a ratio 70:30 as the mobile phase, at a flow rate of 0.5 mL/min for 15 min. The compounds were detected at 210 nm (DAD). A calibration curve of (*rac*)-**8** (external standard) was used for quantification by linear interpolation and peak areas were used to calculate the *ee*. Retention times of (*R*)- and (*S*)-**8** were 5.8 min and 6.4 min, respectively.

Figure S1. Top: (*rac*)-8. Bottom: Selected chromatogram of (*S*)-8 from preparative scale biotransformation with CtNHase variant P121T/L48R after 25 min of reaction time. ee = 96%

6 Characterisation of CtNHase

6.1 General procedure for the spectrophotometric MAN assay (GP 1)

Physicochemical characteristics of NHases were determined by monitoring the hydrolysis of methacrylonitrile (MAN). Therefore, 10 μ L NHase-CFE [diluted in Tris-butyrate buffer (50/40 mM, pH 7.2)] were mixed with 100 μ L of MAN [125 mM in Tris-butyrate buffer (50/40 mM, pH 7.2)] in 96-well UV star plates. The formation of methacrylamide (MAD) was monitored at 224 nm on a Synergy Mx Plate-reader (BioTek) at 25 °C for 5 min. Appropriate blank reactions were carried out in parallel and each reaction was carried out at least in triplicate.1 Unit corresponds to the formation of 1 μ mol of methacrylamide per minute.

6.2 General procedure for the biocatalytic conversions with (rac)-7 (GP 2)

The standard set-up of biocatalytic hydration of (*rac*)-**7** by NHases was 500 μ L reaction volume comprising of either NHase-CFE or cells, the (*rac*)-**7** and buffer. Incubation was done at 25 °C in a thermomixer device. Various experiments were performed in which several parameters were investigated or additives were used. Reactions were stopped by the addition of 2 volumes of ethanol and thorough mixing for 1 min. The mixtures were left at room temperature overnight for protein precipitation before they were centrifuged for at least 20-40 min at max speed in a

table-top centrifuge. 500 μ L of the supernatant were transferred into HPLC vials to be measured by chiral HPLC (5.2).

6.3 Determination of pH optimum of CtNHase

For the determination of the pH optimum, the MAN assay, as according to GP 1, was used with the following buffers: citrate-phosphate buffer (100 mM, pH 5-6), sodium phosphate buffer (100 mM, pH 7-8), Tris-HCl buffer (100 mM, pH 8.5) and carbonate buffer (100 mM, pH 9-10).

Figure S2. Activity of *Ct*NHase for the conversion of methacrylonitrile at different pH values. Reactions were performed in duplicates.

6.4 Determination of temperature optimum of CtNHase

For the determination of the pH optimum, the biocatalytic reactions were carried out according to GP 2 with *Ct*NHase in the form of whole cell biocatalyst (17 mg/mL CWW) and (*rac*)-**7** [50 mM in Tris-HCl (200 mM, pH 7)]. Incubation was done at 700 rpm at the following temperatures: 25, 30, 35, 40, 45, and 50 °C. Samples were taken after 60 min to be measured by HPLC (5.2).

Figure S3. Activity of *Ct*NHase for hydration of (*rac*)-7 (50 mM) by at different temperatures. Reactions were performed in triplicates.

6.5 Inhibition of CtNHase by cyanide and pyrrolidine

For the determination of possible inhibition by CN⁻, the MAN assay according to GP 1 was used. Prior to conversion of MAN, the CFE was incubated for 30 min at 25 °C, 300 rpm in the presence of the following concentrations of KCN: 0, 1, 5, 10, 15, 25 and 50 mM.

For the determination of possible inhibition by pyrrolidine, the MAN assay according to GP 1 was used. The buffer capacity of Tris-butyrate buffer (50/40 mM, pH 7.2)] was insufficient for high pyrrolidine concentrations and therefore, potassium phosphate buffer (1 mM, pH 7.2) was used in the presence of the following concentrations of pyrrolidine: 0, 25, 50 and 100 mM.

Figure S4. Left: Activity of *Ct*NHase in the presence of different concentrations of potassium cyanide. Reactions were performed in duplicates. Right: Activity of *Ct*NHase in the presence of different concentrations of pyrrolidine. Reactions were performed in six technical replicates.

6.6 Effect of propanal addition on formation of compound 8

The reaction was carried out according to GP 2. *Ct*NHase was used in the form of whole cell biocatalyst at 8.5 mg/mL cells in Tris-HCl buffer (500 mM, pH 7). The concentration of (*rac*)-**7** and propanal were 150 mM, respectively. Incubation was done at 25 °C, 700 rpm for 120 min. Reactions were measured by HPLC (5.2).

Figure S5. Formation of **8** from (*rac*)-**7** (150 mM) with and without propanal (150 mM) by wild-type *Ct*NHase in form of whole cell biocatalyst. Reactions were performed in triplicates.

6.7 Effect of pH and (rac)-7 concentration on formation and ee values of 8

The reaction was carried out according to GP 2. *Ct*NHase was used in the form of whole cell biocatalyst at 8.5 mg/mL cells in Tris-HCl buffer (200 mM, pH 7, 7.5 and 8). (*rac*)-**7** was added neat to give the following final concentrations: 50, 75, 100, 150 and 200 mM. The pH of each sample was corrected by addition of HCl (1 M) in the same volume as (*rac*)-**7**. Incubation was done at 25 °C, 700 rpm for 60 min to be measured by HPLC (5.2).

Figure S6. Formation of 8 at different concentrations of (rac)-7 at different pH by CtNHase.

6.8 Time-resolved hydrolysis of (rac)-7

The reaction was carried out according to GP 2 with *Ct*NHase in form of whole cell biocatalyst (1.7 and 8.5 mg/mL CWW, respectively), (*rac*)-**7** (50 mM in Tris-HCl buffer (200 mM, pH 7)]. Incubation was done at 25 °C, 500 rpm. Samples were taken after 0.5, 1, 2, 3, 4, 6, 8 and 25 h to be measured by HPLC (5.2).

Figure S7. Time resolved view of **8** formation from (*rac*)-**7** (50 mM) by *Ct*NHase. The purple values represent production of **8** by 1.7 mg/mL cells while the red values represent production of **8** by 8.5 mg/mL cells. Amide concentrations were determined by linear interpolation of calibration curves of external standard.

6.9 Identification of side-product 2-hydroxybutaneamide

Analysis was carried out on a Shimadzu Nexera UHPLC consisting of following modules: DGU-20A5 Prominence degasser, LC-30AD pumps, SIL-30AC Nexera autosampler, CTO-20AC Prominence column oven, SPD-M20A Prominence photodiode array detector, LCMS-2020 single quadrupole mass spectrometer equipped with an ESI ionization source and a CBM-20A communications bus module. A Nucleodur C18 Gravity (EC 150/3, 3 μm, Macherey-Nagel, Germany) column was applied, using solvent A [formic acid in water (0.1%)] and solvent B (acetonitrile) at a flow rate of 0.1 mL/min for 5 min. A stepwise gradient was used: 0-0.7 min: A/B=0:100; 3.1 min: A/B=95:5; 3.1-3.7min: A/B=95:5; 3.81-5min: A/B: 0:100; Retention times of amide **8** was 2.46 min and 2-hydroxybutaneamide 1.87 min.

Figure S8. High performance liquid chromatography run with mass selective detection of biotransformation of (*rac*)-**7** with *Ct*NHase mutant β L48F/ β G54R in form of whole cell biocatalyst. A: Total Ion Count; B: Single Ion Monitoring for M+1 of amide **8** (molecular mass: 156.23 g/mol; M+1: 157); C: Single Ion Monitoring for M+1 of 2-hydroxybutaneamide (molecular mass: 103.12 g/mol; M+1 104).

7 Homology modelling and docking

For the homology modelling the program YASARA structure⁹ (version 18.2.7) was used. The hetero dimer sequence was merged into one FASTA sequence to fit to YASARA standards for hetero-dimer modelling. A free modelling was performed, restricting the best templates used
to 8 (use models with same sequence was set to 1 with maximal 5 alignments per template) and the oligomeric state was set to dimeric. The modelling speed was set to fast (no hybrid modelling was performed) and PSI-BLAST iterations were set to 4 for the initial alignment with an E-value cut-off of 0.01. Other settings were left on standard values. In the final alignment, 411 of 428 target residues (96%) are aligned (both hetero-chains combined) to residues of the template with the PDB-Code 3QYH. Among these aligned residues, the sequence identity is 95% and the sequence similarity is 96%. At this step the homology models do not include the post-translational modification of the active site cysteine residues anymore. (They are replaced by cysteine residues in the homology modelling process). Therefore, the post-translational modifications were introduced by replacing the cysteines with the sulfinoalanine present in the template with the PDB-Code 3QYH. An energy minimization step was subsequently performed using YASARA applying the AMBER03 force field¹⁰ and the standard minimization protocol.

Clusters: 16	C5EB2579-B762-11E9-84F8-0242C0CA	Ø § Docking resu	t (PSE/PDB)
	Nativ NHase_posttrans_model_min AAU87542.yob [CSD NHase]		
I A			
Cluster # 1		Custom measures	
	Binding energy: -5.591 [kcal/mol] Dissociation constant: 0.08 [mM]	Measure	Value
		Distance NH2 to Metal	4.36
1 jor		Distance NH2 to SG	5.24
Cluster # 2	Binding energy: -5.446 [kcal/mol] Dissociation constant: 0.102 [mM]	Measure	Value
CS16,115	Contacting receptor residues:	Distance NH2 to Metal	4.38
1 por		Distance NH2 to SG	4.27

Figure S9. (*R*)-8 Docking mode Cluster 1:4.36 [Å] distance of (*R*)-8 NH₂ to the metal ion 3CO and - 5.591 kcal/mol binding energy

The docking was performed using Autodock VINA¹¹ implemented within YASARA structure. The products (R)-**8** and (S)-**8** were prepared and docked into the energy minimised homology model. The docking box was set around the cavity of the proposed active site (the cavity aligning the cobalt ion) and 25 individual VINA docking runs were performed. A clustering of the individual docking modes was performed and set to a heavy atom RMSD of 2 Å, resulting in 16 clusters for the (*R*)-**8** and 14 clusters for (*S*)-**8**, respectively. The best clusters were selected based on docking energies and compared. The best docking modes were selected by hand and based on the distance of the NH₂ group to the cobalt ion as well as the binding energy. Both docking modes (*R*) and (*S*) have a similar binding pattern and similar binding energies. Docking as described above was carried out and investigated using the Catalophore[®] platform.¹² Pictures were generated using the Catalophore[®] platform and PyMOL.¹³

Because of dockings into rigid homology model structures have to be taken with care in general, the dockings were only used as a reference for mutation hints and not for a direct comparison of binding affinities.

Residues around 4 Å of the best selected docking modes were investigated and selected for a semi-rational mutation strategy combined with random mutagenesis.

Figure S10. (*S*)-8 docking mode cluster 2: 3.72 [Å] distance of (*S*)-8 NH_2 to the metal ion 3CO and - 5.321 kcal/mol binding energy.

Figure S11. Docking of **8** (yellow sticks) into the homology model with altered cysteine residues (CSD). Left (*R*)-**8** (rotated) right (*S*)-**8**. The active site cavity is shown as transparent surface and coloured by hydrophobicity (blue hydrophilic to red hydrophobic). Selected residues for mutation studies are highlighted shown as stick and coloured (magenta α -subunit residues, cyan β -subunit residues). Blue highlighted residues are picked from the random mutagenesis runs. (PRO 121, GLY 54).

8 Typical methods for screening

8.1 Cultivation and screening of NHase variants in deep well plates

For the liquid screening assay in 96-well format, *E. coli* BL21 Gold (DE3) [pMS470-*Ct*NHase] cells or variants thereof were cultivated in deep well plates. Therefore, wells were filled with 750 μ L LB medium containing ampicillin (100 μ g/mL) and inoculated either with single colonies or from cryo-preserved cultures. The cultures were grown at 37 °C and 320 rpm overnight. The following day, 750 μ L of LB-Amp media were inoculated with 10 μ L of ONC and incubated at 37 °C and 320 rpm for 2 ³/₄ h. Cells were induced with LB-Amp medium (50 μ L) containing IPTG and CoCl₂ to give final concentrations of 0.1 mM and 1 mM, respectively. Temperature was reduced to 20 °C. After 22 h, cells were harvested by centrifugation in a 5810R Eppendorf centrifuge for 15 min at 2970 g and pellets stored at -20 °C.

Frozen pellets were resuspended in 200 μ L of Tris-HCl (200 mM, pH7), to give OD₆₀₀ values of ~20 (corresponding to 34 mg/mL CWW). 12.5 μ L of cell suspension was mixed with 37.5 μ L of (*rac*)-**7** (133.33 mM; final concentration: 100 mM) and incubated at ambient temperature for 30 min at 700 rpm on a Titramax device. Afterwards, 50 μ L of hydroxyl ammonium chloride (200 mM) were added as well as 50 μ L of *R*eAmidase-CFE (27 mg/mL, partially purified by ammonium sulphate precipitation). After 60 min of incubation at 30 °C, 50 μ L of FeCl₃ (0.6 M in 1 M HCl) was added, causing a yellow colouration of blank reactions whereas high nitrile hydratase activity resulted in a red colour.

8.2 Cultivation and screening of NHase variants on agar plates

For the colony-based screening assay, *E. coli* BL21 Gold (DE3) cells containing libraries of [pMS470-*Ct*NHase] were grown on LB-Amp plates for 72 h at room temperature or for 24 h at 37 °C and 20 h at room temperature before they were attached to sterilised Amersham Protran nitrocellulose membranes. The membranes were placed on LB-Amp plates containing IPTG (0.5 mM) and CoCl₂ (1 mM) with the colonies facing upwards. After 24-48 h of induction, colonies were used for the screening assay.

Filter paper (Whatman cellulose) was soaked with (*rac*)-**7** [100 mM in Tris-HCI (200 mM, pH 7) and the membrane with colonies was placed on top. This nitrile hydration phase was conducted for 15 min at room temperature. After that, the membrane was transferred to a new filter soaked with *Re*Amidase reaction solution, which contained 4 parts partially purified *Re*Amidase-CFE [27 mg/mL in sodium phosphate buffer (100 mM, pH 7.5)] and 1 part hydroxyl ammonium chloride [1 M in Tris-HCI (200 mM, pH 7)]. Incubation was done at 30 °C for 30 min. For the colour development phase, the membranes were transferred to fresh filter paper soaked with FeCl₃ (0.6 M in 1 M HCI). Colonies of active clones turned red on the yellow background.

9 Mutant libraries

Table S2. List of primers.

name	sequence
For generation of site-sa	ituration libraries
Ct-aQ93X_for	GGGTANNKGGCGAGGACATG
Ct-aQ93X_rev	GCCMNNTACCCCGGAGAAG
Ct-aW120X_for	TACCCANNKCCGACGCTGG
Ct-aW120X_rev	CAGCGTCGGMNNTGGGTAG
Ct-aP126X_for	TGGGCTTGNNKCCTGCCTG
Ct-aP126X_rev	GTACCAGGCAGGMNNCAAG
Ct-aK131X_for	GTACNNKGCCCCGCCCTAC
Ct-aK131X_rev	GGGCMNNGTACCAGGCAG
Ct-aR169X_for	CGAATTGNNKTACATGGTGCTG
Ct-aR169X_rev	CAGCACCATGTAMNNCAATTCG
Ct-bM34X_for	CGGTCNNKTCCCTGTTCCC
Ct-bM34X_rev	CAGGGAMNNGACCGTTTTTC
Ct-bF37X_for	CCCTGNNKCCGGCGCTGTTC
Ct-bF37X_rev	GCCGGMNNCAGGGACATGAC
Ct-bL48X_for	CAACNNKGATGAGTTTCGACAC
Ct-bL48X_rev	GTCGAAACTCATCMNNGTTGAAG

Ct-bF51X_for	CGATGAGNNKCGACACGGC
Ct-bF51X_rev	GCCGTGTCGMNNCTCATCG
Ct-bY68X-long_for	AAGGGAACCNNKTACGAACACTGGATCCATTC
Ct-bY68X-long_rev	TGTTCGTAMNNGGTTCCCTTCAGGTAGTCG
For generation of rando	omly mutated CtNHase gene fragments
Ct-alpha1_for	TGGCCAAGGCCTGGGTGGAC
Ct-alpha1_rev	GCAAGAGCACAAGGTGCAAAC
Ct-alpha2_for	CCTTGTGCTCTTGCTACCCA
Ct-alpha2_rev	TTCAGTTCCCGCGGGCCG
Ct-beta1_for	CGTCTTTCGCTACGACTGG
Ct-beta1_rev	AGGTTTCGATGGAATGGATCCA
Ct-beta2_for	GCTTCTGCCGCCCGGGAG
Ct-beta2_rev	TTTCCGTGTGCCGCGGTGTC
For generation of pMS	S470-CtNHase backbone strains (restriction sites in blue)
Ct-A1bb-lig_for	AATTTCTCGAGTTTGCACCTTGTGCTCTTGCTAC
Ct-A1bb-lig_rev	AATTTCTCGAGTCCACCCAGGCCTTGGCC
Ct-A2bb-lig_for	AATTTCTCGAGGCCCGCGGGAACTGAAG
Ct-A2bb-lig_rev	AATTTCTCGAGGGTAGCAAGAGCACAAGG
Ct-B1bb-lig_for	TTTAAAGCTAGCTGGATCCATTCCATCGAAACCTTG
Ct-B1bb-lig_rev	TTTAAAGCTAGCCAGTCGTAGCGAAAGACG
Ct-B2bb-lig_for	TTTAAAGCTAGCACCGCGGCACACGGAAAGG
Ct-B2bb-lig_rev	TTTAAAGCTAGCTCCCGGGCGGCAGAAGCC
For generation of pMS4	470-CtNHase-β1-focused library
Ct-beta1-focused_for	ACTTCAACYKSGATGAGVTTCGACACNDTATCGAGCGCATGAAC
Ct-beta1-focused_rev	CATGCGCTCGATAHNGTGTCGAABCTCATCSMRGTTGAAGTTGCCG
	TGG
For generation of pMS4	470-CtNHase combination variants
Ct-P121T_for	ATGGACGACGCTGGGCTTGC
Ct-P121T_rev	AGCGT <mark>CGT</mark> CCATGGGTAGCAAGAG
Ct-V110I_for	AACGTCATCGTTTGCACCTTGTGCTCTTG
Ct-V110I_rev	AAAC <mark>GAT</mark> GACGTTGTGGACGGC
Ct-L48R-G54C_for	ACTTCAACCGTGATGAGTTTCGACACTGTATCGAGCGCATGAAC
Ct-L48R-G54C_rev	CATGCGCTCGATACAGTGTCGAAACTCATCACGGTTGAAGTTGCCG
	TGG
Ct-L48R-G54R_for	ACTTCAAC <mark>CGT</mark> GATGAGTTTCGACAC <mark>CGT</mark> ATCGAGCGCATGAAC
Ct-L48R-G54R_rev	CATGCGCTCGATACGGTGTCGAAACTCATCACGGTTGAAGTTGCCG TGG
Ct-L48R-G54V for	ACTTCAACCGTGATGAGTTTCGACACGTTATCGAGCGCATGAAC
_ Ct-L48R-G54V_rev	CATGCGCTCGAT <mark>AAC</mark> GTGTCGAAACTCATC <mark>ACG</mark> GTTGAAGTTGCCG TGG

Ct-L48P-G54C_for	ACTTCAACCCTGATGAGTTTCGACACTGTATCGAGCGCATGAAC
Ct-L48P-G54C_rev	CATGCGCTCGATACAGTGTCGAAACTCATCAGGGTTGAAGTTGCCGT
	TGG
Ct-L48P-G54R_for	ACTTCAACCCTGATGAGTTTCGACACCGTATCGAGCGCATGAAC
Ct-L48P-G54R_rev	CATGCGCTCGATACGGTGTCGAAACTCATCAGGGTTGAAGTTGCCGT
	TGG
Ct-L48P-G54V_for	ACTTCAACCCTGATGAGTTTCGACACGTTATCGAGCGCATGAAC
Ct-L48P-G54V_rev	CATGCGCTCGATAACGTGTCGAAACTCATCAGGGTTGAAGTTGCCGT
	TGG
Ct-L48F-G54C_for	ACTTCAACTTCGATGAGTTTCGACACTGTATCGAGCGCATGAAC
Ct-L48F-G54C_rev	CATGCGCTCGATACAGTGTCGAAACTCATCGAAGTTGAAGTTGCCGT
	TGG
Ct-L48F-G54R_for	ACTTCAACTTCGATGAGTTTCGACACCGTATCGAGCGCATGAAC
Ct-L48F-G54R_rev	CATGCGCTCGATACGGTGTCGAAACTCATCGAAGTTGAAGTTGCCGT
	TGG
Ct-L48F-G54V_for	ACTTCAACTTCGATGAGTTTCGACACGTTATCGAGCGCATGAAC
Ct-L48F-G54V_rev	CATGCGCTCGATAACGTGTCGAAACTCATCGAAGTTGAAGTTGCCGT
	TGG
Ct-L48P-F51V-	ACTTCAACCCTGATGAGGTTCGACACGTTATCGAGCGCATGAAC
G54V_for	
Ct-L48P-F51V-	CATGCGCTCGATAACGTGTCGAACCTCATCAGGGTTGAAGTTGCCGT
G54V_rev	TGG
Ct-L48F_for	CAACTTTGATGAGTTTCGACAC
Ct-L48F_rev	GTCGAAACTCATCAAAGTTGAAG
Ct-F51L_for	CGATGAG <mark>CTT</mark> CGACACGGC
Ct-F51L_rev	GCCGTGTCGAAGCTCATCG

9.1 Generation and screening of site saturation libraries

Site-saturated libraries were generated by PCR reactions with degenerated oligonucleotides. The reactions contained 10 ng of template DNA (e.g. pMS470-*Ct*NHase or pMS470-*Ct*NHase- β F51L), 0.2 μ M of forward and reverse primer (e.g. Ct-aQ93X_for and Ct-aQ93X_rev,Table S2), 0.2 mM of dATP, dCTP, dGTP and dTTP, 1 x Q5 Reaction buffer, 1 x Q5 High GC Enhancer and 1 U Q5 High-Fidelity DNA polymerase. The PCR program was as follows: 30 s at 98 °C, 30 cycles at 98 °C for 10 s, 60 °C for 30 s and 72 °C for 3 min and a final extension step at 72 °C for 6 min. The PCR products were digested with 10 U *Dpn*I for 2 h at 37 °C and purified (Wizard SV PCR and Clean-Up System).

Figure S12. Typical example of screening results in deep well plates. The boxes indicate controls: *Ct*NHase (A1, D7, wild-type control), *Gh*NHase (A2, D8, positive control), empty vector (B1, E7), sterile control (B2, E8)

CtNHase clone	formation of 8 [%]	ee _p for (S) [%]	amino acid at β L48
Wild type	12.5	84.1	L
L48X-1-C4	16.5	98.7	Р
L48X-1-A12	13.4	98.3	Р
L48X-1-C12	12.8	99.0	Р
L48X-2-E2	25.4	98.3	R
L48X-2-F9	21.6	97.9	Р
L48X-2-C1	21.7	98.0	R
L48X-2-C11	19.5	98.2	Р
L48X-2-D11	21.4	98.4	Р
L48X-2-D2	19.7	98.5	Р

Table S3. Best hits of saturation library β -L48.

Electro-competent *E. coli* Top10F' were transformed with 5 μ L of digested PCR product. The number of transformants was determined to calculate the library size and mixed plasmids were isolated from overnight cultures. The plasmids of some transformants were isolated and sequenced to confirm that, next to the parent, NNK variants were also found.

The libraries were screened as described in 8.1. The plate and result of a selected library is shown in Fig. S11 and Table S3.

9.2 Generation and screening of random libraries

The Mutazyme II Kit was applied to generate randomly mutated fragments of *Ct*NHase. The 50 μ L PCR reactions contained 5 ng of template DNA (pMS470-*Ct*NHase), of the forward and the reverse primer (e.g. Ct-alpha1_for and Ct-alpha1_rev, Table S2, 0.4 μ M), dATP, dCTP, dGTP and dTTP (0.2 mM), MnCl₂ (0.5-1 mM), 1 x Mutazyme II reaction buffer and Mutazyme II DNA polymerase (2.5 U). The PCR program was as follows: 2 min at 95 °C, 30 cycles at 95 °C for 30 s, 56 °C for 30 s and 72 °C for 1 min and a final extension step at 72 °C for 10 min. The size of the PCR products was analysed by gel electrophoresis and the products were purified (Wizard SV PCR and Clean-Up System, Promega).

50–70 ng of PCR product was cloned into pJET1.2/blunt (CloneJET PCR Cloning Kit, ThermoFisher Scientific) using the sticky end protocol. Electro-competent *E. coli* Top10F' cells were transformed with the resulting plasmids. After amplification in *E. coli* and isolation (GeneJET Miniprep Plasmid Kit, ThermoFisher Scientific), some of those plasmids were sequenced (Microysynth AG) to determine the mutation rate.

Vector backbones were generated in 50 μ L PCR reactions that consisted of 1 ng of template DNA (pMS470-*Ct*NHase or pMS470-*Ct*NHase- β F51L), 0.2 μ M of both primers (e.g. Ct-A1bb-lig_for and Ct-A1bb-lig_rev, Table S), dATP, dCTP, dGTP and dTTP (0.2 mM), 1 x Q5 Reaction buffer, 1 x Q5 High GC Enhancer and 1 U Q5 High-Fidelity DNA polymerase. The PCR program was as follows: 30 s at 98 °C, 30 cycles at 98 °C for 10 s, 60 °C for 30 s and 72 °C for 2 min and a final extension step at 72 °C for 2 min. The PCR products were digested with *Dpn*I (10 U) for 2 h and purified (Wizard SV PCR and Clean-Up System). The ends of 1 μ g PCR product were cut with *Xho*I or *Nhe*I for 15 min at 37 °C and heat inactivated for 20 min at either 65 °C or 80 °C. The cut PCR products were purified and ligated (T4 DNA Ligase, ThermoFisher Scientific) for 10 min at 22 °C. Electro-competent *E. coli* Top10F' were transformed with the heat inactivated DNA. Circular backbone plasmids were amplified in *E. coli*, isolated and sequenced (Microsynth AG). Correct plasmids were linearised by restriction cut with either *Xho*I or *Nhe*I and gel-purified. These backbones were dephosphorylated (Shrimp alkaline phosphatase, NEB) before Gibson assembly (Gibson Assembly® HiFi 1-Step Kit, SGI-DNA).

30 ng of randomly mutated fragments were mixed with 360 ng vector backbone for Gibson assembly. Desalted reactions were applied for the transformation of electro-competent *E. coli* Top 10F'. With the number of transformants, the library size was calculated and 16-24 transformants were analysed by colony PCR for the correct insert size. In parallel, overnight cultures were inoculated with transformants and on the next day, mixed plasmids were isolated (GeneJET Miniprep Plasmid Kit, ThermoFisher Scientific).

The plasmid libraries were transformed into *E. coli* BL21 Gold (DE3) and colonies grown on LB-Amp plates. Screening was applied as described in 8.2. Clones with the strongest signal were screened in deep well plates, as described in 8.1. Clones with the strongest signal were further analysed in biocatalytic conversion reactions according to GP 1 with cell biocatalyst (CWW 8.5 mg/mL) and 100 mM substrate in Tris-HCI (200 mM) for 2 h at 25 °C and 700 rpm. Production of (*S*)-**8** was finally measured by HPLC (5.2).

Figure S13: Typical examples of the colony-based screening assay.

9.3 Generation and screening of focused library

Beneficial amino acid exchanges of β 1 region were combined (for primers see Table S2). We opted for bulky amino acids β L48. The required codon was YKS to achieve Leu (the wild type amino acid), Arg or Trp (Table S4). The YKS codon also enables cysteine or phenylalanine.

The improved variants β F51L, β F51I and β F51V were included into this library. The wild type codon was not allowed, only Ile, Leu and Val. So far, Cys, Asp and Val had been found at position β G54. We used codon NDT for this position, resulting in representatives of all chemical groups.

Table S4 Codons for focused *Ct*NHase- β 1 library and their possible amino acids.

position	β L48	β F51	β G54
desired amino acids	L, R, W	I, L, V	variety
codon	YKS	VTT	NDT
possible amino acids	L, R, W, C, F	I, L, V	F, L, I, V, Y, H, N, D, C, R, S G

The library was constructed by overlap extension PCR with degenerated oligonucleotides (Table S2) and screened in the colony-based assay (8.2). Potential hits were re-screened using the liquid assay (8.1), the promising variants of which were applied in biocatalytic

reactions (GP 1) with cell biocatalyst (CWW 8.5 mg/mL) and substrate [100 mM in Tris-HCl (200 mM)] for 2 h at 25 °C and 700 rpm and measured by HPLC (5.2).

9.4 Combination of beneficial amino acid exchanges

After screening of more than 50,000 *Ct*NHase clones and identification of key residues for the production of enantiomerically enriched **8**, beneficial amino acid exchanges were combined.

As an example, cloning of the variants shown in Figure 2 in the main manuscript is described in the following:

- L48R: was generated in the random library (9.2), although in the presence of silent mutations.
- L48P: was generated in the site saturation library L48X (9.1).
- V110I/L48P, P121T/L48R, P121T/L48P: mutations V110I or P121T were introduced with QuikChange PCR on templates with the mutations L48R or L48P (variants above, primers in Table S2).
- L48R/G54C, L48R/G54R, L48R/G54V, L48P/G54C, L48P/G54R, L48P/G54V, L48F/G54C, L48F/G54R, L48F/G54V: mutations were introduced with QuikChange PCR on the wild type template (primers in Table S2).

The final combination variants were expressed in shaking flasks and screened for hydration of (*rac*)-**7**.

10 Typical method for preparative scale reactions

Frozen cell pellet was thawed and approximately 500 mg suspended in 50 mL of phosphate buffer (100 mM, pH 7.1). The suspension was diluted to an optical density of 5. The reaction was carried out in a Mettler Toledo T50 pH stat at 22 °C using 1 M phosphoric acid titration. The reaction was started by addition of 200 μ L of (*rac*)-7, 100 μ L of propanal and 100 μ L of pyrrolidine. Nitrile hydration translates in pH increase and can be monitored on basis of acid consumption. Every 10-15 min, acid addition ceased and pulses of 100 μ L of propanal and 200 μ L of (*rac*)-7 were added. To analyse reaction progress, 250 μ L samples were withdrawn repeatedly and treated as according to GP 2 before analysis. Fig. 13 shows the result of a typical experiment.

Figure S14: 50 mL scale fed batch hydration of (*rac*)-**7** by *Ct*NHase variant α P121T/ β L48R in pH stat. Black arrows indicate points of substrate addition.

B: 50 mL fed-batch reaction with CtNHase βL48F/βG54R [final analytical yield of (S)-8: 41.9%]

Figure S15. High performance liquid chromatography run with mass selective detection of biotransformations of (*rac*)-**7** with *Ct*NHase variants. Total Ion Count (amide **8** retention time 2.46 min; 2-hydroxybutaneamide retention time 1.87 min); For method details, see section 6.9.

PART II: PYRROLIDINE OXIDATION

11 Calibrations

11.1 Liquid chromatography photodiode array (LC-PDA)

A buffered and diluted sample solution (C = 5.341 mM) was subjected to LC-PDA analysis using an injection volume of 3 μ L. The separation was carried out under isocratic conditions. I⁻, IO₃⁻ and IO₄⁻ were detected by the PDA detector at 1.58 min,1.47 min and 1.92 min at a wavelength of λ = 254 nm. Yields were determined by external calibration.¹⁴

11.2 Gas chromatography with flame ionization detector (GC-FID)

Method: volume = $1.5 \mu L$, inlet temperature = 200 °C, initial Injection column temperature = 50 °C (holding time = 1 min), ramping rate = 15 °C/min (gradient time = 11.5 min), final temperature = 220 °C (hold-up time = 12 min). The system was calibrated for the precursor and for levetiracetam using caffeine as internal standard (Table S5 and S6, Figure S14).

Precursor (S)-8					
Sample	m [mg]	n [µmol]	$R_t = 8.8 \text{ min}$	$R_t = 12.4 \text{ min}$	rel. area
1	10	64	88800	165526	0.54
2	20	128	193269	167911	1.15
3	30	192	327152	172133	1.90
4	40	256	477808	199187	2.40
5	50	320	605594	192839	3.14
6	60	384	714361	176838	4.04
7	70	448	838929	186601	4.50
8	80	512	914777	183787	4.98
9	90	576	1023381	177080	5.78
10	100	640	1142542	183865	6.21

Table S5. GC-FID calibration.

Table S6. GC-FID calibration.

Levetiracetam (S)-1					
Sample	m [mg]	n [µmol]	$R_t = 10.4$	R _t = 12.4	rel. area
1	21.60	127	368480	331274	1.11
2	32.40	190	617033	349994	1.76
3	43.20	254	742162	321520	2.31

4	54.00	317	1210293	421207	2.87
5	64.80	381	1494327	422010	3.54
6	75.60	444	1703344	412925	4.13
7	86.40	508	1663974	359865	4.62
8	97.20	571	2062582	397446	5.19
9	108.00	635	2128238	348816	6.10
10	118.80	698	1935942	303211	6.38

n / μmol

Figure S16: Calibration lines for GC-FID with caffeine as internal standard.

12 Cyclic voltammetry

Solvent = MeCN; glassy carbon (GC) working electrode, GC rod counter electrode, AgNO₃/n-BuNBF₄ reference electrode; scan rate = 0.1 V/s, scan steps = 0.01 V.

Solvent = H_2O , glassy carbon (GC) working electrode, GC rod counter electrode, Hg^0/HgO reference electrode; scan rate = 0.1 V/s, scan steps = 0.01 V. No internal reference.

Solvent = 1 M NaOH, glassy carbon (GC) working electrode, GC rod counter electrode, Hg^{0}/HgO reference electrode; scan rate = 0.1 V/s, scan steps = 0.01 V. No internal reference.

Solvent = 1 M NaOH, boron-doped diamond (BDD) working electrode, GC rod counter electrode, Hg 0 /HgO reference electrode; scan rate = 0.1 V/s, scan steps = 0.01 V. No internal reference.

13 Representative procedures (RP)

13.1 Electrochemical synthesis of etiracetam (RP 1)

In a divided batch electrolysis-cell equipped with a Nafion membrane, a stainless-steel cathode, and a platinum anode, (*S*)-**8** (100 mg, 0.64 μ mol) was electrolysed in caustic soda (0.1 M, 6 mL) using a current density of *j* = 2 mA/cm² and an applied charge of Q = 6 F. After electrolysis, the yield was determined by GC analysis using caffeine as internal standard and the crude product was purified by flash column chromatography on silica gel. The racemic etiracetam was obtained in 29% yield (17% isolated) as determined by chiral HPLC.

13.2 Ruthenium-catalysed synthesis of levetiracetam (RP 2)

0.5-1 mol% RuO₂•xH₂O (0.5 – 1.0 mg, 3.20-6.40 µmol) and 2.60 eq. of NaIO₄ (356 mg, 1.66 mmol) were suspended in a suitable solvent mixture (6 mL) until the solution showed a pale-yellow colour. (*S*)-**8** (100 mg, 640 µmol) was added and the reaction was stirred at room temperature for 0.5 h. The reaction was quenched with methanol and was controlled by GC with caffeine (24.9 mg, 128 µmol, 0.20 eq.) as internal standard. Levetiracetam was obtained in 66% GC-yield. The precipitated iodate and ruthenium oxide were filtered off and the product was isolated by flash column chromatography on silica gel (12 x 2 cm, CH₂Cl₂/MeOH = 10:1). Levetiracetam was obtained in 49% isolated yield and in 99.6% ee as determined by chiral HPLC.

13.3 Electrochemical generation of sodium paraperiodate (RP 3)

In a divided batch electrolysis-cell equipped with a Nafion membrane, a stainless-steel cathode, and a boron-doped diamond anode, NalO₃ (127 mg, 640 μ mol) was electrolysed in caustic soda (0.1 M) using a charge amount of Q = 3 F, and a current density of j = 10 mA/cm². After complete electrolysis the yield was determined by LC-PDA.

14 Synthesis of the reference standard

14.1 (S)-2-(pyrrolidin-1-yl)butanamide [(S)-8]

The synthesis of (*S*)-2-(pyrrolidin-1-yl)butanamide was carried out according to Tong *et al.*¹⁵ To a 250 mL flask was added (*S*)-2-aminobutanamide hydrochloride (20 mmol), 1,4-dibromobutane (24 mmol), K₂CO₃ (8.29 g, 60 mmol), KI (332 mg, 2 mmol), and acetonitrile (80 mL). The reaction mixture was heated to reflux. After 1 d, the reaction was quenched with concentrated HCI (50 mL), and water and dichloromethane were added for extraction. The

organic layer was separated and discarded. The aqueous layer was made basic with potassium hydroxide solution (~15 g in 50 mL H₂O, pH > 14) and extracted with dichloromethane (4×50 mL). The organic fractions were combined, dried over anhydrous MgSO₄ and concentrated under reduce pressure to give a white fluffy solid. Alternatively, the K_2CO_3 is filtered off, the solvent is removed and the solid crude product is recrystallised in acetone at 4 °C. The crystals are washed with cyclohexane and dried under vacuum. The product was yielded to 67% (2.10 g, 13.5 mmol) and in >99% ee as determined by chiral HPLC.

Analysis of 2-aminoacetamide hydrochloride: TLC (SiO₂, CH₂Cl₂/MeOH = 1:1, KMnO₄ or Bromocresol-green stain), R_f = 0.22; ¹H NMR (400 MHz, Methanol- d_4) δ 3.87 (t, *J* = 6.3 Hz, 1H), 2.08 – 1.69 (m, 2H), 1.05 (t, *J* = 7.5 Hz, 3H), ¹³C NMR (101 MHz, Methanol- d_4) δ 172.33 (C_q), 55.27, 25.78 (*CH*₂), 9.36.

Analysis of (*S*)-8: TLC (SiO₂, KMnO₄ or Bromocresol-green stain w/o heating or ninhydrin stain with strong heating), $R_f(CH_2Cl_2/MeOH = 1:1) = 0.57$, $R_f(CH_2Cl_2/MeOH = 10:1) = 0.22$, $R_f(CH_2Cl_2/MeOH = 20:1) = 0.05$; **GC-FID**: $R_t = 7.57 \text{ min}@~150 °C$; ¹H NMR (400 MHz, CDCl₃) δ 6.65 (s, 1H), 6.00 (s, 1H), 2.69 – 2.62 (m, 1H), 2.62 – 2.50 (m, 4H), 1.89 – 1.57 (m, 6H), 0.94 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.64 (C_q), 71.01 (CH_2), 51.93, 25.29, 23.35, 9.97 (CH_2); LC-MS (HR ESI(+)): calculated for [M+H]⁺: [$C_8H_{17}N_2O$]⁺ 157.1335 Da, found: 157.1338 Da. The obtained spectra are in accordance with previously reported data. High solubility in H₂O (neutral and basic), MeOH, EtOH, CH₂Cl₂, CHCl₃, MeCN, low solubility in THF and 1,6-Dioxane; m_p = 282 °C.

15 Synthesis of over-oxidation product

15.1 2-(2,5-dioxopyrrolidin-1-yl)butanamide

According to the procedure of Schindler and co-workers,¹⁶ (*S*)-**8** hydrochloride (1.00 g, 7.22 mmol), 1.05 eq. of NEt₃ (1.05 mL, 7.58 mmol) and 1.05 eq. of succinic anhydride (0.75 g, 7.58 mmol) were suspended in toluene (100 mL) and refluxed overnight removing the produced water by using a Dean-Stark trap. The crude product was crystallised with acetone and was purified by flash column chromatography on silica gel (12 x 2 cm, pure CH₂Cl₂ to CH₂Cl₂/MeOH = 30:1). (*S*)-2-(2,5-dioxopyrrolidin-1-yl)butanamide was obtained as colourless solid in 42% yield (598 mg, 3.12 mmol).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.22 (s, 1H), 5.68 (s, 1H), 4.59 (dd, *J* = 10.5, 6.0 Hz, 1H), 2.77 (s, 4H), 2.30 – 1.92 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.30 (*C_q*), 170.79 (*C_q*), 56.67 (*CH*₂), 28.22 (*CH*₃), 21.63 (*CH*), 10.99 (*CH*₂); **GC-FID**: R_t = 11.51 min.

16 Electrolysis cells used

Electrolysis cells were manufactured in the work shop of the chemistry department of the Johannes Gutenberg University Mainz and are commercially available as parts of the IKA Screening System at IKA[®]-Werke GmbH&CO.KG, Staufen, Germany. The IKA company also sells the 2 x 6 cm²-flow electrolysis cell as ElectraSyn Flow device. The stainless-steel flow electrolysis cell was purchased from CONDIAS GmbH, Itzehoe, Germany.

A:

B:

Figure S17. A: Divided batch cell with $1 \times 3 \text{ cm}^2$ electrode surfaces. B: divided flow cell with $2 \times 6 \text{ cm}^2$ anode surface. C: divided flow cell with a $4 \times 12 \text{ cm}^2$ anode surface.¹⁷ Depictions were designed with the software Blender 2.8 from Blender Foundation.

17 Experimental section for the electrochemical synthesis of etiracetam

Table S7. Anode material. According to RP 1, (S)-8 was electrolysed in caustic soda.

	anode (3 cm ²) stainless steel Q = 8 F, j = 3 mA/cm ² undivided batch electrolysis-cell NaOH (0.1 M in H ₂ O, 6 mL), rt		+ 0 NH ₂	
(S)- 8		9	1	

E sa tan a	Awada	GC Yield [%]			
Entry	Anode	8	9 ª	1	Σ
1	GC	0	0	6	6
2	Graphite	0	0	7	7
3	BDD	0	0	<1	<1
4	Carbon fibre	0	0	3	3
5	Ni	41	20	0	61
6	Pt	0	0	15	15
7	Pt	0	0	2	2
8	Pt	0	0	2	2
9	Cu	3	33	2	38
10	Au	0	20	6	26
11	SS	n. d.	-	-	-
12	Nb	n. d.	-	-	-

13	Мо	n. d.	-	-	-	
14	W	n. d.	-	-	-	
15	Pt	0	0	22	22	
16	BDD	0	0	9	9	
15 16	Pt BDD	0 0	0 0	22 9	22 9	

Table S8. Applied charge. According to RP 1, (S)-8 was electrolysed in caustic soda.

Entry	Anada		GC Yield		eld [%]	I [%]		
Entry	Anode	Q [F]	8	9 ª	1	Σ		
1	Pt	4.0	<1	32	8	41		
2	Pt	5.0	0	19	15	34		
3	Pt	6.0	0	0	22	22		
4	Pt	7.0	0	0	18	18		
5	Pt	8.0	0	0	15	15		
6	BDD	4.0	4	42	4	50		
7	BDD	5.0	0	0	25	25		
8	BDD	6.0	0	0	21	21		
9	BDD	7.0	0	0	9	9		
10	BDD	8.0	0	0	9	9		
11	GC	4.0	0	36	6	42		
12	GC	5.0	0	12	13	25		
13	GC	6.0	5	0	10	15		
14	GC	7.0	0	0	9	9		
15	GC	8.0	0	0	6	6		

^a relative area vs. standard.

Table S9. Current density. According to RP 1, (S)-8 was electrolysed in caustic soda.

[le (3 cm ²) stair e = 5-6 F, j = n m ided batch elect	nless steel (A/cm ² rolysis-cell)H ⁄ +) /		
0	NH ₂	п (0.1 м III п ₂ 0	, 0 mil), n 0 - 1 NH ₂		NH ₂			
	(S)- 8		9		1			
Entry	Anodo	0 (5)	i [m A /om2]		GC Yie	eld [%]		
Entry	Anode	Q [F]	J [mA/cm-]	8	9 ª	1	Σ	
1	Pt	6.0 F	0.5	0	0	10	10	
2	Pt	6.0 F	1	1	<1	21	23	

3	Pt	6.0 F	2	0	0	28	28
4	Pt	6.0 F	3	0	0	22	22
5	Pt	6.0 F	5	0	0	26	26
6	Pt	6.0 F	8	0	<1	21	22
7	Pt	8.0 F	10	0	0	7	7
8	Pt	6.0 F	10	0	<1	20	21
9	Pt	6.0 F	12	0	0	20	20
10	Pt	6.0 F	15	0	1	18	19
11	Pt	6.0 F	18	0	2	17	19
12	Pt	8.0 F	20	<1	1	7	9
13	Pt	6.0 F	20	0	1	15	16
14	Pt	6.0 F	30	2	4	14	20
15	Pt	6.0 F	50	9	5	10	24
16	Pt	6.0 F	500	55	7	<1	63
17	BDD	5.0 F	0.5	0	0	18	18
18	BDD	5.0 F	1	4	7	22	33
19	BDD	5.0 F	2	0	<1	28	29
20	BDD	5.0 F	3	0	0	25	25
21	BDD	5.0 F	5	5	<1	22	28
22	BDD	5.0 F	10	0	2	20	22
23	BDD	5.0 F	15	<1	2	17	20
24	BDD	5.0 F	20	<1	4	17	22
25	BDD	5.0 F	30	1	5	15	21
26	Pt/Si	6.0 F	30	6	3	16	25

S57

Entry	Anodo	Pasa				
Entry	Anode	Dase	8	9 ª	1	Σ
1	Pt	K ₂ CO ₃	<1	<1	6	8
2	Pt	LiOH	<1	2	16	19
3	Pt	NaOH	0	1	21	22
4	Pt	КОН	7	4	10	21
5	Pt	Ba(OH) ₂	32	15	8	55
6	Pt	CsOH	<1	<1	5	7

Table S11. Base	e concentration.	According to RP	' 1, (S)- 8 was	electrolysed in	caustic soda.
-----------------	------------------	-----------------	------------------------	-----------------	---------------

Entry	Entry Anode			GC Yield [%]				
Entry	Anoue		8	9 ª	1	Σ		
1	Pt	0	28	3	<1	32		
2	Pt	0.01	38	8	2	48		
3	Pt	0.05	15	<1	5	21		
4	Pt	0.07	<1	<1	13	15		
5	Pt	0.09	<1	12	16	29		
6	Pt	0.1	0	1	21	22		
7	Pt	0.12	<1	2	17	20		
8	Pt	0.15	4	4	11	19		
9	Pt	0.2	<1	2	4	7		
10	Pt	0.50	0	2	<1	3		
11	Pt	1.00	0	3	<1	4		
12	BDD	0	38	3	<1	42		
13	BDD	0.05	<1	6	10	17		
14	BDD	0.07	0	4	16	20		
15	BDD	0.09	<1	3	17	21		
16	BDD	0.1	<1	2	18	21		

^a relative area vs. standard.

			GC Yield [%]				
Entry	<i>m</i> (<i>t</i>)	8	9 ª	1	Σ		
1	5 mg	43	<1	7	51		
2	20 mg	11	3	6	20		
3	40 mg	1	<1	8	10		
4	60 mg	<1	1	13	15		
5	80 mg	0	<1	18	19		
6	100 mg	0	1	21	22		
7	150 mg	6	0	14	20		
8	200 mg	7	0	10	17		

Table S13. Stirring velocity. According to RP 1, (S)-8 was electrolysed in caustic soda.

(S)- 8		9	1	
	Q = 6 F, j = 2 mA/cm ² divided batch electrolysis-cell (Thomapor) NaOH (0.1 M in H ₂ O, 6 mL), rt stirring velocity = 0-1100 rpm	N N NH₂ +		
	Pt (3 cm ²) II stainless steel			

Entry	atirring valuativ [rpm]	GC Yield [%]			
Entry		8	9 ª	1	Σ
1	1100	0	0	27	27
2	900	<1	0	26	27
3	250	<1	0	24	25
4	100	0	0	25	25
5	0	3	5	11	19

^a relative area vs. standard.

Table S14. Temperature. According to RP 1, (*S*)-**8** was electrolysed in caustic soda.

$O = \bigvee_{NH_2}$	Pt (3 cm ²) stainless s Q = 6 F, <i>j</i> = 2 mA/cm divided batch electrolysis-cell NaOH (0.1 M in H ₂ O, 6 r stirring velocity = 0-1100	steel 1 ² (Thomapor) nL), rt) rpm		+ O NH2	=0
(S)- 8			9	1	
Entry	TIOCI	GC Yield [%]			
Endy	,[0]	8	9 ^a	1	Σ
1	75-80	<1	<1	19	21
2	60	0	0	25	25
3	40	0	0	29	29
4	rt	<1	0	24	25
5	0-rt	0	0	20	20

^a relative area vs. standard.

18 Experimental section for the ruthenium catalysis

18.1 One-variable-at-a-time (OVAT) screening

Table S15. Solvent screening.

According to RP 2, $RuO_2 \cdot xH_2O$ and $NaIO_4$ were suspended. (*S*)-**8** was added and the reaction was stirred at room temperature for 0.5 h.

		RuO ₂ •xH ₂ O (0.5 mol%) NalO ₄ (2.60 eq.)	Сунон		0		
	0=	solvent, rt, 0.5 h		0			
	NH ₂		NH ₂	NH ₂			
	(S)- 8		9	(S)- 1			
Entry		Solvent	Ratio [v/v]		GC Yi	eld [%]	
Entry				8	9 ª	1	Σ
1		H ₂ O	pure	5	9	31	45
2		H_2SO_4	0.1 M	16	0	9	25
3		NaOH	0.1 M	29	16	24	69
4	ŀ	l₂O/EtOAc	4:2	3	5	32	40
5	ŀ	l₂O/MeCN	4:2	1	4	57	62
6	Н	₂ O/acetone	4:2	1	4	60	65
7	ł	H ₂ O/CHCI ₃	4:2	2	8	17	27
8	F	I ₂ O/CH ₂ CI ₂	4:2	3	5	21	29
9		H₂O/NMP	4:2	41	21	28	89
10	ŀ	l₂O/DMSO	4:2	110	0	0	110
11	ł	H₂O/AcOH	4:2	19	1	10	30
12		H₂O/DMF	4:2	16	18	37	72
13		Acetone	pure	132	1	0	133
14		MeCN	pure	102	0	0	102
15	H ₂ O	Acetone/NMP	4:2:0.5	5	14	64	83
16	0.1 M Na	OH/Acetone/NMP	4:2:0.5	21	20	38	79
17	0.1 M N	aOH/MeCN/NMP	4:2:0.5	16	15	42	73
18	0.1 M H	₂ SO ₄ /MeCN/NMP	4:2:0.5	3	1	27	31

^a relative area vs. standard

The product (*S*)-**1** and the intermediate **9** were isolated by flash column chromatography on silica gel (12 x 2 cm) using an eluent mixture of $CH_2CI_2/MeOH = 10:1$; or by crystallisation in Et_2O or PE/CH_2CI_2 at -20 °C. Levetiracetam was isolated in 49% yield and in 99.6% *ee*.

H₂N

^{(S)-1} **TLC** (SiO₂, ninhydrin stain, strong heating), $R_f(CH_2Cl_2/MeOH = 10:1) = 0.56$, $R_f(CH_2Cl_2/MeOH = 20:1) = 0.13$; **GC-FID**: $R_f = 8.98$ min at ~180 °C; **LC-MS (HR):** calculated for [M+H]⁺:

 $[C_8H_{15}N_2O_2]^+$ 171.1128 Da, found: 171.1128; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.58 (s, 1H), 6.11 – 5.88 (m, 1H), 4.46 (dd, *J* = 9.1, 6.6 Hz, 1H), 3.45 (ddd, *J* = 9.8, 8.0, 6.3 Hz, 1H), 3.36 (ddd, *J* = 9.8, 8.0, 6.0 Hz, 1H), 2.47 – 2.29 (m, 2H), 2.10 – 1.85 (m, 3H), 1.65 (ddq, *J* = 14.6, 9.1, 7.4 Hz, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.10 (*C*_q), 172.64 (*C*_q), 56.07 (*CH*), 43.89 (*CH*₂), 31.15 (*CH*₂), 21.21 (*CH*₂), 18.20 (*CH*₂), 10.59 (*CH*₃).

⁹ Characterised as a mixture of 9 and 1 (ratio = 7:1): TLC (SiO₂, ninhydrin stain, weak heating), $R_f(CH_2Cl_2/MeOH = 10:1) = 0.48$; GC: $R_f = 8.20$ min at ~160 °C; LC-MS (HR ESI(+)): calculated for [M-OH]⁺: [$C_8H_{15}N_2O$]⁺ 155.2205 Da, found: 155.1181; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 (s, 1H), 4.87 (ddd, J = 5.7, 3.6, 1.4 Hz, 1H), 3.17 (dt, J = 10.1, 5.7 Hz, 1H), 3.08 (ddd, J = 8.0, 4.3, 1.5 Hz, 1H), 2.71 (ddd, J = 10.0, 7.6, 6.3 Hz, 1H), 2.15 – 1.50 (m, 6H), 1.24 (s, 0H), 1.02 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.99 (Cq), 75.18 (CH), 68.93 (CH), 56.55 (CH₂), 32.87 (CH₂), 25.99 (CH₂), 23.84 (CH₂), 10.45 (CH₃).

Table S16. pH screening. According to RP 2, $RuO_2 \cdot xH_2O$ and $NalO_4$ were suspended. (*S*)-8 was added and the reaction was stirred at room temperature for 0.5 h.

	RuO ₂ •xH ₂ O (0.5 mol%), NaIO ₄ (2.60 eq.)	Срон		≻o			
	H ₂ O/MeCN (4:2 v/v), rt, 0.5 HNO ₃ or NaOH (n M)	h, O NH ₂		IH ₂			
(S)- 8		9	(S)-1			
Entry	acid or base	<i>M</i> [M]		GC Yie	əld [%]		
y			8	9 ª	1	Σ	
1	HNO ₃	0.01	0	3	33	36	
2	HNO ₃	0.1	0	4	17	21	
3	HNO ₃	0.5	0	0	0	0	
4	HNO ₃	2.0	0	0	0	0	
5	HNO ₃	3.0	0	0	0	0	
6	NaOH	0.01	0	5	40	45	
7	NaOH	0.1	0	15	24	39	
8	NaOH	0.5	51	16	0	67	
9	NaOH	2.0	63	6	0	69	
10	NaOH	3.0	75	4	0	79	

^a relative area vs. standard

18.2 DoE optimization

18.3 2⁴ plan

Table S17. $n(NalO_4)*V*C(MeCN)*T$. According to RP 2, RuO₂•xH₂O and NalO₄ were suspended. (S)-8 was added and the reaction was stirred at the given temperature for 0.5 h.

		O₂•xH₂O (0.5 m NaIO₄) (2.0-3.0	nol%) eq.)	,	≻o			
	$\begin{array}{c} O = \overbrace{NH_2}^{O} & \begin{array}{c} C(\\ NH_2 \\ (S) - 8 \end{array}$	H ₂ O, V = 4-8 m MeCN) = 10-50 = 0-60 °C, t = 0	L, O v%, NH ₂ .5 h 9	O <i>≼</i> N (S)	H ₂)- 1			
Entry	n(NalO ₄) [eq.]	V [mL]	C(MeCN) [v%]	<i>T</i> [°C]	(GC Yie	eld [%]
		. [=]		. [•]	8	9 ª	1	Σ
1	3	6	10	60	2	3	22	27
2	3	4	10	60	6	4	24	34
3	2.5	4	10	0	24	8	37	69
4	3	8	30	60	11	8	16	35
5	3	6	50	0	1	2	65	68
6	2	4	50	60	13	18	26	57
7	2	4	30	0	17	7	51	75
8	2.5	8	50	60	8	17	18	43
9	3	4	50	30	0	0	56	56
10	3	8	10	0	1	4	35	40
11	2	8	50	0	26	9	37	72
12	2	8	10	30	6	19	18	43
13	2	6	10	60	4	21	9	34
14	2.5	6	30	30	1	2	48	51

^a relative area vs. standard

18.4 DoE 2³ plan

Table S18.	n(NalO₄)*V*0	C(MeCN).	According	g to	RP 2,	RuO ₂ •xH ₂ O	and	NalO ₄	were
suspended.	(S)-8 was add	ed and the	e reaction	was	stirred a	it the given ter	mperat	ture for 0).5 h.

	→ → → → → → → → → → → → → → → → → → →	$RuO_{2} * xH_{2}O (0.5)$ $n(NaIO_{4}) (2.0-3)$ $H_{2}O, V = 2-4$ $C(MeCN) = 50-7$ $T = 0 °C, t = 0$	mol%) 0 eq.) mL, 0 v%, .5 h 9	≻ОН (✓ + H₂	NH ₂ (S)-1			
Entry	n(NalO ₄) [eq]	V [m] 1	C(MeCN) Iv%	۲ ۳C1		GC Yie	eld [%]	
Lindy		• [=]		, [O]	8	9 ª	1	Σ
1	3	4	70	0	0	1	65	66
2	3	2	70	0	0	0	66	66
3	2	4	50	-20	39	5	32	76
4	2	2	50	0	13	3	51	67
5	3	4	50	0	1	1	64	66

6	3	2	50	0	0	0	66	66
7	2	4	70	0	18	0	46	66
8	2	4	50	0	43	6	25	74
9	2	2	70	0	20	3	47	70

18.5 DoE 2³ plan

Table S19. $n(NalO_4)*V*C(MeCN)$. According to RP 2, RuO₂•xH₂O and NalO₄ were suspended. (*S*)-8 was added and the reaction was stirred at 0 °C for the given time.

Entry	m(NoIO) [ag]		f [min]	GC Yield [%]			
Entry	n(warO ₄) [eq.]		t funul -	8	9 ª	1	Σ
1	4	90	30	2	3	15	20
2	3	70	10	31	6	9	46
3	4	70	30	30	3	16	19
4	3	70	30	0	2	59	61
5	4	70	10	48	7	8	63
6	4	90	10	17	6	11	34
7	3	90	30	0	5	16	21
8	3	90	10	2	9	5	16
9	3.5	80	20	2	8	6	16

^a relative area vs. standard.

18.6 Ruthenium oxide-catalysed oxidation with electrochemically produced periodate

According to RP 2, $RuO_2 \cdot xH_2O$ (1 mg) and electrochemically generated $NaIO_4$ (550 mg) were suspended. (*S*)-8 (100 mg, 640 μ mol) was added and the reaction was stirred at room temperature for 0.5 h. (*S*)-1 was obtained in 57% GC yield.

18.7 Procedure of the biphasic solvent system

(S)-8 (78.1 mg, 0.5 mmol, 1.0 eq.) was dissolved in ethyl acetate (2.5 mL). An aqueous solution of $RuO_2 \cdot xH_2O$ (366µg, 2.75 µmol, 0.55 mol%) and $NaIO_4$ (278 mg, 5 mL, 2.6 eq.) was

added. The reaction mixture was stirred at room temperature for 30 min. The mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (CHCl₃/methanol = 10:1). (*S*)-**1** was isolated as a pale yellow solid in 76% yield with full retention of the stereo configuration as determined by chiral HPLC.

18.8 Scale-up experiment

(*S*)-8 (1.00 g, 6.40 mmol, 1.0 eq.) was dissolved in ethyl acetate (25.0 mL). An aqueous solution of $RuO_2 \cdot xH_2O$ (4.7 mg, 35.3 mmol, 0.55 mol%) and $NalO_4$ (3.56 g, 16.6 mmol, 2.6 eq.) was added (50.0 mL). The reaction mixture was stirred at room temperature for 30 min. The crude product was extracted from the aqueous phase by a Kutscher-Steudel apparatus using ethyl acetate. The extract was dried by sodium sulphate and the solvent was removed in vacuum. The residue was purified by flash column chromatography on silica gel (cyclohexane/ethyl acetate = 3:1). (*S*)-1 was isolated as a pale-yellow solid in 74% yield (808 mg, 4.75 mmol).

18.9 Recovery of the ruthenium and the iodate

The ruthenium species was removed by filtration through a column of neutral aluminium oxide (50-200 μ m, 60A, 10 cm). For the recovery of the sodium iodate, it was precipitated at 4 °C using methanol or *iso*-propanol. It was filtered off and was dried under reduced pressure. Sodium iodate was obtained in up to 96% isolated yield.

19 Experimental part for the NalO₃ recycling

19.1 DoE optimisation

19.2 2⁴⁻¹ plan with replication

Table S20. *j****Q****C*(*NaOH*)**C*(*NaIO3*). According to RP 3, sodium iodate was electrolysed in caustic soda at a BDD anode.

	NalO ₃ (640-1	280 μmc	BDD Q = divided b DI) NaOH ($(3 \text{ cm}^2) \parallel \text{stainless}$ 2-3 F, <i>j</i> = 3-10 mA atch electrolysis-ce	s steel /cm ² ell (Nafion) 6 mL), rt	Na ₃ H ₂ IO ₆	
Entra	j	Q	C(NaOH)	n(NalO ₃)	L	C-PDA Yield	I [%]
Entry	[mA/cm ²]	[F]	[M]	[µmol]	10 ₃ -	IO4 ⁻	Σ
1	2	3	3	640	96	4	100
2	2	2	2	640	62	38	100
3	2	1	3	1280	81	10	91
4	2	1	3	1280	77	21	98
5	2	2	3	1280	52	35	87

6	6	1.25	2	960	39	62	101
7	6	2.5	2	960	45	51	96
8	2	2	1	640	60	39	99
9	10	1.5	3	1280	102	2	104
10	10	3	3	1280	34	50	84
11	2	3	3	640	66	30	96
12	10	1	1	1280	44	62	96
13	10	2	1	1280	28	66	96
14	6	1.25	2	960	44	54	98
15	6	2.5	2	960	96	3	99
16	10	1	1	1280	98	3	101
17	10	2	1	1280	66	26	92
18	2	1.5	1	1280	10	19	29
19	2	1.5	1	1280	61	20	81
20	2	3	1	1280	37	33	70
21	10	3	1	640	93	5	98
22	10	2	3	640	30	69	99
23	2	1.5	1	1280	36	2	38
24	2	1.5	1	1280	41	53	94
25	2	3	1	1280	27	24	51
26	10	2	3	640	55	38	93
27	2	1	3	1280	22	8	30
28	2	1	3	1280	92	3	95
29	2	2	3	1280	69	13	82
30	10	3	1	640	44	34	77
31	10	3	1	640	83	8	91
32	10	1.5	3	1280	41	22	63
33	10	1.5	3	1280	51	28	79
34	10	3	3	1280	32	2	34
35	2	3	3	640	57	29	86
36	2	2	1	640	38	50	88
37	2	2	3	1280	80	4	84
38	6	2.5	2	960	69	32	101
39	2	2	1	640	77	22	99
40	10	3	3	1280	88	15	103
41	2	3	3	640	20	83	103
42	10	2	1	1280	94	3	97
43	6	2.5	2	960	92	3	95
44	10	2	1	1280	88	3	91
45	2	3	1	1280	90	6	96
46	10	3	1	640	77	7	84

47	10	2	3	640	62	24	86
48	2	3	1	1280	47	51	98
49	10	2	3	640	61	31	92
50	2	2	3	1280	89	4	93
51	10	3	1	640	36	54	90
52	10	3	3	1280	51	44	95
53	10	3	1	1280	21	86	107

19.3 DoE 2² plan with replication.

Table S21. *j***C*(*NaOH*). According to RP 3, sodium iodate was electrolysed in caustic soda at a BDD anode.

	NalO ₂ (640 umol)	BDD (3 cm ²) stain Q = 3 F, j = 3-10 r divided batch electrolysi	less steel nA/cm ² s-cell (Nafion)	NacHolOc				
		NaOH (0.3-2.0 M in H ₂ C), 2 x 6 mL), rt), rt				
Entry	i Im A /or		D.41	LC-PDA Yield [%				
Entry	J [IIIA/CI			3 ⁻ IO ₄	- Σ			
1	300	1.0	94	- 7	101			
2	100	0.3	87	' 13	100			
3	300	1.0	10	0 2	103			
4	100	1.0	78	3 21	99			
5	300	0.3	92	2 8	100			
6	100	0.3	93	3 5	98			
7	100	1.0	96) 2	98			
8	300	0.3	98	3 4	102			
9	200	0.65	91	2	93			
10	100	1.0	82	2 16	99			
11	100	2.0	98	3 4	102			
12	10	1.0	16	83	99			
13	100	2.0	69) 28	96			
14	55	1.5	68	3 29	97			
15	100	1.0	78	3 21	99			
16	10	2.0	95	5 4	99			
17	10	2.0	98	3 3	101			
18	10	1.0	65	5 32	96			

19.4 OVAT base-concentration screening

Table S22. According to RP 3, sodium iodate was electrolysed in caustic soda at a BDD anode.

	NalO ₃ (640 μmol) —			\rightarrow Na ₃ H ₂ IO ₆	
	Ν	aOH (0.3-2.0 M in H ₂)	O, 2 x 6 mL), rt		
Entry	C(NaOH) [M]	<i>i</i> [mA/cm²] –		LC-PDA Yield	[%]
) [to]	10 ₃ -	IO4 ⁻	Σ
1	0.0	3	94	2	96
2	0.1	3	74	23	97
3	0.1	10	99	7	106
4	0.3	10	103	4	106
5	0.5	10	50	25	75
6	0.8	10	30	69	99
7	0.9	10	19	80	99
8	1.0	3	11	86	97
9	1.1	10	22	75	97
10	1.2	10	97	3	100
11	1.3	10	27	70	97
12	1.4	10	97	4	101
13	1.5	10	23	77	100
14	2.0	3	73	24	97
15	3.0	3	96	4	100
16	4.0	3	12	78	90
17	5.0	3	16	85	101

BDD (3 cm²) || stainless steel Q = 3 F, j = 3-10 mA/cm² divided batch electrolysis-cell (Nafion)

19.5 Development of flow electrolysis and scale-up

Table S23. *j****Q.** Sodium iodate (0.21 M) and sodium hydroxide (1.00 M) were dissolved in water and were electrolysed in a flow electrolysis cell. The electrolysis cell was equipped with a BDD anode and a stainless-steel cathode and was divided by a Nafion membrane. The anolyte and catholyte were pumped in two independent loops in cycling-mode. Two Ritmo R033 pumps from Fink Chem+Tec GmbH (Leinfelden-Echterdingen, Germany) were used.

	NalO ₃ (0.21 M)	NaOH (1.0 M fr = 7.5	in H ₂ O), rt 5 L/h	→ Na ₃ H ₂ I	O ₆		
F . (m)		: F A /	Q [F]	LC-PDA Yield [%]			
Entry	v[mL]	J [mA/cm²]		IO ₃ -	IO4-	Σ	
1	50	10	3	9	83	92	
2	50	10	3	20	85	105	
3	50	50	3	26	73	99	
4	50	50	4	16	76	92	
5	50	100	3	34	63	97	
6	50	100	4	24	72	96	
7	50	300	3	63	37	100	
8	50	300	4	44	53	97	
9	500	100	3	29	70	99	
10	500	100	4	14	88	102	
11	500	300	3	43	56	99	
12	500	300	4	32	70	102	
13	1000	100	3	37	72	109	
14	1000	100	4	18	78	96	

BDD (48 cm²) || stainless steel Q = 3-4 F, j = 10-100 mA/cm² divided flow electrolysis-cell (Nafion)

* starting material did not dissolve completely before reaction, dissolved and new solid formed during the reaction.

19.6 Recrystallisation of paraperiodate to metaperiodate

Sodium paraperiodate (4.00 g, 13.6 mmol), HNO_3 (2.2 mL, 65%) and water (8 mL) were refluxed at 130 °C for several minutes. Water was distilled off until crystallisation started. The mixture was cooled to 4 °C and was kept at this temperature overnight. The crystals were filtered off and were dried under vacuum. Sodium metaperiodate was obtained as colourless crystals (2.057 g, 9.62 mmol, 71%). IR data were in accordance with the Bio-Rad database.¹⁸

19.7 Electrolysis with recovered sodium iodate

Recovered sodium iodate (2.08 g, 10.5 mmol) and sodium hydroxide (2.00 g, 50.0 mmol) were dissolved in water (50 mL) and were electrolysed according to RP 3. A current density of j = 50 mA cm⁻² and a charge amount of Q = 4 F (4055 C) were applied. Sodium paraperiodate was obtained in reproducible 83% yield as determined by LC-PDA.

20 NMR Spectra, GC and HPLC chromatograms

S69

 \lor

S71

CH₃

H₂N

 NH_2

0-

254.1.fid AK waldvogel / Name Arndt / Code SAR012 c13_30min.bbfo CDCl3 {C:\Bruker\av2-400\automation\4-1811A} Nacht 54

254.2.fid AK waldvogel / Name Arndt / Code SAR012 c13_dept135.bbfo CDCl3 {C:\Bruker\av2-400\automation\4-1811A} Nacht 54

156.3.fid AK waldvogel / Name ANDT / Code SR212F1 c13_dept135.bbfo CDCl3 /opt/av2-400/automation/4-1905A nacht 56

21 References

- ¹ W. L. F. Armarego, C. L. L. Chai, *Purification of laboratory chemicals*, Elsevier, Amsterdam, 2013.
- ² a) G. Yang, Y. Chen, G. Zhou, D. Zhu, L. Fu, L. Chen, L. Wang and Y. Yang, CN110590635, 2019; b) Tang Jianye and Jiang Bufang, CN109503354, 2019.
- ³ a) H. Renbao; S. Hongming; W. Lei, CN106083642, 2016; b) J. Liu, CN105272897, 2016.
- ⁴ a) R. Cioc, L. van Schaepkens Riempst, P. Schuckman, E. Ruijter and R. Orru, *Synthesis*, 2017, **49**, 1664–1674; b) M. Forcato, F. Massaccesi, L. Cotarca, I. Michieletto, P. Maragni, WO2008/012268.
- ⁵ K. Chandra Babu, R. Buchi Reddy, K. Mukkanti, K. Suresh, G. Madhusudhan and S. Nigam, *J. Chem.-NY*, 2013, **2013**, 1–5.
- ⁶ K. Chandra Babu, R. Buchi Reddy, K. Mukkanti, G. Madhusudhan and P. Srinivasulu, *J. Chem. Pharm. Res.*, 2012, **4**, 4988–4994.
- ⁷ M. Liniger, Y. Liu, B. M. Stoltz, J. Am. Chem. Soc. 2017, **139**, 13944–13949.
- ⁸ a) Surtees, J.; Marmon, V.; Differding, E.; Zimmermann, V., US2003/40631, **2003**; b) M. R. Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, *Science* 2018, 888–893.
- ⁹ E. Krieger, G. Koraimann, G. Vriend, *Proteins Struct. Funct. Genet.* 2002, **47**, 393–402.
- ¹⁰ Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T.
- Lee, et al., J. Comput. Chem. 2003, 24, 1999-2012.
- ¹¹ O. Trott, A. J. Olson, *J. Comput. Chem.* 2010, **31**, 455–61.
- ¹² The Catalophore platform, version 1.9.88, 2019.
- ¹³ W. L. DeLano, The PyMOL Molecular Graphics System; 2002.
- ¹⁴ S. Arndt, D. Weis, K. Donsbach and S. R. Waldvogel, *Angew. Chem. Int. Ed.* 2020, **59**, 8036–8041; *Angew. Chem.*, 2020, **132**, 8112–8118.
- ¹⁵ C. Ni and X. Tong, *J. Am. Chem. Soc.*, 2016, **138**, 7872–7875.
- ¹⁶ Schindler et al., Anal. Chem. 2012, 84, 3787–3794.
- ¹⁷ a) C. Gütz, B. Klöckner, S. R. Waldvogel, *Org. Process Res. Dev.* 2016, **20**, 26–32; b) B. Gleede, M. Selt, C. Gütz, A. Stenglein, S. R. Waldvogel, *Org. Process Res. Dev.* 2020, **24**, 1916–1926.
- ¹⁸ Infrared spectral data were obtained from the Bio-Rad/Sadtler IR Data Collection, Bio-Rad Laboratories, Philadelphia, PA (US) and can be found under https://spectrabase.com. Spectrum ID (metaperiodate): 3ZPsHGmepSu.