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Fig. S1. (a) SEM image, (b, c) TEM images of Co-N-C-700. (d) SEM image, (e, f) TEM images of 

Co-N-C-900
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Fig. S2. TEM images of Co-N-C-MgO (a, b), NPC (c, d) and Co-PC (e, f).
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Fig. S3. TEM images of Co NC and the corresponding SAED pattern (b).
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Fig. S4. Nitrogen sorption isotherms (a) and pore size distribution (b) of NPC and Co-PC.
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Fig. S5. XRD of Co-N-C-MgO



7

Fig. S6. XPS N 1s spectra of (a) Co-N-C-700 and (b) Co-N-C-900
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Fig. S7. The corresponding EXAFS fitting curves of (a) Co-N-C-700, (b) Co-N-C-800 and (c) Co-N-C-

900.
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Fig. S8. Evaluation of Co leaching during dimethylphenylsilane oxidation by Co-N-C-800.
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Fig. S9. Possible models of Co-Nx (x=2-4). The gray, blue and light blue balls stand for carbon, 

nitrogen, and cobalt atoms, respectively.

*1:ΔE=ECo-Nx-Cy-EGNx-ECo-ECo-N2-C2; *2:ΔE=ECo-Nx-Cy-EGNx-ECo-ECo-N3-C1; *3:ΔE=ECo-Nx-Cy-EGNx-ECo-

ECo-N4-C 
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Fig. S10. Adsorption structures of dimethylphenylsilane on Co-Nx substrates

Among them, configurations Co-N2-C1 of Co-N2, Co-N3-C and Co-N3-C2 of Co-N= and Co-N2+2-C 
of Co-N4 were energetically favored ones. As expected, the adsorption strength of substrates with four-
fold coordination of Co atom were usually less than that of unsaturated ones, and showing less 
activation of Si-H bond, compared with the bond length of Si-H of dimethylphenylsilane in gas phase 
(1.496 Å).
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Table S1. The elemental compositions of catalysts estimated from XPS

Sample C (at %) O (at %) N (at %) Co (at %) Co (wt %)

Co-N-C-700 80.79 20.51 8.24 0.46 2.1

Co-N-C-800 83.41 7.58 8.46 0.55 2.5

Co-N-C-900 86.54 6.31 6.71 0.44 2.1

[a] C, O, N and Co contents were detected by XPS; [b] Co contents were calculated based on the 
contents of C, N, O and Co.
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Table S2. The total nitrogen content and percentage of different nitrogen species in Co-N-C catalysts

Sample N (at %) Pyridinic N Co-N Pyrrolic N Graphitic N Oxidized N

Co-N-C-700 8.24 0.11 0.91 1.40 5.20 0.62

Co-N-C-800 8.46 1.82 0.81 0.98 3.00 1.85

Co-N-C-900 6.71 1.42 0.61 0.68 3.85 0.15

[a] It was calculated according to the peak area of different types of N.
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Table S3. EXAFS fitting parameters at the Co K-edge for various samples

Sample Shell N a R (Å) b σ2 (Å2·103) c ΔE0 (eV) d R factor (%)

Co-N-C-700 Co-N 0.85*4.1 1.88 9.0 5.1 0.3

Co-N-C-800 Co-N 0.85*3.6 1.88 2.9 7.2 0.8

Co-N-C-900 Co-N 0.85*2.2 1.83 3.7 2.1 1.0

[a] N: coordination numbers. [b] R: bond distance. [c] σ2: Debye-Waller factors. [d] ΔE0: the inner 
potential correction. [e] R factor: goodness of fit. Ѕ02, 0.85, was obtained from the experimental 
EXAFS fit of CoPc reference by fixing CN as the known crystallographic value and was fixed to all the 
samples. 
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Table S4. Comparation of oxidation of organosilane to silanol between Co-N-C-800 and other catalysts 

in literature.

Entry Catalyst Oxidant
Temp.

/oC

Time

/h

TOF

/h-1

Yield

/%
Ref.

1 Co-N-C-800 H2O
Room 

Temp.
1.8 381 97 This work

2 Single-Site Au H2O
Room 

Temp.
0.5 50200 99

Adv. Mater. 2018, 30, 

1704720.[1]

3 Pd/XC-72-700-
Ar H2O

Room 
Temp. 57 s 645300 >99 ACS Catal. 2017, 7, 1720-

1727.[2]

4 Pd/MgO catalyst H2O
Room 

Temp.
2 300 85 Catalysts 2019, 9, 834.[3]

5 Au nanoparticles H2O 45 22 (TON)
591000 100

J. Mater. Chem. A, 2017,5, 

1935-1940.[4]

6 Cu3(BTC)2 TBHP 60 20 - 99 Appl. Catal. A-Gen 544 
2017,145-153.[5]

7 Nanoporous 
copper H2O

Room 
Temp. 2 - 92 ChemPhysChem 2015, 16, 

1603-1606.[6]

8 NaY zeolite 85% 
H2O2

80 0.07 - 99 J. Org. Chem. 2000, 65, 
2897-2899.[7]

9 Ni powder H2O 110 20 6.4 85 J. Mol. Catal. A: Chem., 
2012, 365, 50-54.[8]

10
TC-6 (Ir 

homogeneous 
catalyst)

H2O
Room 
Temp. 6 - 95 Organometallics 2020, 39, 

165−171.[9]
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11 Mn(ClO4)2·6H2O H2O2
Room 
Temp. 1 99 Angew. Chem. 2019, 

131, 6446-6450.[10]

12 Lacunary 
polyoxotungstate H2O2 60 2 - 99

Angew Chem Int Ed 
Engl, 2009, 48, 8900-

8904.[11]
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Table S5. Co-N-C-800 catalyzed the esterification of benzyl alcohola

[a] Reaction conditions: 0.4 mmol benzylic alcohol, 10 mg Co-N-C-800 catalyst, 0.08 mmol K2CO3 in 
3 mL CH3OH, O2 (1 atm), 12 h. [b] Reaction conditions: 0.4 mmol benzylic alcohol, 10 mg Co-N-C-
800 catalyst, 0.08 mmol K2CO3 in 3 mL CH3OH, O2 (1 atm)，20 h. [c] Isolated yield.

OH
R

K2CO3, O2, 60 oC OCH3
R

OCatalyst

O

O

O

O O

O

1, 92 % 2, 97 % 3, 95%

O

O O

O

Cl

O

O
Cl

4, 91% 5, 90% 6, 92%
O

O

Cl

O

O

O

O

O

NO2
7, 94 % 8, 98 % 9b, 87 %
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