Supporting information

Synthesis of fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO₂/DMSO solvent system

Yuanlong Guo,^a Long Li,^a Gu Guo,^a Ming Pei,^a Lihua Zhang,^a Haibo Xie,^{a,b*} Hui Sun, ^c Qiang Zheng,^{a,d*}

^aDepartment of Polymer Materials and Engineering, College of Materials and Metullurgy, Guizhou University, Guiyang, 550025, China; Email: hbxie@gzu.edu.cn

^bSichuan University, State Key Laboratory of Polymer Materials Engineering,

Chengdu, 610065, Sichuan, PR China

^cBeijing Technology and Business University, School of Materials and Mechanical Engineering

^dCollege of Materials, Taiyuan University of Technology, Taiyuan, 030000, China; Email: zhengqiang@zju.edu.cn

Table	e S1	Comparisor	of antioxidant activity of b	io-based materials
code	e Raw materials, system		Reaction conditions	DPPH Radical scavenging

11	Cellulose	with	3,5-di-tert-butyl-4-	50-80 $^\circ\mathbb{C}$,0.5-5h to reaction	The products with DS of
	hydroxyber	nzoic acid	0.83 and a concentration		
					of 60mM took 30min to
					reach a radical scavenging
					of 90%

2 ²	Chitosan with anthocyanin films with casting method	30 °C with 50% relative humidity for 2 days to get anthocyanin <i>films</i>	The films with concentration of 5mg/ml took 60min to reach a radical scavenging of about 70-80%.
3 ³	Chitosan with Essential oil extraction from E. globulus films with casting method	at room temperature during four days	The films with concentration of 40mg/g reach a max radical scavenging of 43.62%.
4 ⁴	Cellulose acetate with thymol films	at room temperature with vacuum drying for 45min	The films with 20ug/ml concentration of Thymol reach a max radical scavenging of 65.16%.
55	a-D(+)-fructose in HCl solution	The solutions were incubated at 75, 85, or 95°C	The systems to reach 90% free radical scavenging activity ranged from about 48 to 536 h. The activation energy was 77 kJ/mol.
6 ⁶	Chitosan grafted lignin monomers by ester activation through a carbodiimide- mediated coupling reaction	At 60°C for 12h	The sinapic acid grafted films with 1cm ² /ml reach a max radical scavenging of 90% at 9h.

The principle of radical scavenging of CHP

The radical scavenging assay is based on the following principle⁷:

$[DPPH\bullet] + [CHPH] \rightleftharpoons DPPH - H + [CHP\bullet]$	(1)
$[DPPH\bullet][CHP\bullet] \rightarrow DPPH - CHP$	(2)
$[CHP\bullet][CHP\bullet] \rightarrow CHP - CHP$	(3)

[DPPH•] on accepting a hydrogen (H) atom from CHP resulting into reduction of DPPH2, the purple colour changed to yellow with concomitant decrease in absorbance at 517 nm. The secondary reactions may be of limited occurrence. According to Eq. (2) and (3), the less reactive [CHP•] could reaction with another [DPPH•] as well as [CHP•].

Table S2 The kinetic parameters for CHP-2 to DPPH

Concentration		Reaction	Pseudo-first order reaction		Pseudo-second order kinetics	
of C	HP-	temperature	kinetic equation		equation	
2(mM)		T (°C)	k_l (min ⁻¹)	R ²	$k_2((\text{mMol/L})^{-1}\text{min}^{-1})$	R ²
1		25	0.00702	0.98441	0.11091	0.98502
5		25	0.01129	0.98685	0.21417	0.93977
10		25	0.01663	0.98862	0.43161	0.94712
20		25	0.01881	0.99056	0.59584	0.95201
40		25	0.09424	0.821	14.01969	0.51497
5		35	0.01212	0.96451	0.31091	0.85457
5		45	0.02021	0.96174	0.66794	0.8285
5		55	0.02577	0.98732	0.92160	0.92722

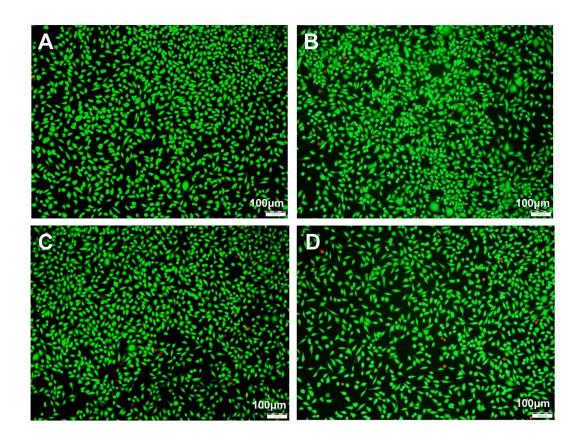


Fig. S1 Fluorescent images of L929 cells stained by Calcein-AM (green) and PI (red) treated with 10 μ M CHP-7 (A); treated with 30 μ M CHP-7 (B); treated with 60 μ M CHP-7 (C); treated with 100 μ M CHP-7 (D).

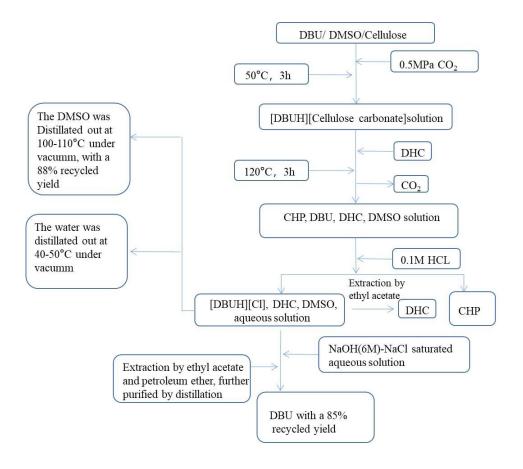


Fig. S2 A flowchart for the primary recycling of DBU and DMSO

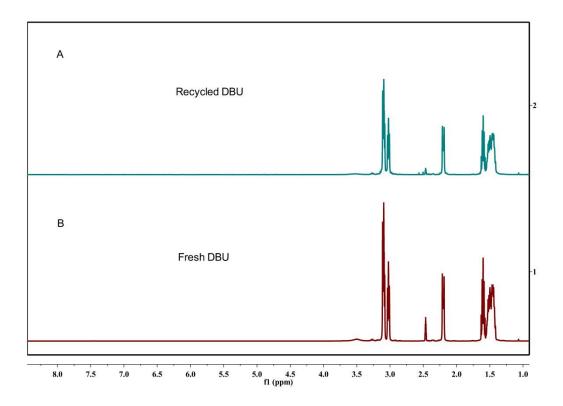


Fig.S3 Comparative ¹H NMR spectra of fresh DBU and recycled DBU.

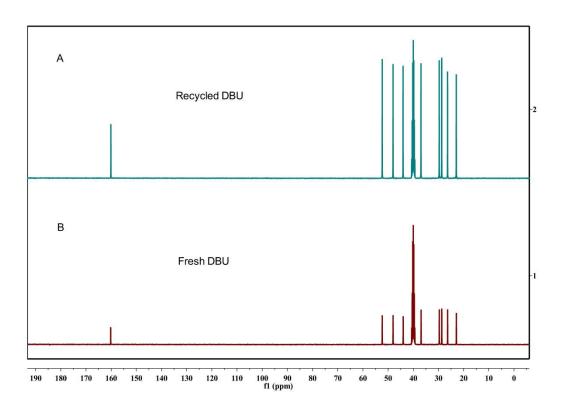


Fig.S4 Comparative ¹³C NMR spectra of fresh DBU and recycled DBU.

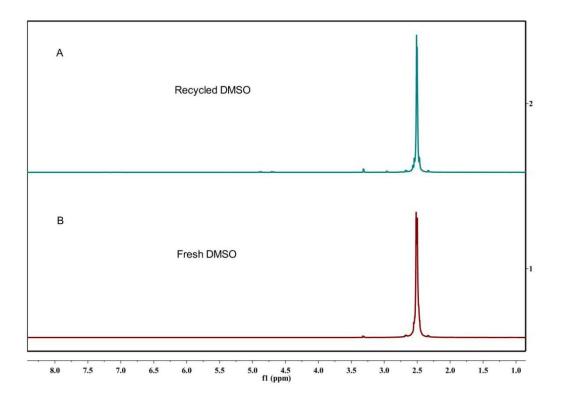


Fig. S5 Comparative ¹H NMR spectra of fresh DMSO and recycled DMSO

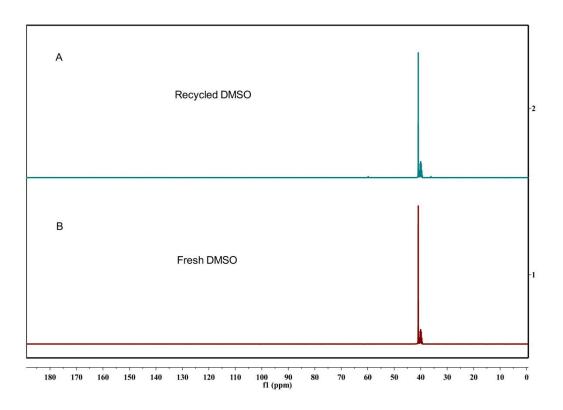


Fig. S6 Comparative ¹³C NMR spectra of fresh DMSO and recycled DMSO.

References

- 1. T. Yang, P. Xiao, J. Zhang, R. Jia, H. Nawaz, Z. Chen and J. Zhang, ACS *Applied Materials & Interfaces*, 2019, **11**, 4302-4310.
- 2. H. Yong, X. Wang, R. Bai, Z. Miao, X. Zhang and J. Liu, *Food Hydrocolloids*, 2019, **90**, 216-224.
- J. Hafsa, M. A. Smach, M. R. B. Khedher, B. Charfeddine, K. Limem, H. Majdoub and S. Rouatbi, *LWT Food Science and Technology*, 2016, 68, 356-364.
- 4. K. Harini and M. Sukumar, *Carbohydrate Polymers*, 2019, **204**, 202-213.
- 5. S.-L. Chen, D.-J. Yang, H.-Y. Chen and S.-C. Liu, *Food Chemistry*, 2009, **114**, 582-588.

- 6. K. Crouvisier-Urion, F. Regina da Silva Farias, S. Arunatat, D. Griffin, M. Gerometta, J. R. Rocca-Smith, G. Weber, N. Sok and T. Karbowiak, *Green Chemistry*, 2019, **21**, 4633-4641.
- 7. K. Mishra, H. Ojha and N. K. J. F. C. Chaudhury, 2012, **130**, p.1036-1043.