Supporting Information

Cobalt single atoms anchored on nitrogen-doped porous carbon as an

efficient catalyst for oxidation of silanes

Fan Yang, † Zhihui Liu, † Xiaodong Liu, Andong Feng, Bing Zhang, Wang Yang and Yongfeng Li*

^a State Key Laboratory of Heavy oil Processing, China University of Petroleum (Beijing), Beijing 102249, China

Fig. S1. (a) SEM image, (b, c) TEM images of Co-N-C-700. (d) SEM image, (e, f) TEM images of

Co-N-C-900

Fig. S2. TEM images of Co-N-C-MgO (a, b), NPC (c, d) and Co-PC (e, f).

Fig. S3. TEM images of Co NC and the corresponding SAED pattern (b).

Fig. S4. Nitrogen sorption isotherms (a) and pore size distribution (b) of NPC and Co-PC.

Fig. S5. XRD of Co-N-C-MgO

Fig. S6. XPS N 1s spectra of (a) Co-N-C-700 and (b) Co-N-C-900

Fig. S7. The corresponding EXAFS fitting curves of (a) Co-N-C-700, (b) Co-N-C-800 and (c) Co-N-C-

900.

Fig. S8. Evaluation of Co leaching during dimethylphenylsilane oxidation by Co-N-C-800.

Fig. S9. Possible models of $Co-N_x$ (x=2-4). The gray, blue and light blue balls stand for carbon, nitrogen, and cobalt atoms, respectively.

 $*1:\Delta E = E_{Co-Nx-Cy} - E_{GNx} - E_{Co} - E_{Co-N2-C2}; *2:\Delta E = E_{Co-Nx-Cy} - E_{GNx} - E_{Co} - E_{Co-N3-C1}; *3:\Delta E = E_{Co-Nx-Cy} - E_{GNx} - E_{Co} - E_{Co-Nx-Cy} - E_{GNx} - E_{Co} - E_{Co-Nx-Cy} - E_{CO-Nx$

 $E_{\text{Co-N4-C}}$

Fig. S10. Adsorption structures of dimethylphenylsilane on Co-N_x substrates

Among them, configurations $\text{Co-N}_2\text{-}\text{C}_1$ of Co-N_2 , $\text{Co-N}_3\text{-}\text{C}$ and $\text{Co-N}_3\text{-}\text{C}_2$ of Co-N= and $\text{Co-N}_{2+2}\text{-}\text{C}$ of Co-N_4 were energetically favored ones. As expected, the adsorption strength of substrates with four-fold coordination of Co atom were usually less than that of unsaturated ones, and showing less activation of Si-H bond, compared with the bond length of Si-H of dimethylphenylsilane in gas phase (1.496 Å).

Sample	C (at %)	O (at %)	N (at %)	Co (at %)	Co (wt %)
Co-N-C-700	80.79	20.51	8.24	0.46	2.1
Co-N-C-800	83.41	7.58	8.46	0.55	2.5
Co-N-C-900	86.54	6.31	6.71	0.44	2.1

Table S1. The elemental compositions of catalysts estimated from XPS

[a] C, O, N and Co contents were detected by XPS; [b] Co contents were calculated based on the contents of C, N, O and Co.

Table S2. The total nitrogen content and percentage of different nitrogen species in Co-N-C catalysts

Sample	N (at %)	Pyridinic N	Co-N	Pyrrolic N	Graphitic N	Oxidized N
Co-N-C-700	8.24	0.11	0.91	1.40	5.20	0.62
Co-N-C-800	8.46	1.82	0.81	0.98	3.00	1.85
Co-N-C-900	6.71	1.42	0.61	0.68	3.85	0.15

[a] It was calculated according to the peak area of different types of N.

Table S3. EXAFS fitting parameters at the Co K-edge for various samples

Sample	Shell	N ^a	$R(Å)^{b}$	$\sigma^2(\text{\AA}^2\cdot10^3)^{c}$	$\Delta E_0 (eV)^d$	R factor (%)
Co-N-C-700	Co-N	0.85*4.1	1.88	9.0	5.1	0.3
Co-N-C-800	Co-N	0.85*3.6	1.88	2.9	7.2	0.8
Co-N-C-900	Co-N	0.85*2.2	1.83	3.7	2.1	1.0

[a] N: coordination numbers. [b] R: bond distance. [c] $\sigma 2$: Debye-Waller factors. [d] $\Delta E0$: the inner potential correction. [e] R factor: goodness of fit. S02, 0.85, was obtained from the experimental EXAFS fit of CoPc reference by fixing CN as the known crystallographic value and was fixed to all the samples.

Table S4. Comparation of oxidation of organosilane to silanol between Co-N-C-800 and other catalysts in literature.

		0.11	Temp.	Time	TOF	Yield		
Entry Catalyst		Oxidant	/ºC	/h	/ h -1	/%	Ket.	
1	Co-N-C-800	H.O	Room	18	391	07	This work	
1	0-11-0-000	1120	Temp.	1.0	501)1	T IIIS WOLK	
2		ЦО	Room	0.5	50200	00	Adv. Mater. 2018, 30,	
Z	Single-Site Au	H ₂ O	Temp.	0.5	50200	99	1704720.[1]	
3	Pd/XC-72-700-	HaO	Room	57 s	645300	>99	ACS Catal. 2017, 7, 1720-	
5	Ar	1120	Temp.	075	012200	- ,,	1727. ^[2]	
4	Pd/MøO catalyst	H2O	Room	2	300	85	Catalysts 2019 9 834 ^[3]	
·		1120	Temp.	2	500	05	Culliy 515 201 7, 7, 05 1.	
5	Aunanoparticles	Н.О	45	$\gamma\gamma$	(TON)	100	J. Mater. Chem. A, 2017,5,	
5	Au hanoparticles	1120	75		591000	100	1935-1940. ^[4]	
6	Cu ₂ (BTC).	ТВНР	60	20		00	Appl. Catal. A-Gen 544	
0	Cu ₃ (BTC) ₂	1 DHF	00	20	-	77	2017 ,145-153. ^[5]	
7	Nanoporous	HaO	Room	2	_	92	ChemPhysChem 2015, 16,	
1	copper	1120	Temp.	2		2	1603-1606.[6]	
8	NaV zeolite	85%	80	0.07	_	99	J. Org. Chem. 2000, 65,	
0	Tur Zeonie	H_2O_2	00	0.07		,,	2897-2899. ^[7]	
9	Ni powder	H ₂ O	110	20	6.4	85	J. Mol. Catal. A: Chem.,	
-	Po	~		-•			2012 , 365, 50-54. ^[8]	
10	TC-6 (Ir	H-O	Room	6	_	95	Organometallics 2020, 39,	
10	catalyst)	1120	Temp.	0	-)5	165–171. ^[9]	

11	$Mn(ClO_4)_2 \cdot 6H_2O$	H_2O_2	Room Temp.	1	99		Angew. Chem. 2019 , 131, 6446-6450. ^[10]
12	Lacunary polyoxotungstate	H_2O_2	60	2	-	99	Angew Chem Int Ed Engl, 2009 , 48, 8900- 8904. ^[11]

[a] Reaction conditions: 0.4 mmol benzylic alcohol, 10 mg Co-N-C-800 catalyst, 0.08 mmol K_2CO_3 in 3 mL CH₃OH, O₂ (1 atm), 12 h. [b] Reaction conditions: 0.4 mmol benzylic alcohol, 10 mg Co-N-C-800 catalyst, 0.08 mmol K_2CO_3 in 3 mL CH₃OH, O₂ (1 atm), 20 h. [c] Isolated yield.

References

- Z. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, W. He and Y. Li, *Adv. Mater.*, 2018, **30**, 1704720.
- (2) J. D. Lin, Q. Y. Bi, L. Tao, T. Jiang, Y. M. Liu, H. Y. He, Y. Cao and Y. D. Wang, ACS Catal., 2017, 7, 1720-1727.
- (3) J. Zhou, X. Cao, H. Wang and S. Li, Catalysts, 2019, 9, 834.
- (4) M. Dhiman, B. Chalke and V. Polshettiwar, J. Mater. Chem. A, 2017, 5, 1935-1940.
- (5) N. Anbu and A. Dhakshinamoorthy, Appl. Catal. A-Gen., 2017, 544, 145-153.
- (6) Z. Li, X. Xu and X. Zhang, ChemPhysChem, 2015, 16, 1603-1606.
- (7) W. Adam, C. R. Saha-Möller and O. Weichold, J. Org. chem., 2000, 65, 2897-2899.
- (8) K.-i. Shimizu, K. Shimura, N. Imaiida and A. Satsuma, J. Mol. Catal. A: Chem., 2012, 365, 50-54.
- (9) N. Luo, J. Liao, O. Lu, H. Wen, Y. Zhong, J. Liu, W. Tang and R. Luo, *Organometallics*, 2019, **39**, 165-171.
- (10) W. Kaikai, Z. Jimei, J. Yuting, Z. Miaomiao, W. Chao, X. Dong, T. Weijun, S. Huamin, X. Jianliang and L. Chaoqun, *Angew. Chem. Int. Ed. Engl.*, 2019, **58**, 6380-6384.
- (11) IRyo, K. Keigo and M. Noritaka, Angew. Chem. Int. Ed. Engl., 2009, 48, 8900-8904.