Supporting Information

Transition-metal-free synthesis of thiazolidin-2-ones and 1,3-thiazinan-2-ones from arylamines, elemental sulfur and CO2

Chuan-Kun Ran, Lei Song, Ya-Kan Niu, Ming-Kai Wei, Zhen Zhang, Xiao-Yu Zhou, and Da-Gang Yu

a. Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China. Email: dgyu@scu.edu.cn

b. Key laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China. Email: zhangzhen1@cdu.edu.cn
Table of Contents

1 General Information ...3
2 Optimization of the Reaction Conditions ...4
3 Experimental procedures and characterization data ..4
 3.1 General Procedure for naphthylamine ..4
 3.2 General Procedure for aniline ...5
 3.3 Synthesis of 2a in gram scale ..5
 3.4 Some unsuccessful examples ...6
 3.5 Characterization data ...6
4 Mechanistic Studies or Investigation of the Mechanism ...12
 4.1 Control Experiments ...12
 4.2 Radical Inhibition Experiment ..12
 4.3 Control Experiment with K$_2$S Instead of S$_8$..12
 4.4 Control Experiments with Arylamine Derivatives ...13
 4.5 Control Experiment with 2-Aminobenzenethiol ..14
 4.6 Proposed mechanism ...15
5 References ..17
6 NMR Spectra ...18
1 General Information

Unless otherwise noted, all reactions were set up using standard Schlenk techniques and carried out under carbon dioxide atmosphere with dry solvents. Sodium tert-butoxide (NaO\text{t-Bu}) was purchased from Energy Chemical and lithium tert-butoxide (LiO\text{t-Bu}) was purchased from Adamas. Anhydrous 1,4-dioxane was purchased from J&K Chem Co., Ltd. and stored over molecular sieves under nitrogen. Commercially available chemicals were obtained from Adamas-beta®, Acros Organics, Aldrich Chemical Co., Alfa Aesar, ACR and TCI Shanghai and used as received unless otherwise stated. The substituted arylamines were synthesized according to the literature procedure.1,2

Reactions were monitored by thin-layer chromatography (TLC) or HPLC. TLC was performed using commercially Precoated silica gel plates (GF254, 100-400 mesh), and visualized by UV light 254 nm or iodine in silica gel. Organic solutions were concentrated under reduced pressure on EYELA rotary evaporator. Flash column chromatography was performed on Silica Gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co., Ltd.

GC-MS was obtained using electron ionization (Agilent Technologies 7890B/GC-System and 5977A/MSD, controled by Masshunter software). HRMS analysis was performed on a Shimadzu LCMS IT-TOF Mass Spectrometer. ESI-mass data were acquired using a Thermo LTQ Instrument equipped with an ESI source and controlled by Xcalibur software.

1H, 13C and 19F NMR spectra were recorded on a Bruker Advance 400 spectrometer (1H: 400 MHz, 13C: 101 MHz, 19F: 376 MHz). Chemical shifts (δ) for 1H and 13C NMR spectra are given in ppm relative to TMS (δ= 0.00 ppm), The residual solvent signals were used as references (DMSO: 2.50 ppm for 1H NMR and 39.52 ppm for 13C NMR). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, b = broad.
2 Optimization of the Reaction Conditions

Table S1 Screening of the Reaction Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>x</th>
<th>T °C</th>
<th>yield (%)</th>
<th>entry</th>
<th>base</th>
<th>x</th>
<th>T °C</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiO’Bu</td>
<td>5</td>
<td>140</td>
<td>44</td>
<td>10*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>KO’Bu</td>
<td>5</td>
<td>140</td>
<td>62</td>
<td>11*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>NaO’Bu</td>
<td>5</td>
<td>140</td>
<td>78</td>
<td>12*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Cs2CO3</td>
<td>5</td>
<td>140</td>
<td>8</td>
<td>13*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>NaO’Bu</td>
<td>3</td>
<td>140</td>
<td>24</td>
<td>14*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>NaO’Bu</td>
<td>4</td>
<td>140</td>
<td>40</td>
<td>15*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>87</td>
<td>16*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>NaO’Bu</td>
<td>6</td>
<td>120</td>
<td>n.d.</td>
<td>17*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>n.d.</td>
</tr>
<tr>
<td>9</td>
<td>NaO’Bu</td>
<td>6</td>
<td>130</td>
<td>34</td>
<td>18*</td>
<td>NaO’Bu</td>
<td>6</td>
<td>140</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

*Reaction Conditions: 1a (0.2 mmol), S₈ (32 g/mol, 0.8 mmol, 25.6 mg), CO₂ (1 atm, closed), 1 mL of 1,4-dioxane, 24 h. Isolated yields. S₈ (32 g/mol, 0.4 mmol, 12.8 mg). S₈ (32 g/mol, 0.6 mmol, 19.2 mg) diglyme (1.0 mL). N,N-Dimethylformamide (1.0 mL). N,N-Dimethylacetamide (1.0 mL). Dimethyl sulfoxide (1.0 mL). 1,4-dioxane (2.0 mL). without S₈. Under the atmospheric of N₂ instead of CO₂. n.d. = not detected.

3 Experimental procedures and characterization data

3.1 General Procedure for naphthylamine

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added arylamine substrate 1 (0.20 mmol, 1.0 equiv for solid substrates) and elemental sulfur (32 g/mol, 0.8 mmol, 25.6 mg). Then the tube was moved into a glovebox. NaO’Bu (1.2 mmol, 6.0 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO₂. Arylamine substrate 1 (0.20 mmol, 1.0 equiv for liquid substrates), anhydrous 1,4-dioxane (1 mL) was added via syringe under CO₂ atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO₂ (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (2.0 mL) and extracted by ethyl acetate (3 mL x 5). The combined organic phase was concentrated in vacuo and purified by flash column chromatography (silica: 200–300 mesh, typical eluent: petroleum ether/ethyl acetate = 10:1-5:1) to give the desired product.
Tips:
1. The solvent should cover the substrates and the substrates should not be shaken onto the reaction tube.
2. For substrates are not completely converted, pickling (2 N HCl) can be used to remove the unreacted substrates.

3.2 General Procedure for aniline

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added arylamine substrate 7 (0.20 mmol, 1.0 equiv for solid substrates) and elemental sulfur (32 g/mmol, 0.5 mmol, 16 mg). Then the tube was moved into a glovebox. LiO\textsubscript{Bu} (1.3 mmol, 6.5 equiv) and NaI (0.2 mmol, 1.0 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO\textsubscript{2}. Arylanime substrate 7 (0.20 mmol, 1.0 equiv for liquid substrates), anhydrous DMF (0.5 mL) was added via syringe under CO\textsubscript{2} atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO\textsubscript{2} (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (2.0 mL) and extracted by ethyl acetate (3 mL x 5). The combined organic phase was concentrated in vacuo and purified by flash column chromatography (silica: 200–300 mesh, typical eluent: petroleum ether/ethyl acetate = 10:1-5:1) to give the desired product.

3.3 Synthesis of 2a in gram scale

Gram scale:

![Chemical Structure](image)

To an oven-dried Schlenk tube (350 mL) equipped with a magnetic stir bar was added naphthalen-2-amine (1a, 8 mmol, 1.14 g, 1.0 equiv) and elemental sulfur (1.02 g, 32 mmol, 4.0 equiv, 32 mg/mmol). Then the tube was moved into a glovebox. NaO\textsubscript{Bu} (48 mmol, 4.61 g, 6.0 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO\textsubscript{2}. Anhydrous 1,4-dioxane (40 mL) was added via syringe under CO\textsubscript{2} atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO\textsubscript{2} (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (50 mL) and extracted by ethyl acetate (40 mL x 5). The combined organic phase was concentrated and purified by flash column chromatography to give the desired product 2a (1.22 g, 76%, white solid).
3.4 Some unsuccessful examples

\[
\begin{align*}
\text{Naphtho[2,1-d]thiazol-2(3H)-one (2a)} & \\
35.0 \text{ mg, 87\% isolated yield, yellowish solid, Mp: 234-236 °C;} \\
\text{R}_{f} (\text{PE:EA=5:1}): 0.4; \\
{^{1}H} \text{ NMR (400 MHz, DMSO-d}_{6} \delta 12.16 (s, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.57 (t, J = 8.1 Hz, 1H), 7.46 (t, J = 8.1 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H).} \\
{^{13}C} \text{ NMR (101 MHz, DMSO-d}_{6} \delta 170.48, 133.93, 129.64, 129.52, 127.98, 127.76, 127.43, 125.05, 123.01, 117.48, 112.85. IR (KBr) 3439, 3122, 3024, 2860, 1714, 1622, 1585, 1517, 1348, 1245, 1213, 1130, 798, 735, 656, 594. HRMS (ESI-) calcd. for C_{11}H_{7}NO_{3} [M-H]: 200.0176, found: 200.0178. \\
\text{7-methylnaphtho[2,1-d]thiazol-2(3H)-one (2b)} & \\
33.5 \text{ mg, 78\% isolated yield, yellowish solid, Mp: 237-239 °C;} \\
\text{R}_{f} (\text{PE:EA=3:1}): 0.43; \\
{^{1}H} \text{ NMR (400 MHz, DMSO-d}_{6} \delta 12.05 (s, 1H), 7.74 – 7.64 (m, 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.35 (dd, J = 8.4, 1.6 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 2.40 (s, 3H).} \\
{^{13}C} \text{ NMR (101 MHz, DMSO-d}_{6} \delta 170.41, 134.25, 133.25, 130.01, 129.87, 128.35, 126.74, 125.99, 122.89, 117.47, 112.80, 21.47. IR (KBr) 3130, 3057, 2912, 2849, 1674, 1595, 1517, 1467, 1344, 1253, 1205, 1041, 875, 800, 648, 576, 538, 507. HRMS (ESI-) calcd. for C_{12}H_{9}NO_{3} [M-H]: 214.0332, found: 214.0338. \\
\text{7-bromonaphtho[2,1-d]thiazol-2(3H)-one (2c)} & \\
35.4 \text{ mg, 63\% isolated yield, yellowish solid, Mp: 242-244 °C;} \\
\text{R}_{f} (\text{PE:EA=3:1}): 0.49; \\
{^{1}H} \text{ NMR (400 MHz, DMSO-d}_{6} \delta 12.23 (s, 1H), 8.24 (d, J = 1.9 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.66 (dd, J = 8.8, 2.0 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 8.7 Hz, 1H).} \\
{^{13}C} \text{ NMR (101 MHz, DMSO-d}_{6} \delta 170.25, 134.44, 131.31, 130.87, 130.72, 126.67, 122.89, 117.47, 112.80, 21.47. IR (KBr) 3130, 3057, 2912, 2849, 1674, 1595, 1517, 1467, 1344, 1253, 1205, 1041, 875, 800, 648, 576, 538, 507. HRMS (ESI-) calcd. for C_{12}H_{9}BrNO_{3} [M-H]: 270.1330, found: 270.1328. \\
\end{align*}
\]
126.32, 125.26, 117.83, 117.78, 113.93. IR (KBr) 3130, 3008, 2989, 2850, 1674, 1610, 1577, 1506, 1346, 1244, 1213, 1136, 1041, 982, 825, 733, 673, 602, 528. HRMS (ESI) calcd. for C_{11}H_{8}BrN_{2}O_{2}S [M-H]: 277.9281, found: 277.9281.

7-methoxynaphtho[2,1-d]thiazol-2(3H)-one (2d)

34.2 mg, 74% isolated yield, yellowish solid, Mp: 232-234 °C;
R_f (PE:EA=3:1): 0.42;
\(^1H\) NMR (400 MHz, DMSO-d_6) \(\delta\) 12.03 (s, 1H), 7.77 (d, \(J = 8.6\) Hz, 1H), 7.58 (d, \(J = 9.0\) Hz, 1H), 7.40 (d, \(J = 2.5\) Hz, 1H), 7.32 (d, \(J = 8.7\) Hz, 1H), 7.23 (dd, \(J = 9.0, 2.6\) Hz, 1H), 3.87 (s, 3H). \(^{13}C\) NMR (101 MHz, DMSO-d_6) \(\delta\) 170.29, 156.71, 132.16, 130.97, 126.23, 124.53, 122.99, 120.25, 117.89, 113.13, 108.10, 55.68. IR (KBr) 3134, 3020, 2914, 2846, 1670, 1626, 1595, 1519, 1479, 1213, 1236, 1213, 1164, 1126, 1029, 820, 719, 656, 600, 553, 511. HRMS (ESI) calcd. for C_{11}H_{8}NO_{2}S [M-H]: 230.0281, found: 230.0284.

7-phenylNaphtho[2,1-d]thiazol-2(3H)-one (2e)

38.2 mg, 69% isolated yield, yellowish solid, Mp: 243-245 °C;
R_f (PE:EA=3:1): 0.40;
\(^1H\) NMR (400 MHz, DMSO-d_6) \(\delta\) 12.20 (s, 1H), 8.27 (s, 1H), 7.95 (d, \(J = 8.7\) Hz, 1H), 7.89 (dd, \(J = 8.6, 1.8\) Hz, 1H), 7.82 – 7.76 (m, 2H), 7.72 (d, \(J = 8.6\) Hz, 1H), 7.50 (t, \(J = 7.6\) Hz, 2H), 7.39 (m, 2H). \(^{13}C\) NMR (101 MHz, DMSO-d_6) \(\delta\) 170.48, 139.99, 136.63, 134.13, 130.06, 129.48, 128.00, 127.93, 127.25, 127.06, 127.00, 126.96, 123.82, 117.43, 113.31. IR (KBr) 3446, 3126, 3057, 2920, 2850, 1674, 1599, 1502, 1377, 1338, 1253, 1207, 806, 686, 626, 546. HRMS (ESI) calcd. for C_{13}H_{11}NO_{2}S [M-H]: 276.0489, found: 276.0487.

4-(2-oxo-2,3-dihydrondaphtho[2,1-d]thiazol-7-yl)benzonitrile (2f)

37.5 mg, 62% isolated yield, yellowish solid, Mp: 247-249 °C;
R_f (PE:EA=3:1): 0.35;
\(^1H\) NMR (400 MHz, DMSO-d_6) \(\delta\) 12.23 (s, 1H), 8.36 (s, 1H), 8.00 – 7.85 (m, 6H), 7.72 (d, \(J = 8.6\) Hz, 1H), 7.38 (d, \(J = 8.7\) Hz, 1H). \(^{13}C\) NMR (101 MHz, DMSO-d_6) \(\delta\) 170.44, 144.44, 134.67, 134.51, 133.32, 129.86, 128.22, 128.07, 128.00, 127.51, 126.69, 124.07, 119.32, 117.45, 113.54, 110.40. IR (KBr) 3408, 3126, 3062, 2918, 2848, 1674, 1492, 1463, 1338, 1253, 1251, 1089, 1006, 881, 802, 680, 623, 500, 457. HRMS (ESI) calcd. for C_{19}H_{16}N_{2}O_{2}S [M-H]: 391.0441, found: 391.0446.

7-(4-(trifluoromethyl)phenyl)naphtho[2,1-d]thiazol-2(3H)-one (2g)

42.0 mg, 61% isolated yield, white solid, Mp: 253-255 °C;
R_f (PE:EA=3:1): 0.35;
\(^1H\) NMR (400 MHz, DMSO-d_6) \(\delta\) 12.18 (s, 1H), 8.24 (s, 1H), 7.87 (m, 3H), 7.76 (m, 3H), 7.61 (d, \(J = 8.6\) Hz, 1H), 7.34 (d, \(J = 8.6\) Hz, 1H). \(^{13}C\) NMR (101 MHz, DMSO-d_6) \(\delta\) 170.47, 143.86, 134.76, 134.46, 129.83, 128.74 (d, \(J = 13.8\) Hz), 127.81, 127.85 (q, \(J = 33.3\) Hz), 127.33, 126.65, 126.15 (q, \(J = 4.0\) Hz), 124.81 (q, \(J = 285.8\) Hz). 123.89, 117.43, 113.38, 110.02. \(^{19}F\) NMR (376 MHz, DMSO-d_6) \(\delta\) -60.96. IR (KBr) 3429, 3138, 3070, 2922, 2850, 1670, 1514, 1409, 1326, 1253, 1192, 1062, 1029, 719, 656, 600, 553, 511.
1107, 1068, 1015, 974, 848, 812, 671, 615, 509. **HRMS (ESI-)** calcd. for C_{18}H_{19}F_{3}NOS [M-H]⁻: 344.0362, found: 344.0368.

7-(4-fluorophenyl)naphtho[2,1-d]thiazol-2(3H)-one (2h)

34.2 mg, 58% isolated yield, white solid, Mp: 243-245 °C;

R_f (PE:EA=3:1): 0.58;

^1H NMR (400 MHz, DMSO-d_6) δ 12.16 (s, 1H), 8.18 (d, J = 1.5 Hz, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.64 (d, J = 8.6 Hz, 1H), 7.39 – 7.21 (m, 3H). **^13C NMR** (101 MHz, DMSO-d_6) δ 170.45, 162.34 (d, J = 244.6 Hz), 136.45 (d, J = 3.0 Hz), 135.53, 134.09, 129.98, 129.17 (d, J = 8.2 Hz), 127.83, 126.88, 126.86, 123.76, 117.42, 116.21 (d, J = 21.3 Hz), 113.29. **^19F NMR** (376 MHz, DMSO-d_6) δ -115.31. **IR** (KBr) 3361, 3132, 3067, 2922, 2852, 1732, 1651, 1601, 1508, 1380, 1340, 1240, 1155, 1095, 814, 748, 644, 517. **HRMS (ESI-)** calcd. for C_{19}H_{16}FNOS⁻ [M-H]⁻: 294.0394, found: 294.0394.

8-bromonaphtho[2,1-d]thiazol-2(3H)-one (2i)

37.9 mg, 68% isolated yield, yellowish solid, Mp: 242-244 °C;

R_f (PE:EA=3:1): 0.36;

^1H NMR (400 MHz, DMSO-d_6) δ 12.26 (s, 1H), 7.99 – 7.81 (m, 3H), 7.58 (dd, J = 8.7, 1.9 Hz, 1H), 7.40 (d, J = 8.6 Hz, 1H). **^13C NMR** (101 MHz, DMSO-d_6) δ 170.39, 134.93, 131.77, 128.90, 128.19, 128.03, 127.53, 124.91, 121.44, 116.65, 113.38. **IR** (KBr) 3151, 3068, 2918, 2847, 1672, 1508, 1469, 1407, 1196, 889, 833, 758, 694, 661, 567. **HRMS (ESI-)** calcd. for C_{19}H_{16}BrNOS⁻ [M-H]⁻: 277.9281, found: 277.9282.

8-methoxynaphtho[2,1-d]thiazol-2(3H)-one (2j)

38.4 mg, 83% isolated yield, yellowish solid, Mp: 246-247 °C;

R_f (PE:EA=3:1): 0.39;

^1H NMR (400 MHz, DMSO-d_6) δ 12.01 (s, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 2.5 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.19 (dd, J = 9.0, 2.6 Hz, 1H), 3.83 (s, 3H). **^13C NMR** (101 MHz, DMSO-d_6) δ 170.29, 156.69, 132.16, 130.96, 126.24, 124.55, 122.98, 120.28, 117.88, 113.14, 108.06, 55.68. **IR** (KBr) 3120, 3018, 2926, 2908, 2860, 1664, 1510, 1456, 1350, 1249, 1213, 1130, 804, 740, 660, 594, 536. **HRMS (ESI-)** calcd. for C_{19}H_{16}NO_2S⁻ [M-H]⁻: 230.0281, found: 230.0285.

8-phenynaphtho[2,1-d]thiazol-2(3H)-one (2k)

31.0 mg, 56% isolated yield, white solid, Mp: 249-251 °C;

R_f (PE:EA=3:1): 0.52;

^1H NMR (400 MHz, DMSO-d_6) δ 12.16 (s, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.79 – 7.69 (m, 4H), 7.46 (t, J = 7.5 Hz, 2H), 7.41 – 7.29 (m, 2H). **^13C NMR** (101 MHz, DMSO-d_6) δ 170.56, 139.91, 139.56, 134.37, 130.29, 129.46, 128.85, 128.32, 128.14, 127.60, 127.16, 124.23, 120.30, 117.81, 112.88. **IR** (KBr) 3134, 3070, 2922, 2850, 2702, 1730, 1591, 1497, 1422, 1342, 1251, 1215, 889, 806, 752, 694, 659, 605, 518. **HRMS (ESI-)** calcd. for C_{19}H_{16}NOS⁻ [M-H]⁻: 276.0489, found: 276.0487.
Thiazolo[5,4-f]quinolin-2(3H)-one (2l)

26.7 mg, 66% isolated yield, yellowish solid, Mp: 257-259 °C;
Rf (PE:EA=1:1): 0.45;

1H NMR (400 MHz, DMSO-d_6) δ 12.27 (s, 1H), 8.81 (s, 1H), 8.13 – 8.07 (m, 1H), 7.90 (d, $J = 8.9$ Hz, 1H), 7.60 – 7.45 (m, 2H). 13C NMR (101 MHz, DMSO-d_6) δ 170.52, 149.38, 144.61, 134.16, 131.48, 128.52, 123.31, 122.66, 117.48, 116.04. IR (KBr) 3354, 3122, 3068, 2922, 2852, 1672, 1562, 1460, 1367, 1203, 1033, 893, 800, 696, 631, 544, 492. HRMS (ESI+) calcd. for C$_{13}$H$_{12}$N$_2$O$_{3}^{-}$ [M+H]$^+$: 201.0128, found: 201.0133.

Anthra[2,1-d]thiazol-2(3H)-one (4)

26.1 mg, 52% isolated yield, yellowish solid, Mp: 246-248 °C;
Rf (PE:EA=1:1): 0.37;

1H NMR (400 MHz, DMSO-d_6) δ 12.24 (s, 1H), 8.65 (s, 1H), 8.29 (s, 1H), 8.15 – 8.03 (m, 3H), 7.59 – 7.47 (m, 2H), 7.41 (d, $J = 8.9$ Hz, 1H). 13C NMR (101 MHz, DMSO-d_6) δ 170.67, 133.19, 132.40, 130.59, 128.67, 128.62, 128.37, 128.19, 128.02, 126.93, 126.03, 125.73, 120.53, 115.84, 113.81. IR (KBr) 3396, 3047, 2920, 2852, 1710, 1666, 1544, 1458, 1411, 1303, 1201, 864, 770, 735, 632, 540, 466. HRMS (ESI+) calcd. for C$_{15}$H$_{14}$NOS $^{-}$ [M-H]: 250.0332, found: 250.0342.

Naphtho[1,8-de][1,3]thiazin-2(3H)-one (6a)

27.0 mg, 67% isolated yield, white solid, Mp: 229-231 °C;
Rf (PE:EA=3:1): 0.39;

1H NMR (400 MHz, DMSO-d_6) δ 12.59 (s, 1H), 8.22 (d, $J = 8.3$ Hz, 1H), 7.92 (d, $J = 8.4$ Hz, 1H), 7.66 (m, 2H), 7.59 – 7.52 (m, 1H), 7.49 (m, 1H). 13C NMR (101 MHz, DMSO-d_6) δ 171.64, 131.99, 131.61, 129.03, 127.08, 126.26, 123.10, 122.20, 120.74, 120.54, 118.63. IR (KBr) 3429, 3143, 3060, 2918, 2846, 1662, 1514, 1463, 1398, 1200, 1083, 1046, 955, 829, 766, 694, 590, 550. HRMS (ESI-) calcd. for C$_{15}$H$_{14}$NOS $^{-}$ [M-H]: 200.0176, found: 200.0180.

6-methylnaphtho[1,8-de][1,3]thiazin-2(3H)-one (6b)

27.5 mg, 64% isolated yield, yellowish solid, Mp: 229-232 °C;
Rf (PE:EA=3:1): 0.51;

1H NMR (400 MHz, DMSO-d_6) δ 12.47 (s, 1H), 8.25 – 8.17 (m, 1H), 8.02 – 7.93 (m, 1H), 7.64 – 7.42 (m, 3H), 2.57 (s, 3H). 13C NMR (101 MHz, DMSO-d_6) δ 171.10, 130.54, 129.84, 128.94, 126.43, 125.80, 125.06, 122.29, 120.35, 120.31, 117.83, 18.94. IR (KBr) 3404, 3149, 3072, 2918, 2848, 1672, 1512, 1473, 1436, 1373, 1197, 1093, 887, 835, 760, 694, 663, 569, 499. HRMS (ESI-) calcd. for C$_{16}$H$_{15}$NOS $^{-}$ [M-H]: 214.0332, found: 214.0334.

6-methoxynaphtho[1,8-de][1,3]thiazin-2(3H)-one (6c)

31.9 mg, 69% isolated yield, yellowish solid, Mp: 251-252 °C;
Rf (PE:EA=3:1): 0.45;

1H NMR (400 MHz, DMSO-d_6) δ 12.08 (s, 1H), 7.84 (d, $J = 9.0$ Hz, 1H), 7.75 (d, $J = 8.6$ Hz, 1H), 7.17 (d, $J = 8.6$ Hz, 1H), 7.07 (dd, $J = 9.0$, 2.5 Hz, 1H), 6.88 (d, $J = 2.5$ Hz, 1H). 3.86 (s, 3H). 13C NMR (101 MHz, DMSO-d_6) δ 170.51, 158.95, 134.47, 131.27, 129.16, 127.25, 124.82, 117.42, 116.27, 110.30, 101.77, 55.87. IR (KBr) 3141, 3060, 2958, 2923, 2854,
6-(thiophen-3-yl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6d)

36.2 mg, 64% isolated yield, yellowish solid, Mp: 247-249 °C;

Rf (PE:EA=3:1): 0.53;

1H NMR (400 MHz, DMSO-d_6) δ 12.64 (s, 1H), 8.28 (d, $J = 8.3$ Hz, 1H), 7.92 (d, $J = 8.5$ Hz, 1H), 7.82 – 7.39 (m, 5H), 7.34 – 7.22 (m, 1H). 13C NMR (101 MHz, DMSO-d_6) δ 171.65, 140.12, 131.47, 130.10, 129.94, 129.82, 127.06, 126.80, 126.62, 124.65, 122.68, 121.46, 120.72, 118.50. IR (KBr) 3143, 3074, 2922, 2851, 1666, 1614, 1571, 1512, 1465, 1409, 1325, 1169, 1109, 1064, 1014, 839, 760, 694, 656, 611, 545. HRMS (ESI-) calcd. for C$_{18}$H$_{15}$NO$_3$S [M-H]: 282.0053, found: 282.0050.

6-(4-(tert-butyl)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6e)

37.4 mg, 56% isolated yield, yellowish solid, Mp: 228-230 °C;

Rf (PE:EA=3:1): 0.53;

1H NMR (400 MHz, DMSO-d_6) δ 12.64 (s, 1H), 8.29 (d, $J = 8.3$ Hz, 1H), 7.78 (d, $J = 8.3$ Hz, 1H), 7.56 (d, $J = 8.3$ Hz, 2H), 7.49 – 7.41 (m, 3H), 7.35 – 7.29 (m, 2H), 1.30 (s, 9H). 13C NMR (101 MHz, DMSO-d_6) δ 171.65, 150.19, 136.91, 134.97, 131.32, 130.04, 130.00, 126.99, 126.75, 126.47, 125.66, 122.67, 121.33, 120.74, 118.54, 34.75, 31.57. IR (KBr) 3404, 3149, 3072, 2918, 2848, 1672, 1512, 1473, 1436, 1373, 1197, 1093, 887, 835, 760, 694, 663, 569, 499. HRMS (ESI-) calcd. for C$_{21}$H$_{19}$NOS [M-H]: 332.1115, found: 332.1121.

6-(4-(trifluoromethyl)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6f)

39.4mg, 57% isolated yield, yellowish solid, Mp: 263-265 °C;

Rf (PE:EA=3:1): 0.53;

1H NMR (400 MHz, DMSO-d_6) δ 12.74 (s, 1H), 8.35 (d, $J = 8.3$ Hz, 1H), 7.87 (d, $J = 8.1$ Hz, 2H), 7.76 – 7.60 (m, 5H), 7.51 (m, 1H). 13C NMR (101 MHz, DMSO-d_6) δ 171.65, 144.11, 133.34, 132.08, 131.24, 129.58, 128.40 (q, $J = 31.3$ Hz), 127.21, 126.92, 126.27, 124.76 (q, $J = 273.71$ Hz), 125.78 (q, $J = 3.7$ Hz), 122.82, 121.82, 120.66, 118.51. 19F NMR (376 MHz, DMSO-d_6) δ -60.89. IR (KBr) 3394, 2958, 2922, 2852, 1730, 1653, 1595, 1498, 1461, 1379, 1340, 1256, 1090, 887, 806, 754, 656, 609. HRMS (ESI-) calcd. for C$_{18}$H$_{15}$F$_3$NO$_3$S [M-H]: 434.0362, found: 434.0366.

6-(4-(methylthio)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6g)

44.0 mg, 68% isolated yield, yellowish solid, Mp: 263-265 °C;

Rf (PE:EA=3:1): 0.43;

1H NMR (400 MHz, DMSO-d_6) δ 12.65 (s, 1H), 8.29 (d, $J = 8.4$ Hz, 1H), 7.76 (d, $J = 8.5$ Hz, 1H), 7.55 (t, 2H), 7.44 (t, 1H), 7.33 (t, 4H), 2.48 (d, $J = 9.5$ Hz, 3H). 13C NMR (101 MHz, DMSO-d_6) δ 171.66, 137.95, 136.24, 134.44, 131.45, 130.84, 129.93, 127.02, 126.59, 126.53, 126.20, 122.72, 121.35, 120.75, 118.55, 15.03. IR (KBr) 3147, 3064,
2918, 2846, 1672, 1510, 1469, 1406, 1329, 1196, 1028, 887, 833, 758, 692, 663, 569, 496. **HRMS (ESI−)** calcd. for C_{18}H_{12}NO_{3}S [M−H]: 322.0366, found: 332.0368.

[1,3]thiazino[6,5,4-de]quinolin-2(1H)-one (6h)

21.0 mg, 52% isolated yield, yellowish solid, Mp: 257-259 °C;

1H NMR (400 MHz, DMSO-d$_6$) δ 12.26 (s, 1H), 7.99 – 7.81 (m, 3H), 7.58 (dd, $J = 8.7$, 1.9 Hz, 1H), 7.40 (d, $J = 8.6$ Hz, 1H). 13C NMR (101 MHz, DMSO-d$_6$) δ 170.52, 149.38, 144.61, 134.16, 131.48, 128.52, 123.31, 122.66, 117.48, 116.04. IR (KBr) 3338, 3112, 3069, 2934, 1674, 1562, 1460, 1367, 1203, 1033, 893, 800, 706, 631, 544, 499. **HRMS (ESI+)** calcd. for C_{11}H_{13}NO_{5}S [M+H]$^+$: 201.0128, found: 201.0125.

6-phenylbenzo[d]thiazol-2(3H)-one (8a)

20.8 mg, 46% isolated yield, yellowish solid;

1H NMR (400 MHz, DMSO-d$_6$) δ 11.97 (s, 1H), 7.91 (d, $J = 1.8$ Hz, 1H), 7.69 – 7.61 (m, 2H), 7.58 (dd, $J = 8.3$, 1.9 Hz, 1H), 7.45 (dd, $J = 8.3$, 7.0 Hz, 2H), 7.38 – 7.31 (m, 1H), 7.19 (d, $J = 8.3$ Hz, 1H). 13C NMR (101 MHz, DMSO-d$_6$) δ 170.19, 155.63, 130.29, 124.75, 113.65, 112.54, 108.14, 56.00. **HRMS (ESI−)** calcd. for C_{13}H_{13}NO_{5}S [M-H]: 226.0332, found: 226.0329.

6-methoxybenzo[d]thiazol-2(3H)-one (8b)

13.1 mg, 36% isolated yield, yellowish solid;

1H NMR (400 MHz, DMSO-d$_6$) δ 11.68 (s, 1H), 7.23 (d, $J = 2.6$ Hz, 1H), 7.01 (d, $J = 8.7$ Hz, 1H), 6.86 (dd, $J = 8.7$, 2.6 Hz, 1H), 3.73 (s, 3H). 13C NMR (101 MHz, DMSO-d$_6$) δ 170.19, 155.63, 130.29, 124.75, 113.65, 112.54, 108.14, 56.00. **HRMS (ESI−)** calcd. for C_{13}H_{13}NO_{5}S [M-H]: 181.0197, found: 181.0202.

6-methylbenzo[d]thiazol-2(3H)-one (8c)

12.8 mg, 39% isolated yield, yellowish solid;

1H NMR (400 MHz, DMSO-d$_6$) δ 11.76 (s, 1H), 7.36 (s, 1H), 7.08 (ddd, $J = 8.1$, 1.7, 0.6 Hz, 1H), 6.99 (d, $J = 8.1$ Hz, 1H), 2.29 (s,3H). 13C NMR (101 MHz, DMSO-d$_6$) δ 170.36, 134.38, 132.24, 127.55, 123.66, 123.09, 111.64, 21.07. **HRMS (ESI−)** calcd. for C_{13}H_{13}NO_{5}S [M-H]: 164.0176, found:164.0180.

5-(tert-butyl)benzo[d]thiazol-2(3H)-one (8d)

20.7 mg, 50% isolated yield, yellowish solid;

1H NMR (400 MHz, DMSO-d$_6$) δ 11.73 (s, 1H), 7.41 (d, $J = 8.3$ Hz, 1H), 7.13 (d, $J = 10.1$ Hz, 1H), 7.04 (s, 1H), 1.23 (s, 9H). 13C NMR (101 MHz, DMSO-d$_6$) δ 170.74, 149.85, 136.62, 122.65, 120.54, 120.44, 108.60, 34.88, 31.52. **HRMS (ESI−)** calcd. for C_{13}H_{13}NO_{5}S [M-H]: 206.0645, found:206.0649.
4 Mechanistic Studies or Investigation of the Mechanism

4.1 Control Experiments

Table S2 Control Experiments

<table>
<thead>
<tr>
<th>entry</th>
<th>variation from the standard conditions</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>without S<sub>8</sub></td>
<td>N.D.</td>
</tr>
<tr>
<td>3</td>
<td>Under N<sub>2</sub></td>
<td>N.D.</td>
</tr>
<tr>
<td>4</td>
<td>2.0 eq NaO<sub>2</sub>But</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

^a1a (0.2 mmol), S₈ (25.6 mg, 0.8 mmol, 4.0 eq, 32 mg/mmol), NaO₂But (1.2 mmol, 6.0 eq), 1 atm of CO₂, 1.0 mL of 1,4-dioxane (0.2 M) at 140 °C for 24 h. isolated yields. N.D. = Not detected.

4.2 Radical Inhibition Experiment

<table>
<thead>
<tr>
<th>entry</th>
<th>variation from the standard conditions</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None<sup>a</sup></td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Adding TEMPO 4.0 eq.</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>Adding PhSeSePh 4.0 eq.</td>
<td>80</td>
</tr>
</tbody>
</table>

^a1a (0.2 mmol), S₈ (25.6 mg, 0.8 mmol, 4.0 eq, 32 mg/mmol), NaO₂But (1.2 mmol, 6.0 eq), additive (0.8 mmol, 4.0 eq), 1 atm of CO₂, 1.0 mL of 1,4-dioxane (0.2 M) at 140 °C for 24 h. isolated yields.

4.3 Control Experiment with K₂S Instead of S₈

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added arylamine substrate 1a (0.20 mmol) and K₂S (0.8 mmol, 4.0 equiv). Then the tube was moved into a
glovebox. NaO\textsubscript{t}Bu (1.2 mmol, 6.0 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO\textsubscript{2}. Anhydrous 1,4-dioxane (1 mL) was added via syringe under CO\textsubscript{2} atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO\textsubscript{2} (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (2.0 mL) and detected by ESI-MS.

The target product not detected by ESI-MS, the sulfur anion should not be the reaction intermediate.

4.4 Control Experiments with Arylamine Derivatives

To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added arylamine derivative 9, 10, 11 or 12 (0.20 mmol, 1.0 equiv) and elemental sulfur (25.6 mg, 0.8 mmol, 4.0 equiv, 32 mg/mmol). Then the tube was moved into a glovebox. NaO\textsubscript{t}Bu (1.3 mmol, 6.5 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO\textsubscript{2}. Anhydrous 1,4-dioxane (1.0 mL) was added via syringe under CO\textsubscript{2} atmosphere or N\textsubscript{2} atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO\textsubscript{2} (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (2.0 mL) and extracted by ethyl acetate (3 mL x 5). The combined organic phase was concentrated in vacuo and purified by flash column chromatography (silica: 200–300 mesh, typical eluent: petroleum ether / ethyl acetate = 10:1-5:1) to give the desired product.
To an oven-dried Schlenk tube (25 mL) equipped with a magnetic stir bar was added arylamine substrate 14 (0.20 mmol, 1.0 equiv) and S₈ (25.6 mg, 0.8 mmol, 4.0 equiv, 32 mg/mmol) or without S₈. Then the tube was moved into a glovebox. NaO'Bu (1.3 mmol, 6.5 equiv) was added to the tube before transferring out of the glovebox and placing under an atmosphere of nitrogen. Then the Schlenk tube was evacuated and back-filled with CO₂. Anhydrous 1,4-dioxane (1.0 mL) was added via syringe under CO₂ atmosphere or N₂ atmosphere. Once added, the Schlenk tube was sealed at atmospheric pressure of CO₂ (1 atm). The resulting mixture was stirred for 24 h at 140 °C. Then, the mixture was diluted with water (2.0 mL) and extracted by ethyl acetate (3 mL x 5). The combined organic phase was concentrated in vacuo and purified by flash column chromatography (silica: 200–300 mesh, typical eluent: petroleum ether / ethyl acetate = 10:1-5:1) to give the desired product.
4.6 Proposed mechanism

Based on the results, we proposed there possible pathways. Further mechanistic studies and investigation will be going on in our lab. One possible path is the construct of isocyanate intermediate as the starting step. Another possible path is the construction of 2-aminobenzenethiol intermediate as the starting step.
5 References

(2) B. Saikia, P. R. Boruah, A. A. Ali and D. Sarma, Tetrahedron Lett. 2015, 56, 633-635.

6 NMR Spectra

Naphtho[2,1-d]thiazol-2(3H)-one (2a)
7-methylnaphtho[2,1-d]thiazol-2(3H)-one (2b)
7-bromonaphtho[2,1-d]thiazol-2(3H)-one (2c)
7-methoxynaphtho[2,1-d]thiazol-2(3H)-one (2d)
7-phenyl-naphtho[2,1-d]thiazol-2(3H)-one (2e)
4-(2-oxo-2,3-dihyronaptho[2,1-α][1,2]thiazol-7-yl)benzonitrile (2f)
7-{4-(trifluoromethyl)phenyl}naphtho[2,1-d]thiazol-2(3H)-one (2g)
8-bromonaphtho[2,1-d]thiazol-2(3H)-one (2i)
8-methoxynaphtho[2,1-d]thiazol-2(3H)-one (2j)
8-phenyl[1,2-d]thiazol-2(3H)-one \((2k) \)
Thiazolo[5,4-f]quinolin-2(3H)-one (2l)
Anthra[2,1-d]thiazol-2(3H)-one (4)
Naphtho[1,8-de][1,3]thiazin-2(3H)-one (6a)
6-methylnaphtho[1,8-de][1,3]thiazin-2(3H)-one (6b)
6-methoxynaphtho[1,8-de][1,3]thiazin-2(3H)-one (6c)
6-(thiophen-3-yl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6d)
6-(4-(tert-butyl)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6e)
6-(4-(trifluoromethyl)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6f)
6-(4-(methylthio)phenyl)naphtho[1,8-de][1,3]thiazin-2(3H)-one (6g)
6-phenylbenzo[d]thiazol-2(3H)-one (8a)
6-methoxybenzo[d]thiazol-2(3H)-one (8b)
6-methylbenzo[d]thiazol-2(3H)-one (8c)
5-(tert-butyl)benzo[d]thiazol-2(3H)-one (4d)
[1,3]thiazino[6,5,4-de]quinolin-2(1H)-one (6h)