Supporting Information

Synthesis of a Fe-Pd bimetallic catalyst for N-alkylation of amines with alcohols via a

hydrogen auto-transfer methodology

Peng-yu Wu [a], Guo-ping Lu [a] and Chun Cai *[a]

^[a] School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing

210094, P. R. China.

* Corresponding author e-mail: c.cai@ njust.edu.cn

Table of contents:

1.	General information	S2
2.	Table of catalytic performance of latest heterogeneous catalysts for N-alkylation of amines with alcohols	s via
	HAT methodology	S2
3.	The magnetic property of $Fe_{10}Pd_1/NC500$	S2
4.	ICP-MS results of catalysts	S3
5.	Raman spectra and XPS survey spectra of Fe ₁₀ Pd ₁ /NC500	S3
6.	XPS spectra of Pd/NC500 and NH ₂ -MIL-101(Fe ₁₀ Pd ₁)	S4
7.	The atomic contents of N, Fe and Pd on the surfaces of catalysts	S4
8.	TEM image of Fe ₁₀ Pd ₁ /NC500 after eight cycles	S4
9.	Characterization Data	S4
10.	NMR spectra	.S11
Ref	erences	.S42

1. General Information

All chemical reagents are obtained from commercial suppliers and used without further purification. GC yields were determined with hexadecane as an internal standard, and the product was then isolated by column chromatography (100–200 meshed silica gel, ethyl acetate/n-hexane = 1/20-1/100) in isolated yield. ¹H NMR and ¹³C NMR spectra are recorded on an AVANCE III Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl₃, respectively, and chemical shifts were reported in ppm relative to the center of the singlet at 7.26 ppm for CDCl₃. GC-MS analyses are performed on an ISQ Trace 1300 in the electron ionization (EI) mode. GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J413: 30 m × 320 µm × 0.25 µm, carrier gas: H₂, FID detection.

2. Table of catalytic performance of latest heterogeneous catalysts for N-alkylation of amines with alcohols *via* HAT methodology

 Table S1 catalytic performance of latest heterogeneous catalysts for N-alkylation of amines with alcohols via HAT methodology

Catalyst	Catalyst amount	Temperature/Time	Base/Solvent	Yield	Ref.
Ir(III)@carbon black	0.01 mol% Ir	100 °C/24 h	KO ^t Bu/toluene-d ₈	42 %	1
Ru/N-C	0.2 mol% Ru	110 °C/24 h	KOH/toluene	95 %	2
Co_2Rh_2/C	5 mol% Rh	100 °C/24 h	-/-	99 %	3
CuNiAlO _x	15 mol% Cu	180 °C/24 h	NaOH/mesitylene	96 %	4
$(\mathrm{Ni}_{0.5}\mathrm{Cu}_{0.5})\mathrm{Fe_2O_4}^{\mathrm{MAIN}}$	10 mol% Cu	240 °C (µw)/1 h	-/TAA (iPrOH)	71 %	5
Nano-Fe ₂ O ₃	30 mol % Fe	135 °C/24 h	KOH/toluene	89 %	6
Self-supported Cu	5 mol % Cu	160 °C/24 h	KOH/toluene	99 %	7
Ti-Pd alloy	0.2 mol % Pd	135 °C/48 h	KOH/toluene	97 %	8
Pd@SiO ₂	1 mol % Pd	150 °C/30 h	-/o-xylene	97 %	9
$Fe_{10}Pd_1/NC500$	0.2 mol % Pd	120 °C/16 h	-/-	98 %	This work

3. The magnetic property of Fe₁₀Pd₁/NC500

Fig. S1 The magnetic property of Fe₁₀Pd₁/NC500.

4. ICP-MS results of catalysts

, <u>, </u> ,						
Catalyst	Metal Content (wt %)					
	Fe	Pd	Al			
Fe ₁₀ Pd ₁ /NC500	15.96	3.18	0			
Fe ₁₀ Pd ₁ /NC500 ^a	15.90	3.14	0			
Fe/NC500	16.50	0	0			
Pd/NC500	0	3.65	0.34			
Fe ₁₅ Pd ₁ /NC500	14.98	19.47	0			
Fe ₅ Pd ₁ /NC500	15.59	5.78	0			
Fe ₁₀ Pd ₁ /AC	14.75	3.86	0			
Fe ₁₀ Pd ₁ /NC(cellulose)	14.07	3.39	0			
Fe ₁₀ Pd ₁ /NC(cellulose) ^b	12.50	2.48	0			
Fe ₁₀ Pd ₁ /C500	13.11	2.89	0			

Table S2 ICP-MS analysis of catalysts

^a Fe₁₀Pd₁/NC500 after eight cycles.

 b Fe₁₀Pd₁/NC(cellulose) after the first cycle.

5. Raman spectra and XPS survey spectra of Fe₁₀Pd₁/NC500

Fig. S2 Raman spectra of $Fe_{10}Pd_1/NC500$.

Fig. S3 XPS survey spectra of Fe₁₀Pd₁/NC500

6. XPS spectra of Pd/NC500 and NH₂-MIL-101(Fe₁₀Pd₁)

Fig. S4 Pd 3d region XPS spectra of (a) Pd/NC500, (b) NH₂-MIL-101(Fe₁₀Pd₁), (c) Fe 2p region XPS

spectra of NH₂-MIL-101(Fe₁₀Pd₁).

7. The atomic contents of N, Fe and Pd on the surfaces of catalysts

Table S3 The atomic contents of N	Fe and Pd on the surfaces of catalysts
-----------------------------------	--

Catalyst	Atomic Content (%)			
	Ν	Fe	Pd	
Fe ₁₀ Pd ₁ /NC400	5.42	1.87	0.23	
Fe ₁₀ Pd ₁ /NC500	9.29	5.53	0.43	
Fe ₁₀ Pd ₁ /NC600	5.05	5.29	0.40	

8. TEM image of Fe₁₀Pd₁/NC500 after eight cycles

Fig. S5 TEM image of $Fe_{10}Pd_1/NC500$ after eight cycles

9. Characterization data

N-benzyl aniline (3a)¹⁰

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 (td, J = 6.1, 4.7 Hz, 4H), 7.52 (s, 1H), 7.47 – 7.36 (m, 2H), 6.98 (d, J = 7.2 Hz, 1H), 6.84 (d, J = 7.7 Hz, 2H), 4.50 (d, J = 6.6 Hz, 2H), 4.10 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.46 (s), 139.81 (s), 129.59 (s), 128.94 (s), 127.80 (s), 127.51 (s), 117.84 (s), 113.19 (s), 48.52 (s).

N-benzyl-4-methylaniline (3b)¹⁰

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 – 7.28 (m, 4H), 7.25 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.53 (d, *J* = 7.0 Hz, 2H), 4.25 (s, 2H), 3.75 (s, 1H), 2.24 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 146.24 (s), 140.03 (s), 130.07 (s), 128.89 (s), 127.79 (s), 127.43 (s), 126.91 (s), 113.34 (s), 48.85 (s), 20.76 (s).

N-benzyl-3-methylaniline (3c)¹¹

¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.38 (m, 4H), 7.34 (d, J = 6.7 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 6.62 (d, J = 7.2 Hz, 1H), 6.58 – 6.47 (m, 2H), 4.37 (s, 2H), 3.78 (s, 1H), 2.34 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.19 (s), 139.57 (s), 139.13 (s), 129.25 (s), 128.71 (s), 127.66 (s), 127.31 (s), 118.74 (s), 113.84 (s), 110.18 (s), 48.51 (s), 21.73 (s).

N-benzyl-2-methylaniline (3d)⁸

¹H NMR (500 MHz, CDCl₃) δ 7.42 (dt, J = 15.0, 7.4 Hz, 4H), 7.33 (t, J = 7.1 Hz, 1H), 7.15 (dd, J = 14.8, 7.3 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 4.42 (s, 2H), 4.00 (s, 1H), 2.22 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.05 (s), 139.51 (s), 130.18 (s), 128.75 (s), 127.66 (s), 127.31 (d, J = 12.9 Hz), 122.09 (s), 117.37 (s), 110.18 (s), 48.44 (s), 17.66 (s).

Dibenzylamine (3e)9

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 – 7.46 (m, 8H), 7.45 – 7.39 (m, 2H), 3.95 (s, 4H), 1.88 (s, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 140.64 (s), 128.65 (s), 128.42 (s), 127.19 (s), 53.39 (s).

2-Methyldibenzylamine (3f)¹²

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 – 7.43 (m, 5H), 7.38 (dd, J = 10.3, 3.8 Hz, 1H), 7.32 – 7.27 (m, 3H), 3.98 (s, 2H), 3.91 (s, 2H), 2.46 (s, 3H), 1.72 (s, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 140.56 (s), 138.36 (s), 136.56 (s), 130.40 (s), 128.53 (d, J = 6.6 Hz), 128.28 (s), 127.09 (d, J = 4.1 Hz), 126.01 (s), 53.75 (s), 51.10 (s), 19.08 (s).

N-benzyl-4-methoxyaniline (3g)¹

¹H NMR (500 MHz, CDCl₃) δ 7.39 (dt, J = 15.0, 7.4 Hz, 4H), 7.31 (t, J = 7.0 Hz, 1H), 6.82 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 4.31 (s, 2H), 3.77 (s, 3H), 3.62 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 152.32 (s), 142.43 (s), 139.72 (s), 128.68 (s), 127.65 (s), 127.26 (s), 114.99 (s), 114.27 (s), 55.87 (s), 49.35 (s).

N-Benzyl-4-biphenylamine (3h)¹³

Ph

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.4 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.44 (dq, *J* = 15.5, 7.7 Hz, 6H), 7.38 – 7.29 (m, 2H), 6.76 (d, *J* = 8.5 Hz, 2H), 4.42 (s, 2H), 4.20 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.62 (s), 141.33 (s), 139.39 (s), 130.59 (s), 128.79 (d, *J* = 2.4 Hz), 128.06 (s), 127.61 (s), 127.41 (s), 126.41 (s), 126.20 (s), 113.27 (s), 48.43 (s).

N-Benzyl-4-tert-butylbenzenamine (3i)14

¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 2H), 7.59 – 7.54 (m, 2H), 7.54 – 7.49 (m, 1H), 7.49 – 7.43 (m, 2H), 6.83 (d, *J* = 7.4 Hz, 2H), 4.51 (s, 2H), 4.01 (s, 1H), 1.56 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 146.18 (s), 140.52 (s), 140.05 (s), 128.91 (s), 127.85 (s), 127.47 (s), 126.33 (s), 112.92 (s), 48.88 (s), 34.17 (s), 31.93 (s).

N-benzyl-4-fluoroaniline (3j)¹

¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.38 (m, 5H), 7.04 (t, J = 8.4 Hz, 2H), 6.67 (dd, J = 7.5, 4.6 Hz, 2H), 4.39 (s, 2H), 3.96 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.01 (s), 155.14 (s), 144.78 (s), 139.56 (s), 128.91 (s), 127.72 (s), 115.98 (s), 113.92 (s), 49.02 (s).

N-benzyl-4-chloroaniline (3k)¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 4.4 Hz, 4H), 7.31 (dd, J = 8.9, 4.5 Hz, 1H), 7.13 (d, J = 8.8 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 4.31 (s, 2H), 4.18 (s, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 146.61 (s), 138.93 (s), 129.14 (s), 128.77 (s), 127.48 (d, J = 6.5 Hz), 122.25 (s), 114.07 (s), 48.45 (s).

N-benzyl-4-bromoaniline (3l)¹

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 3.0 Hz, 4H), 7.34 – 7.29 (m, 1H), 7.29 – 7.25 (m, 2H), 6.54 (d, J = 8.8 Hz, 2H), 4.32 (s, 2H), 4.19 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.99 (s), 138.84 (s), 132.00 (s), 128.77 (s), 127.47 (d, J = 3.6 Hz), 114.59 (s), 109.31 (s), 48.36 (s).

N-benzylnaphthalen-1-amine (3m)¹⁵

¹**H** NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 8.5 Hz, 1H), 7.66 (s, 1H), 7.61 (t, *J* = 7.2 Hz, 2H), 7.59 – 7.54 (m, 4H), 7.53 – 7.47 (m, 2H), 6.81 (d, *J* = 7.4 Hz, 1H), 4.86 (s, 1H), 4.61 (s, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 143.53 (s), 139.44 (s), 134.64 (s), 129.01 (s), 128.58 (s), 128.00 (s), 127.66 (s), 126.99 (s), 126.07 (s), 125.03 (s), 123.72 (s), 120.31 (s), 117.93 (s), 105.10 (s), 48.76 (s).

N-benzylnaphthalen-2-amine (3n)⁹

¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.1 Hz, 1H), 7.85 (dd, J = 8.3, 3.5 Hz, 2H), 7.65 – 7.57 (m, 5H), 7.54 (d, J = 5.7 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.04 (d, J = 8.6 Hz, 2H), 4.54 (s, 2H), 4.16 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.11 (s), 139.54 (s), 135.57 (s), 129.29 (s), 129.01 (s), 128.16 – 127.85 (m), 127.63 (s), 126.72 (s), 126.41 (s), 122.42 (s), 118.26 (s), 105.01 (s), 48.53 (s).

N-benzylpyridin-2-amine (30)¹⁵

¹**H** NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 4.9 Hz, 1H), 7.40 (s, 1H), 7.37 – 7.31 (m, 4H), 7.28 (d, J = 6.9 Hz, 1H), 6.64 – 6.54 (m, 1H), 6.38 (d, J = 8.4 Hz, 1H), 5.05 (s, 1H), 4.51 (d, J = 5.7 Hz, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 158.60 (s), 147.99 (s), 139.15 (s), 137.67 (s), 128.69 (s), 127.37 (d, J = 16.3 Hz), 113.17 (s), 106.91 (s), 46.37 (s).

N-benzylpyridin-3-amine (3p)¹⁶

¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 2.9 Hz, 1H), 7.94 (d, J = 4.7 Hz, 1H), 7.37 – 7.26 (m, 5H), 7.05 (dd, J = 8.3, 4.7 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 4.32 (s, 2H), 2.67 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.15 (s), 138.80 (s), 138.60 (s), 136.12 (s), 128.81 (s), 127.49 (d, J = 10.1 Hz), 123.79 (s), 118.64 (s), 47.86 (s).

N-Cyclohexylbenzylamine (3q)¹⁷

¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (d, *J* = 13.7 Hz, 4H), 7.28 (ddd, *J* = 11.2, 6.9, 4.4 Hz, 1H), 3.86 (s, 2H), 2.59 – 2.49 (m, 1H), 2.01 – 1.92 (m, 2H), 1.79 (dd, *J* = 9.3, 3.7 Hz, 2H), 1.67 (d, *J* = 11.4 Hz, 1H), 1.50 (s, 1H), 1.35 – 1.13 (m, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.04 (s), 128.44 (s), 128.16 (s), 126.83 (s), 56.26 (s), 51.12 (s), 33.62 (s), 26.30 (s), 25.09 (s).

N-benzyloctylamine (3r)¹⁸

¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 4.5 Hz, 4H), 7.30 – 7.23 (m, 1H), 3.81 (s, 2H), 2.70 – 2.63 (m, 2H), 1.83 (s, 1H), 1.59 – 1.50 (m, 2H), 1.33 (s, 10H), 0.94 (dd, J = 7.5, 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.53 (s), 128.41 (s), 128.19 (s), 126.91 (s), 54.11 (s), 49.54 (s), 31.94 (s), 30.15 (s), 29.63 (s), 29.38 (s), 27.46 (s), 22.76 (s), 14.19 (s).

N-benzyldodecylamine (3s)

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 – 7.33 (m, 4H), 7.27 (t, *J* = 6.4 Hz, 1H), 3.83 (s, 2H), 2.68 (t, *J* = 7.2 Hz, 2H), 1.59 – 1.56 (m, 1H), 1.36 (s, 20H), 0.98 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.68 (s), 128.32 (s), 128.08 (s), 126.81 (s), 54.21 (s), 49.63 (s), 32.06 (s), 30.27 (s), 29.97 – 29.60 (m), 29.51 (s), 27.50 (s), 22.82 (s), 14.20 (s).

N-(4-methylbenzyl)aniline (3t)¹⁰

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 4H), 6.87 (td, J = 7.3, 1.0 Hz, 1H), 6.79 – 6.74 (m, 2H), 4.40 (s, 2H), 4.03 (s, 1H), 2.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.44 (s), 137.02 (s), 136.62 (s), 129.50 (d, J = 7.3 Hz), 127.73 (s), 117.69 (s), 113.08 (s), 48.25 (s), 21.33 (s).

N-(naphthalen-1-ylmethyl)aniline (3u)¹⁶

¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 4.0 Hz, 1H), 8.01 (dd, J = 3.9, 2.4 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.71 – 7.59 (m, 3H), 7.57 – 7.49 (m, 1H), 7.34 (dd, J = 1.9, 0.9 Hz, 2H), 6.89 (dd, J = 2.6, 1.3 Hz, 1H), 6.77 (d, J = 8.3 Hz, 2H), 4.79 (s, 2H), 4.04 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.25 (s), 146.83 (s), 144.93 (s), 131.32 (s), 129.35 (s), 120.59 (s), 117.78 (s), 114.52 (s), 113.10 (s), 110.39 (s), 58.52 (s), 55.99 (s), 48.50 (s), 18.44 (s).

N-(4-chlorobenzyl)benzenamine (3v)¹⁹

¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.36 (m, 4H), 7.35 – 7.26 (m, 2H), 6.89 (t, J = 7.3 Hz, 1H), 6.73 (d, J = 8.4 Hz, 2H), 4.38 (s, 2H), 4.12 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.08 (s), 138.29 (s), 132.98 (s), 129.55 (s), 128.93 (d, J = 2.9 Hz), 117.98 (s), 113.12 (s), 47.70 (s).

N-(4-bromobenzyl)benzenamine (3w)19

Br ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 7.16 (dd, J = 8.4, 7.5 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 7.7 Hz, 2H), 4.25 (s, 2H), 4.04 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.87 (s), 138.64 (s), 131.79 (s), 129.41 (s), 129.16 (s), 121.01 (s), 117.93 (s), 113.01 (s), 47.73 (s).

N-(1-phenylethyl)aniline (3x)³

¹**H** NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.8 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.20 – 7.11 (m, 2H), 7.08 – 6.97 (m, 2H), 6.59 (t, J = 7.3 Hz, 1H), 6.46 (d, J = 8.0 Hz, 2H), 4.42 (d, J = 6.7 Hz, 1H), 4.11 (s, 1H), 1.46 (d, J = 6.7 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 146.95 (s), 145.01 (s), 129.15 (s), 128.69 (s), 126.98 (s), 125.96 (s), 117.59 (s), 113.64 (s), 53.80 (s), 24.91 (s).

N-cyclohexylaniline (3y)²⁰

H ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, J = 7.8 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.2 Hz, 2H), 3.61 (s, 1H), 3.31 (t, J = 3.7 Hz, 1H), 2.12 (dd, J = 13.3, 3.1 Hz, 2H), 1.82 (dd, J = 10.5, 6.7 Hz, 2H), 1.75 - 1.67 (m, 1H), 1.43 (d, J = 12.9 Hz, 2H), 1.30 (s, 1H), 1.25 - 1.13 (m, 2H). ¹³C NMR (126 MHz, 2H), 1.25 - 1.13 (m, 2H).

N-octylaniline (3z)⁸

¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.70 (d, *J* = 8.1

Hz, 2H), 3.67 (s, 1H), 3.19 (t, J = 7.2 Hz, 2H), 1.75 – 1.64 (m, 2H), 1.45 (dd, J = 23.5, 20.7 Hz, 11H), 1.03 (t, J = 6.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.71 (s), 129.36 (s), 117.17 (s), 112.82 (s), 44.14 (s), 32.06 (s), 29.86 – 29.41 (m), 27.40 (s), 22.89 (s), 14.32 (s).

CDCl₃) δ 147.42 (s), 129.36 (s), 117.00 (s), 113.32 (s), 51.84 (s), 33.56 (s), 26.06 (s), 25.15 (s).

N-((pyridin-2-yl)methyl)aniline (3aa)¹⁹

¹**H** NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 4.8 Hz, 1H), 7.65 (td, J = 7.7, 1.7 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.19 (dd, J = 8.4, 7.4 Hz, 3H), 6.76 – 6.64 (m, 3H), 4.47 (s, 2H), 4.09 (s, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 158.56 (s), 149.15 (s), 147.91 (s), 136.81 (s), 129.31 (s), 122.19 (s), 121.70 (s), 117.67 (s), 113.11 (s), 49.29 (s).

N-((thiophen-2-yl)methyl)aniline (3bb)²¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.24 – 7.19 (m, 3H), 7.07 – 7.02 (m, 1H), 6.99 (dd, J = 5.0,

3.6 Hz, 1H), 6.78 (t, J = 7.3 Hz, 1H), 6.73 – 6.69 (m, 2H), 4.53 (s, 2H), 4.13 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.54 (s), 142.88 (s), 129.36 (s), 126.93 (s), 125.17 (s), 124.69 (s), 118.27 (s), 113.34 (s), 43.61 (s).

N-((furan-2-yl)methyl)aniline (3cc)²¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.37 (dd, J = 11.9, 4.0 Hz, 2H), 6.93

(td, J = 7.3, 0.8 Hz, 1H), 6.84 – 6.78 (m, 2H), 6.48 (s, 1H), 6.38 (d, J = 3.2 Hz, 1H), 4.43 (s, 2H), 4.08 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 153.11 (s), 147.92 (s), 142.10 (s), 129.48 (s), 118.19 (s), 113.39 (s), 110.63 (s), 107.22 (s), 41.58 (s).

N-(cinnamyl)aniline (3dd)²¹

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 7.5 Hz, 3H), 7.31 (t, J = 7.6 Hz, 2H), 7.25 - 7.19 (m, 3H), 6.74 (t, J = 7.2 Hz, 3H), 6.63 (d, J = 15.9 Hz, 1H), 6.34 (dt, J = 15.9, 5.9 Hz, 1H), 3.95 (d, J = 5.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.94 (s), 136.89 (s), 131.66 (s), 129.33 (s), 128.62 (s), 127.59 (s), 126.99 (s), 126.39 (s), 117.82 (s), 113.23 (s), 46.37 (s).

4-Anilinomethyl-2-methoxyphenol (3ee)²²

HO² ¹**H NMR** (500 MHz, CDCl₃) δ 7.22 (t, *J* = 7.9 Hz, 2H), 6.90 (dd, *J* = 14.0, 8.0 Hz, 3H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 7.9 Hz, 2H), 4.55 (s, 1H), 4.26 (s, 2H), 3.87 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.25 (s), 146.83 (s), 144.93 (s), 131.32 (s), 129.35 (s), 120.59 (s), 117.78 (s), 114.52 (s), 113.10 (s), 110.39 (s), 55.99 (s), 48.50 (s).

References

- C. M. Wong, R. T. McBurney, S. C. Binding, M. B. Peterson, V. R. Gonçales, J. J. Gooding and B. A. Messerle, *Green Chem.*, 2017, 19, 3142-3151.
- 2. B. Guo, H.-X. Li, S.-Q. Zhang, D. J. Young and J.-P. Lang, ChemCatChem, 2018, 10, 5627-5636.
- 3. H. Chung and Y. K. Chung, J. Org. Chem., 2018, 83, 8533-8542.
- 4. Y. Wu, H. Yuan and F. Shi, ACS Sustain. Chem. Eng., 2018, 6, 1061-1067.
- 5. A. Y. Li, N. Dumaresq, A. Segalla, N. Braidy and A. Moores, ChemCatChem, 2019, 11, 3959-3972.
- 6. M. Nallagangula, C. Sujatha, V. T. Bhat and K. Namitharan, Chem. Commun., 2019, 55, 8490-8493.
- 7. Y. Wu, Y. Huang, X. Dai and F. Shi, ChemSusChem, 2019, 12, 3185-3191.
- Y. Takahashi, R. Kondo, M. Utsunomiya, T. Suzuki, H. T. Takeshita and Y. Obora, *ChemCatChem*, 2019, 11, 2432-2437.
- 9. A. S. Alshammari, K. Natte, N. V. Kalevaru, A. Bagabas and R. V. Jagadeesh, J. Catal., 2020, 382, 141-149.
- 10. B. Sreedhar, P. S. Reddy and D. K. Devi, J. Org. Chem., 2009, 74, 8806-8809.
- 11. X. Yu, C. Liu, L. Jiang and Q. Xu, Org. Lett., 2011, 13, 6184-6187.
- 12. J. Strehl and G. Hilt, Org. Lett., 2020, 22, 5968-5972.
- 13. H. Zhang, Q. Cai and D. Ma, J. Org. Chem., 2005, 70, 5164-5173.
- 14. R. He, P. H. Toy and Y. Lam, Adv. Synth. Catal., 2008, 350, 54-60.
- 15. W. Yang, L. Wei, F. Yi and M. Cai, Catal. Sci. Technol., 2016, 6, 4554-4564.
- 16. D.-W. Tan, H.-X. Li, D. J. Young and J.-P. Lang, Tetrahedron, 2016, 72, 4169-4176.
- 17. O.-Y. Lee, K.-L. Law and D. Yang, Org. Lett., 2009, 11, 3302-3305.
- 18. C. Guérin, V. Bellosta, G. Guillamot and J. Cossy, Org. Lett., 2011, 13, 3534-3537.
- 19. M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng and H. Hu, Chem. Commun., 2011, 47, 6605-6607.
- D. B. Bagal, R. A. Watile, M. V. Khedkar, K. P. Dhake and B. M. Bhanage, *Catal. Sci. Technol.*, 2012, 2, 354-358.
- 21. W. Liao, Y. Chen, Y. Liu, H. Duan, J. L. Petersen and X. Shi, Chem. Commun., 2009, 6436-6438.
- 22. M. K. Rai, Surinder; Singh, Baldev; Krishan, Kewal; Singh, Ajit, J. Indian Chem. Soc., 1982, 59, 80-81.