Supporting Information

Photo-triggered Self-catalyzed Fluoroalkylation/Cyclization of

Unactivated Alkenes: Synthesis of Quinazolinones Containing CF₂R

group

Jin Yang, Bin Sun, * Hao Ding, Pan-Yi Huang, Xiao-Li Tang, Rong-Cheng Shi, Zhi-Yang Yan, Chuan-Ming Yu, Can Jin*

Page S1	General Information
Page S1-S3	Preparation of Substrate
Page S4	Optimization of the reaction conditions
Page S5	Gram scale procedure for the synthesis of 3a
Page S5-S7	Control experiments
Page S7-S8	UV-visible absorption Spectra
Page S8-S9	Luminescence Quenching Screening Studies
Page S9-S11	Quantum Yield Measurements
Page S12	Light-dark cycle experiment
Page S13-S29	Characterization Data for the products
Page S28-S109	Copies of NMR Spectra

I. General Information

Melting points were determined using a digital melting point apparatus and uncorrected. ¹H NMR spectra were recorded at 400 MHz using TMS as internal standard, ¹³C NMR spectra were recorded at 100 MHz using TMS as internal standard. All chemical shifts were reported as δ values (ppm) relative to TMS and observed coupling constants (*J*) are given in Hertz (Hz). Mass spectra were measured with a HRMS-ESI instrument. Unless otherwise indicated, all reactions were carried out under N₂ atmosphere at room temperature with magnetic stirring. All reagents were purchased from commercial source and without prior purification. Column chromatography was performed on silica gel (200-300 mesh) and the elution was performed with *n*-hexane/ethyl acetate.

II. Preparation of substrate

General procedure for the synthesis of equinazoline-4(3H)-one derivatives^{1,2}

The mixtures of anthranilic acid (1) (1 mmol) and an excess of formamide (10 mmol) in a roundbottom flask were heated at 120 °C with stirring for 3-5 h. The reaction was checked by TLC. After the starting materials completely disappeared, the resulting mixtures were cooled to room temperature and then poured into ice-cold water. The light or dark brown precipitates were formed. The precipitates were filtered and washed three times with water (20 ml each) and dried to give quinazoline-4(3*H*)-one derivatives (2). These intermediates were used for the next step without further purification.

To a solution of each respective quinazoline-4(3*H*)-one intermediate (2) (1 mmol) in acetone (10 mL) were added K_2CO_3 (207 mg, 1.5 mmol). The resulting mixture was heated at 60 °C with stirring for 30 min. KI (16.6 mg,0.1 mmol) was added and after stirring for further 15 min, brominated olefins (0.13 mL, 1.2 mmol) diluted with acetone (1 mL) was dropwise added into the mixture. The reaction mixture was further stirred at 60 °C for 3 h. After the reaction completed, the resulting mixture was cooled and poured into ice-cold water. The solids were formed, filtered and dried to give the corresponding product (1a~1n, 1o~1s).

A round-bottom flask was charged with methyltriphenylphosphonium bromide (5.36 g, 15 mmol) and dry THF (20 mL) under N₂ atmosphere, followed by the addition of potassium tert-butoxide (1.68 g, 15 mmol) at 0 °C. The reaction mixture was allowed to warm to ambient temperature and stir for 0.5 h. Next, 2-aminoacetophenone (**3**) (1.21 g, 10 mmol) was added. The reaction mixture was stirred at room temperature overnight. After completion, the reaction was quenched with saturated NaHCO₃ solution, and extracted with EtOAc (100 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give **4**.

A mixture of 2-amino-benzoic acid esters (1.0 mmol), amines 4 (1.2 mmol), ortho esters (1.5 mmol) and NH₄Cl (21.0 mg, 0.4 mmol) was heated with stirring at 100 °C for 2 h. After cooling, H₂O was added and the product was extracted with CH₂Cl₂ (2×5 mL). The organic layer was dried (MgSO₄) and evaporated, and the residue was purified through flash column chromatography or recrystallized from EtOH-hexane to afford the pure product.

General procedure for the synthesis of α -bromo- α , α -difluoroacetamides from ethyl bromodifluoroacetate³

$$\begin{array}{c} O \\ Br \\ Br \\ F \end{array} + \begin{array}{c} H \\ R^2 \end{array} + \begin{array}{c} La(OTf)_2 (5 \text{ mmol}\%) \\ rt, 1-4 \text{ h} \end{array} + \begin{array}{c} O \\ Br \\ F \\ F \\ F \\ F \\ F \\ F \\ R^1 \end{array} \right)$$

A 20 mL tube equipped with a magnetic stir bar was charged with lanthanum trifluoromethanesulfonate (0.25 mmol, 5.0 mol %). The tube was backfilled with argon, then ethyl bromodifluoroacetate (6.0 mmol) and amine (5.0 mmol) were added. The mixture was stirred at the room temperature and monitored by TLC. After the amine was exhausted, the mixture was purified by silica gel column chromatography to give the target amide.

General procedure for the synthesis of α -bromo- α , α -difluoroesters from the corresponding alcohol⁴

$$\begin{array}{ccc} O & (1) \text{ Oxalyl chloride} \\ Br & OH \\ F & F \end{array} OH \\ \begin{array}{c} (1) \text{ Oxalyl chloride} \\ DMF(cat.), \text{ CH}_2\text{Cl}_2, \text{ N}_2 \\ \hline (2) \text{ ROH, Et}_3\text{ N} \end{array} \xrightarrow{O} \\ \begin{array}{c} F \\ F \\ F \end{array} \xrightarrow{O} \\ \end{array}$$

α-bromo-α, α-difluoroacetic acid (1 equiv.) was dissolved in dry CH_2Cl_2 (c = 0.45 M) in a dry round bottom flask under an atmosphere of nitrogen. Oxalyl chloride (1.1 equiv.) was then added followed by two drops of DMF. The solution was then stirred at room temperature for 2 hours or until no more gas evolved. The corresponding alcohol (2 equiv.) and triethylamine (1.1 equiv.) was then added dropwise as a solution in CH_2Cl_2 (c = 0.2 M) at 0 °C over 20 min. The cooling was removed and stirring was continued for 2 hours. The crude reaction was then diluted with water and extracted for three times with CH_2Cl_2 . The combined organic phases were washed with saturated bicarbonate and dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was then filtered through a short plug of silica (eluent: pentane) and the fractions containing product were concentrated to afford the α-bromo-α, α-difluoroester as a colorless oil.

Characterization data of some raw materials

3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3H)-one (1t)

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 7.9 Hz, 1H), 8.00 (s, 1H), 7.81 (q, J = 8.0 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.53 – 7.43 (m, 3H), 7.38 (d, J = 8.2 Hz, 1H), 5.12 (s, 1H), 4.94 (s, 1H), 1.95 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.99 (s), 148.00 (s), 146.70 (s), 141.85 (s), 141.76 (s), 134.51 (s), 134.46 (s), 129.58 (s), 129.55 (s), 128.71 (s), 128.30 (s), 127.60 (s), 127.46 (s), 127.19 (s), 122.44 (s), 117.25 (s), 23.38 (s).

7-bromo-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3H)-one (1u)

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.50 (dt, J = 13.3, 6.9 Hz, 3H), 7.37 (d, J = 7.5 Hz, 1H), 5.13 (s, 1H), 4.92 (s, 1H), 1.95 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.51 (s), 148.94 (s), 147.82 (s), 141.78 (s), 141.64 (s), 134.12 (s), 130.87 (s), 130.35 (s), 129.73 (s), 129.62 (s), 129.31 (s), 128.68 (s), 128.54 (s), 128.36 (s), 121.24 (s), 117.32 (s), 23.39 (s).

6-methyl-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1v)

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.95 (s, 1H), 7.72 -7.61 (m, 2H), 7.54 - 7.43 (m, 3H), 7.40 - 7.35 (m, 1H), 5.11 (s, 1H), 4.93 (s, 1H), 2.54 (s, 3H), 1.95 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.02 (s), 145.93 (s), 141.83 (d, *J* = 7.6 Hz), 137.75 (s), 135.91 (s), 134.59 (s), 129.51 (d, *J* = 6.2 Hz), 128.71 (s), 128.27 (s), 127.40 (s), 126.61 (s), 122.14 (s), 117.15 (s), 23.34 (s), 21.32 (s).

7-chloro-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3H)-one (1w)

¹**H NM**R (400 MHz, CDCl₃) δ 8.31 (dd, *J* = 8.5, 3.3 Hz, 1H), 8.00 (s, 1H), 7.78 (s, 1H), 7.55 -7.43 (m, 4H), 7.37 (d, *J* = 8.1 Hz, 1H), 5.13 (s, 1H), 4.92 (s, 1H), 1.95 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.38 (s), 148.97 (s), 147.87 (s), 141.79 (s), 141.66 (s), 140.77 (s), 134.14 (s), 129.71 (s), 129.61 (s), 128.67 (s), 128.58 (s), 128.35 (s), 128.07 (s), 127.20 (s), 120.89 (s), 117.31 (s), 23.40 (s).

6-fluoro-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1**x**)

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 8.4, 2.7 Hz, 1H), 7.97 (s, 1H), 7.81 (dd, *J* = 8.9, 4.8 Hz, 1H), 7.59 -7.45 (m, 4H), 7.38 (d, *J* = 7.4 Hz, 1H), 5.13 (s, 1H), 4.93 (s, 1H), 1.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.43 (d, *J* = 225.9 Hz), 160.07 (s), 146.03 (s), 144.62 (s), 141.84 (s), 141.67 (s), 134.21 (s), 130.00 (d, *J* = 8.2 Hz), 129.65 (d, *J* = 8.1 Hz), 128.57 (s), 128.36 (s), 123.14 (s), 122.90 (s), 117.25 (s), 112.31 (s), 112.08 (s), 23.38 (s).

Reference:

 Huan, L. C.; Tran, P. T.; Phuong, C. V.; Duc, P. H.; Anh, D. T.; Hai, P. T.; Huong, L. T. T.; Thuan, N. T.; Lee, H. J.; Park, E. J.; Kang, J. S.; Linh, N. P.; Hieu, T. T.; Oanh, D. T. K.; Han, S. B.; Nam, N. H., *Bioorg Chem* **2019**, *92*, 103202.

2. G. Huang, B. Liu, M. Teng, Y. Chen, Synth. Commun. 2014, 44, 1786-1794.

3. L. Wang, X. J. Wei, W. L. Jia, J. J. Zhong, L. Z. Wu, Q. Liu, Org. Let. 2014, 16, 5842-5845

4. T. L. Andersen, M. W. Frederiksen, K. Domino, T. Skrydstrup, Angew. Chem., Int. Ed.2016, 55, 10396-10400

III. Optimization of the reaction conditions

Table S1. Variations from standard condition

	O N N	+ BrCE-COOEt <u>conc</u>		
	12 (0.2 mmol)	23 (2.0 equiv)	N	CF ₂ COOEt
Entry	Light source	$\Delta dditive (2.0 equil)$	3a Solvent (2ml)	Viald b 3a $(0/a)$
1	/30-/35 nm	TMEDA	MeCN	32 Sa (70)
1	400 405 nm		McCN	52
2	280 285 nm		McCN	72
3	265 268 nm		MaCN	73
4	280,285 mm		MeCN	12
5	380-385 nm		MeCN	0
6	380-385 nm	PMDETA	MeCN	34
7	380-385 nm	Cs_2CO_3	MeCN	22
8	380-385 nm	Na ₂ CO ₃	MeCN	18
9	380-385 nm	K_2HPO_4	MeCN	72
10	380-385 nm	-	MeCN	82
11	380-385 nm	-	MeOH	0
12	380-385 nm	-	DMSO	trace
13	380-385 nm	-	EA	80
14	380-385 nm	-	DCE	56
15	380-385 nm	-	THF	68
16 ^c	450-455 nm	-	MeCN	0
17	380-385 nm		MeCN	0
18	-	-	MeCN	0

^{*a*} Conditions: 3-(pent-4-en-1-yl)quinazolin-4(3*H*)-one (**1a**) (0.2 mmol), BrCF₂COOEt (2.0 equiv.), additive (2.0 equiv.), solvent (2 mL), room temperature, N₂, 12 h. ^{*b*} Determined by ¹HNMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Under air.

Table S2. Screening of 2a

The results showed that $1.5 \sim 2.0$ equivalent **2a** is optimum condition.

IV. Gram scale procedure for the synthesis of 3a

To a 15 mL Schlenk-tube was charged with quinazoline-4(3*H*)-one **1a** (1.07g, 5.0 mmol), BrCF₂COOEt **2a** (1.62g, 8.0 mmol) and DMSO (10.0 mL). The tube was evacuated and backfilled with N₂ for three times. The mixture was then irradiated by380 nm light (10 w) for 12 h. The reaction mixture was then quenched with water (20 mL) and extracted with DCM (30 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel column (ethyl acetate/hexane, 1:10) to afford **3a** (1.13 g, 67%) as a colorless oil.

The reaction was completely inhibited by free radical inhibitors, and the radical adducts **5** was detected by HRMS ($[M+H]^+=279.1864$)

The 1,2-difunctionalization products were determined by HRMS, and these results indicated that BrCF₂COOEt underwent a rapid C-Br bond homolysis.

VI. UV-visible absorption Spectra

Figure S1. Absorption spectra of 1a and 2a (dissolved in MeCN).

VII. Luminescence Quenching Screening Studies

Figure S2. Excitation spectrum of **1a** (0.01 M in MeCN) measured by Fluorescence spectrophotometer. (base on optimum emission wavelength: 433 nm)

Figure S3. Quenching of the **1a** (0.01 M in MeCN) emission in the presence of increasing amount of ethyl bromodifluoroacetate reagent. (Excitation wavelength: 380 nm)

Figure S4. Stern-Volmer plot of Fluorescence quenching of 1a by 2a

VIII. Quantum Yield Measurements

Determination of the light intensity at 365 nm.

According to the procedure of Yoon⁵ the photon flux of the LED ($\lambda_{max} = 365 \text{ nm}$) was determined

by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (5.0 mg) and sodium acetate (1.13 g) in H₂SO₄ (5.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (3.0 mL) was placed in a cuvette and irradiated for 90 seconds at $\lambda_{max} = 365$ nm. After irradiation, the phenanthroline solution (0.525 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1.

Non-irrad		Irrad 1	Irrad 2	Irrad 3
A _{510nm}	0.284	1.966	1.981	1.924
Average A _{510nm}	of irradiation	1.957		
samples				

mol
$$\mathbf{F}\mathbf{e}^{2+} = (\mathbf{V} \times \Delta \mathbf{A})/(\mathbf{l} \times \mathbf{\epsilon})$$
 (1)

mol Fe²⁺= $[3.525 \times 10^{-3} \text{ L} \times (1.957 - 0.284)]/(1 \text{ cm} \times 11100 \text{ L mol}^{-1} \text{ cm}^{-1}) = 5.313 \times 10^{-7} \text{ mol}$

V is the total volume (0.003525 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol⁻¹cm⁻¹)⁶.S2 The photon flux can be calculated using eq 2.

photo flux = mol Fe²⁺/ (
$$\Phi \times t \times f$$
) (2)

photo flux =
$$5.313 \times 10^{-7} / (1.21 \times 90 \times 1) = 4.879 \times 10^{-9}$$
 einstein s⁻¹

Where Φ is the quantum yield for the ferrioxalate actinometer (1.21 at $\lambda = 365 \text{ nm})^7$ is the irradiation time (90 s), and f is the fraction of light absorbed at 365 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where A_{365 nm} is the absorbance of the ferrioxalate solution at 365 nm. An absorption spectrum gave an A_{365 nm} value of >5, indicating that the fraction of absorbed light (f) is 1.

$$f = 1 - 10^{-A365 \ nm} \tag{3}$$

Figure S5. Absorption spectra of three irradiation experiments and non-irradiation experiment Determination of the reaction quantum yield.

The reaction mixture was stirred and irradiated by blue LED ($\lambda_{max} = 365$ nm) for 1800 s. The yield of product was determined by ¹H NMR analysis using 1,3,5-Trimethoxybenzene as an internal standard. The yield of **3a** was determined to be 32.3% (0.129 × 10⁻³ mol of **3a**). The reaction quantum yield (Φ) was determined using eq 4 where the photon flux is 4.879 × 10⁻⁹ einsteins s⁻¹ (determined by actinometry as described above), t is the reaction time (1800 s) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3.

Quantum Yield = moles of product formed/ (flux × f × t)
=
$$0.129 \times 10^{-3} / (4.879 \times 10^{-9} \times 1 \times 1800)$$

= 14.69 (4)

IX. Light-dark cycle experiment

Figure S6. Light-dark cycle experiment for the model reaction. The yield of **3a** was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Reference:

- 5. Cismesia, M. A.; Yoon, T. P. Chem. Sci., 2015, 6, 5426.
- 6. Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem., 2004, 76, 2105.
- 7. Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoldi, R. A. J. Phys. Chem., 1981, 85, 2766.

X. Compound Characterizations

ethyl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (3a)

^{CF₂CO₂Et Colorless oil, yield 82% (110 mg);}

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.0 Hz, 1H), 7.71 (t, J = 6.9 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 4.39 -4.31 (m, 1H), 4.30 -4.22 (m, 2H), 3.97 -3.88 (m, 1H), 3.47 -3.30 (m, 1H), 3.27 -3.18 (m, 1H), 2.43 -2.29 (m, 2H), 2.06 -1.98 (m, 2H), 1.77 -1.66 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.10 (t, J = 32.7 Hz), 161.85 (s), 155.54 (s), 146.86 (s), 134.10 (s), 126.82 (s), 126.63 (s), 126.45 (s), 120.21 (s), 116.06 (t, J = 252.0Hz), 62.94 (s), 41.08 (s), 36.82 (t, J = 23.1 Hz), 35.12 (t, J = 3.7 Hz), 25.78 (d, J = 12.5 Hz), 20.63 (d, J = 9.5 Hz), 13.90 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.33, -101.02, -105.47, -106.15.

HRMS: C₁₇H₁₈F₂N₂O₃ [M+H]⁺;calculated: 337.1358, found: 337.1342.

ethyl 2,2-difluoro-3-(2-methyl-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3b**)

^{CF₂CO₂Et White solid, yield 56% (78 mg), 70.6 -75.3 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 0.6 Hz, 1H), 7.55 -7.49 (m, 2H), 4.35 (dt, *J* = 13.8, 6.3 Hz, 1H), 4.29 -4.22 (m, 2H), 3.96 -3.88 (m, 1H), 3.44 -3.30 (m, 1H), 3.25 -3.17 (m, 1H), 2.47 (s, 3H), 2.41 - 2.28 (m, 2H), 2.05 -1.97 (m, 2H), 1.75 -1.65 (m, 1H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.12 (t, J = 32.7 Hz), 161.87 (s), 154.63 (s), 144.88 (s), 136.60 (s), 135.62 (s), 126.64 (s), 126.01 (s), 119.94 (s), 116.07 (t, J = 251.5 Hz), 62.92 (s), 41.04 (s), 36.84 (t, J = 23.1 Hz), 35.03 (t, J = 3.7 Hz), 25.88 (s), 21.30 (s), 20.73 (s), 13.91 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.16, -103.85, -106.55, -107.24.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1510.

ethyl 2,2-difluoro-3-(2-methoxy-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3c**)

^{CF₂CO₂Et Colorless oil, yield 92% (135 mg);}

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 2.9 Hz, 1H), 7.52 (d, *J* = 8.9 Hz, 1H), 7.29 (dd, *J* = 9.0, 3.0 Hz, 1H), 4.37 -4.30 (m, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.98 -3.93 (m, 1H), 3.90 (s, 3H), 3.44 -3.27 (m, 1H), 3.24 -3.16 (m, 1H), 2.40 -2.29 (m, 2H), 2.05 -1.98 (m, 2H), 1.75 -1.64 (m, 1H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.07 (t, J = 32.7 Hz), 161.65 (s), 158.05 (s), 153.14 (s), 141.54 (s), 128.39 (s), 124.42 (s), 120.85 (s), 116.09 (t, J = 251.5 Hz), 105.77 (s), 62.88 (s), 55.72 (s), 41.18 (s), 36.84 (t, J = 23.0 Hz), 34.92 (t, J = 3.7 Hz), 25.89 (s), 20.71 (s), 13.87 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -100.34, -101.03, -105.41, -106.10.

HRMS: C₁₈H₂₀F₂N₂O₄ [M+H]⁺;calculated: 367.1464, found: 367.1459.

ethyl 2,2-difluoro-3-(2-fluoro-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3d**)

^{CF₂CO₂Et White solid, yield 58% (82 mg), 103.2 -104 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 -7.82 (m, 1H), 7.65 -7.58 (m, 1H), 7.47 -7.39 (m, 1H), 4.34 (dd, *J* = 14.1, 6.3 Hz, 1H), 4.27 (dd, *J* = 14.1, 7.0 Hz, 2H), 3.98 -3.89 (m, 1H), 3.45 -3.28 (m, 1H), 3.27 -3.17 (m, 1H), 2.45 -2.28 (m, 2H), 2.08 -1.99 (m, 2H), 1.76 -1.65 (m, 1H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.08 (t, J = 32.7 Hz), 161.20 (d, J = 3.5 Hz), 160.59 (d, J = 247.7 Hz), 154.86 (d, J = 2.1 Hz), 143.58 (s), 129.28 (d, J = 8.1 Hz), 122.75 (d, J = 24.2 Hz), 121.35 (d, J = 8.7 Hz), 117.25 (t, J = 250.2 Hz), 111.33 (d, J = 23.5 Hz), 62.96 (s), 41.25 (s), 36.76 (t, J = 23.0 Hz), 35.06 (t, J = 3.7 Hz), 25.82 (s), 20.65 (s), 13.91 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -100.46, -101.15, -105.68, -106.37, -113.09.

HRMS: C₁₇H₁₈F ₃N₂O₃[M+H]⁺;calculated: 355.1264, found: 355.1263.

ethyl 3-(2-chloro-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3e**)

 CF_2CO_2Et White solid, yield 65% (96 mg), 65.9 -70.6 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, *J* = 2.4 Hz, 2H), 7.64 (dd, *J* = 8.7, 2.4 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 4.40 -4.21 (m, 6H), 4.00 -3.86 (m, 2H), 3.48 -3.12 (m, 4H), 2.48 -2.24 (m, 4H), 2.12 -1.94 (m, 4H), 1.88 -1.46 (m, 3H), 1.32 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 164.07 (t, J = 32.6 Hz), 160.87 (s), 155.91 (s), 145.38 (s), 134.57 (s), 132.17 (s), 128.57 (s), 125.99 (s), 121.23 (s), 115.96 (t, J = 249.4 Hz), 62.98 (s), 41.31 (s), 36.74 (t, J = 23.1 Hz), 35.18 (t, J = 3.6 Hz), 25.79 (s), 20.65 (s), 13.93 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.53, -101.22, -105.53, -106.22.

HRMS: C₁₇H₁₇ClF ₂N₂O₃[M+H]⁺;calculated: 371.0968, found: 371.0969.

ethyl 3-(2-bromo-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3f**)

Br N

^{CF₂CO₂Et White solid, yield 64% (106 mg), 87.8 -90.0 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 -8.33 (m, 1H), 7.83 -7.73 (m, 1H), 7.56 -7.45 (m, 1H), 4.40 -4.25 (m, 3H), 4.00 -3.90 (m, 1H), 3.45 -3.30 (m, 1H), 3.27 -3.16 (m, 1H), 2.44 -2.30 (m, 2H), 2.09 -2.00 (m, 2H), 1.78 -1.67 (m, 1H), 1.37 -1.29 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.07 (t, J = 32.6 Hz), 160.71 (s), 156.08 (s), 145.70 (s), 137.30 (s), 129.18 (s), 128.74 (s), 121.58 (s), 119.88 (s), 115.97 (t, J = 252.0Hz), 62.99 (s), 41.33 (s), 36.74 (t, J = 28.8 Hz), 35.21 (t, J = 3.6 Hz), 25.75 (s), 20.64 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.52, -101.20, -105.56, -106.25.

HRMS: C₁₇H₁₇BrF ₂N₂O₃[M+H]⁺;calculated: 415.0463, found: 415.0455

ethyl 2,2-difluoro-3-(3-methyl-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3g**)

 CF_2CO_2Et White solid, yield 64% (90 mg), 99.0 -104 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.1 Hz, 1H), 7.43 (s, 1H), 7.27 (d, *J* = 8.1 Hz, 1H), 4.40-4.32 (m, 1H), 4.32 -4.24 (m, 2H), 3.97 -3.89 (m, 1H), 3.46 -3.32 (m, 1H), 3.27 -3.18 (m, 1H), 2.50 (s, 3H), 2.42 -2.31 (m, 2H), 2.06 -1.98 (m, 2H), 1.76 -1.66 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.13 (t, J = 32.7 Hz), 161.82 (s), 155.56 (s), 147.00 (s), 145.07 (s), 128.11 (s), 126.54 (s), 126.49 (s), 117.85 (s), 116.08 (t, J = 251.5 Hz), 62.94 (s), 40.95 (s), 36.83 (t, J = 23.1 Hz), 35.10 (t, J = 3.6 Hz), 25.88 (s), 21.86 (s), 20.72 (s), 13.90 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.45, -101.13, -105.46, -106.14.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1512.

ethyl 2,2-difluoro-3-(3-methoxy-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3h**)

CF₂CO₂Et Colorless oil, yield 52% (76 mg);

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.2 Hz, 1H), 7.03 (d, *J* = 8.2 Hz, 2H), 4.38 -4.26 (m, 3H), 3.97 -3.90 (m, 4H), 3.47 -3.32 (m, 1H), 3.28 -3.18 (m, 1H), 2.43 -2.31 (m, 2H), 2.07 -1.99 (m, 2H), 1.77 -1.67 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.12 (t, *J* = 33.9 Hz), 161.41 (s), 156.27 (s), 149.05 (s), 128.24 (s), 116.79 (s), 116.04 (t, *J* = 251.8 Hz), 113.81 (s), 107.25 (s), 62.96 (s), 55.65 (s), 40.94 (s), 36.85 (t, *J* = 23.1 Hz), 35.13 (s), 25.82 (s), 20.68 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.72, -101.41, -105.16, -105.85.

HRMS: C₁₈H₂₀F₂N₂O₄ [M+H]⁺;calculated: 367.1464, found: 367.1453.

ethyl 2,2-difluoro-3-(3-fluoro-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3i**)

^{°CF₂CO₂Et White solid, yield 52% (74 mg), 100.0 -103.1 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 8.9, 6.2 Hz, 1H), 7.29 -7.25 (m, 1H), 7.17 (td, *J* = 8.6, 2.5 Hz, 1H), 4.42 -4.25 (m, 3H), 4.03 -3.85 (m, 1H), 3.50 -3.29 (m, 1H), 3.29 -3.17 (m, 1H), 2.50 -2.28 (m, 2H), 2.13 -1.98 (m, 2H), 1.77 -1.67 (m, 1H), 1.35 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.39 (d, J = 253.9 Hz), 164.08 (t, J = 32.7 Hz), 161.16 (s), 156.98 (s), 148.98 (d, J = 13.1 Hz), 129.43 (d, J = 10.7 Hz), 116.98 (d, J = 1.9 Hz), 115.98 (t, J = 252.8 Hz), 115.35 (d, J = 23.7 Hz), 112.02 (d, J = 21.7 Hz), 63.00 (s), 41.12 (s), 36.74 (t, J = 23.0 Hz), 35.23 (t, J = 3.6 Hz), 25.78 (s), 20.66 (s), 13.93 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.52, -101.21, -103.76, -105.58, -106.27.

HRMS: $C_{17}H_{18}F_{3}N_{2}O_{3}[M+H]^{+}$; calculated: 355.1264, found: 355.1254.

ethyl 3-(3-chloro-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3j**)

^{CF₂CO₂Et White solid, yield 60% (89 mg), 68.2 -71.0 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.6 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 8.6, 2.0 Hz, 1H), 4.35-4.25 (m, 3H), 3.96 -3.88 (m, 1H), 3.42 -3.28 (m, 1H), 3.26-3.17 (m, 1H), 2.42 -2.31 (m, 2H), 2.06 -1.99 (m, 2H), 1.70 (m, 1H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.07 (t, J = 32.6 Hz), 161.26 (s), 156.98 (s), 147.79 (s), 140.30 (s), 128.18 (s), 127.11 (s), 126.38 (s), 118.67 (s), 115.95 (t, J = 252.0Hz), 63.02 (s), 41.19 (s), 36.71 (t, J = 23.0 Hz), 35.24 (t, J = 3.6 Hz), 25.75 (s), 20.64 (s), 13.93 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -100.58, -101.27, -105.55, -106.24.

HRMS: C₁₇H₁₇ClF ₂N₂O₃[M+Na]⁺; calculated: 393.0788, found: 393.0794.

ethyl 3-(3-bromo-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3**k)

^{CF₂CO₂Et White solid, yield 62% (103 mg), 90.0 -93.2 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 8.2, 4.1 Hz, 1H), 7.82 (dd, *J* = 10.7, 1.6 Hz, 1H), 7.54 (m, 1H), 4.35-4.23 (m, 3H), 3.96 -3.86 (m, 1H), 3.42 -3.27 (m, 1H), 3.26 -3.16 (m, 1H), 2.36 (dt, *J* = 12.0, 5.4 Hz, 2H), 2.06 -1.97 (m, 2H), 1.77-1.64 (m, 1H), 1.34 (td, *J* = 7.2, 1.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.07 (t, *J* = 32.6 Hz), 161.38 (s), 156.96 (s), 147.81 (s), 129.90 (s), 129.53 (s), 128.84 (d, *J* = 7.4 Hz), 128.19 (s), 119.02 (s), 115.94 (t, *J* = 252.0Hz), 63.04 (s), 41.22 (s), 36.71 (t, *J* = 22.3 Hz), 35.20 (s), 25.73 (s), 20.63 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.59, -101.27, -105.58, -106.27.

HRMS: C₁₇H₁₇BrF 2N2O3[M+H]⁺; calculated: 415.0463, found: 415.0456

ethyl 2,2-difluoro-3-(11-oxo-3-(trifluoromethyl)-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3**I)

 $^{CF_{2}COOEt}$ White solid, yield 62% (100 mg), 62.2 -67.9 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.3 Hz, 1H), 7.95 (s, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 4.44 -4.25 (m, 3H), 4.07 -3.90 (m, 1H), 3.49 -3.33 (m, 1H), 3.32 -3.18 (m, 1H), 2.51 -2.33 (m, 2H), 2.12 -2.00 (m, 2H), 1.83 -1.67 (m, 1H), 1.37 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.11 (t, *J* = 32.5 Hz), 161.11 (s), 157.19 (s), 146.78 (s), 136.30 - 136.23 (m), 135.98 (d, *J* = 29.4 Hz), 135.51 (s), 135.18 (s), 127.89 (s), 124.50 (s), 122.41 (d, *J* = 3.7 Hz), 115.94 (t, *J* = 253.4 Hz), 63.09 (s), 41.38 (s), 36.86 (s), 36.74 (t, *J* = 23.1 Hz), 35.27 (d, *J* = 3.4 Hz), 25.70 (s), 20.61 (s), 13.92 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.21 (d, J = 4.6 Hz), -100.66 (s), -101.35 (s), -105.40 - -105.50 (m), -106.11 - -106.19 (m).

HRMS: C₁₈H₁₇F ₅N₂O₃[M+H]⁺;calculated: 405.1215, found: 405.1232

ethyl 2,2-difluoro-3-(1-methyl-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3m**)

 CF_2CO_2Et White solid, yield 46% (64 mg), 125.0 -126.2 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (t, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 4.29 -4.20 (m, 3H), 3.93 -3.85 (m, 1H), 3.45 -3.28 (m, 1H), 3.18 (dt, *J* = 11.1, 7.1 Hz, 1H), 2.86 (s, 3H), 2.42 -2.27 (m, 2H), 2.05 -1.97 (m, 2H), 1.72 -1.65 (m, 1H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.14 (t, J = 32.7 Hz), 162.46 (s), 155.09 (s), 148.42 (s), 140.86 (s), 133.20 (s), 129.02 (s), 125.05 (s), 118.77(s), 116.11 (t, J = 251.5Hz), 62.94 (s), 40.97 (s), 36.87 (t, J = 23.2 Hz), 35.08 (t, J = 3.7 Hz), 25.90 (s), 23.08 (s), 20.87 (s), 13.91 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.34, -101.03, -105.53, -106.22.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1500.

ethyl 2,2-difluoro-3-(4-methyl-11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**3n**)

^{CF₂CO₂Et Colorless oil, yield 48% (67 mg);}

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 4.37 -4.30 (m, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.98 -3.89 (m, 1H), 3.54 -3.39 (m, 1H), 3.27 -3.15 (m, 1H), 2.57 (s, 3H), 2.47 -2.32 (m, 2H), 2.06 -1.97 (m, 2H), 1.76 - 1.64 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.14 (t, J = 32.7 Hz), 162.26 (s), 154.16 (s), 145.32 (s), 135.51 (s), 134.64 (s), 126.07 (s), 124.28 (s), 120.09 (s), 116.15 (t, J = 252.0 Hz), 62.97 (s), 41.00 (s), 36.65 (t, J = 22.9 Hz), 35.31 (t, J = 3.6 Hz), 25.89 (s), 20.88 (s), 17.12 (s), 13.88 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -101.32, -102.01, -104.72, -105.40.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1519.

ethyl 2,2-difluoro-3-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (30)

 CF_2CO_2Et White solid, yield 61% (78 mg), 91.3 -95.6 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, *J* = 7.9 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 4.47 -4.34 (m, 3H), 4.04 -3.90 (m, 1H), 3.65 -3.50 (m, 1H), 3.34 -3.15 (m, 1H), 2.80 -2.64 (m, 1H), 2.41 -2.20 (m, 1H), 2.15 -1.98 (m, 1H), 1.41 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.74 (t, J = 32.4 Hz), 160.72 (s), 159.28 (s), 148.89 (s), 134.17 (s), 126.99 (s), 126.52 (s), 126.40 (s), 120.79 (s), 115.58 (t, J = 251.2 Hz), 63.20 (s), 44.78 (s), 37.99 (s), 36.40 (t, J = 23.0 Hz), 27.82 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.09, -103.79, -106.47, -107.17.

HRMS: $C_{16}H_{16}F_2N_2O_3$ [M+H]⁺; calculated: 323.1202, found: 323.1190.

ethyl 2,2-difluoro-3-(6-methyl-9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (3p)

^{CF₂CO₂Et Colorless oil, yield 48% (65 mg);}

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 1H), 7.48 (s, 1H), 7.29 (s, 2H), 4.45 -4.33 (m, 3H), 4.00 -3.87 (m, 1H), 3.60 -3.49 (m, 1H), 3.29 -3.12 (m, 1H), 2.77 -2.62 (m, 1H), 2.52 (s, 3H), 2.39 -2.20 (m, 1H), 2.12 -1.95 (m, 1H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.76 (t, *J* = 32.3 Hz), 160.69 (s), 159.33 (s), 149.04 (s), 145.17 (s), 128.08 (s), 126.77 (s), 126.21 (s), 118.39 (s), 115.60 (t, *J* = 252.5 Hz), 63.18 (s), 44.69 (s), 37.97 (s), 36.43 (t, *J* = 23.0 Hz), 27.83 (s), 21.80 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.15, -103.84, -106.51, -107.20.

HRMS: $C_{17}H_{18}F_2N_2O_3[M+H]^+$; calculated: 337.1358, found: 337.1343.

ethyl 2,2-difluoro-3-(7-fluoro-9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (3q)

^{CF₂CO₂Et White solid, yield 44% (60 mg), 105.0 -108.2 °C;}

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 8.5, 3.0 Hz, 1H), 7.68 (dd, *J* = 9.0, 4.8 Hz, 1H), 7.46 (ddd, *J* = 8.9, 8.1, 3.0 Hz, 1H), 4.43 - 4.33 (m, 3H), 3.99 - 3.91 (m, 1H), 3.60 - 3.50 (m, 1H), 3.28 - 3.11 (m, 1H), 2.75 - 2.66 (m, 1H), 2.38 - 2.20 (m, 1H), 2.13 - 1.99 (m, 1H), 1.40 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.71 (t, *J* = 32.3 Hz), 160.74 (d, *J* = 248.0 Hz), 160.01 (d, *J* = 3.5 Hz), 158.74 (d, *J* = 2.2 Hz), 145.54 (s), 129.30 (d, *J* = 8.2 Hz), 122.65 (d, *J* = 24.1 Hz), 122.11 (d, *J* = 8.6 Hz), 116.79 (t, *J* = 251.2 Hz), 111.37 (d, *J* = 23.6 Hz), 63.22 (s), 44.87 (s), 37.93 (s), 36.41 (t, *J* = 23.0 Hz), 27.89 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.05, -103.74, -106.34, -107.04, -113.20.

HRMS: C₁₆H₁₅F₃N₂O₃[M+H]⁺;calculated: 341.1108, found: 341.1099.

ethyl 3-(6-chloro-9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-*b*]quinazolin-3-yl)-2,2-difluoropropanoate (3r)

 CF_2CO_2Et White solid, yield 52% (74 mg), 118.6 -119.5 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.6 Hz, 1H), 7.69 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 4.47 -4.32 (m, 3H), 4.00 -3.88 (m, 1H), 3.66 -3.52 (m, 1H), 3.34 -3.09 (m, 1H), 2.80 -2.63 (m, 1H), 2.42 -2.19 (m, 1H), 2.14 -1.97 (m, 1H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.69 (t, *J* = 32.6 Hz), 160.65 (s), 160.11 (s), 149.90 (s), 140.37 (s), 127.82 (s), 127.13 (s), 126.64 (s), 119.30 (s), 115.50 (t, *J* = 251.5 Hz), 63.25 (s), 44.90 (s), 38.12 (s), 36.30 (t, *J* = 23.5 Hz), 27.81 (s), 13.95 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.13, -103.82, -106.51, -107.20.

HRMS: C₁₆H₁₅ClF₂N₂O₃[M+H]⁺;calculated: 357.0812, found: 357.0817.

ethyl 2,2-difluoro-3-(7-methoxy-9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (3s)

MeO.

 $^{\text{CF}_2\text{CO}_2\text{Et}}$ White solid, yield 54% (76 mg), 110.2 -111.5 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 2.8 Hz, 1H), 7.62 (d, *J* = 8.9 Hz, 1H), 7.36 (dd, *J* = 8.9, 2.9 Hz, 1H), 4.43 -4.37 (m, 3H), 3.98 -3.94 (m, 4H), 3.62 -3.51 (m, 1H), 3.31 -3.12 (m, 1H), 2.77 -2.65 (m, 1H), 2.39 -2.23 (m, 1H), 2.11 -2.01 (m, 1H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.77 (t, J = 32.4 Hz), 160.58 (s), 158.24 (s), 157.08 (s), 143.42 (s), 128.45 (s), 124.33 (s), 121.56 (s), 115.61 (t, J = 251.2 Hz), 105.97 (s), 63.19 (s), 55.81 (s), 44.82 (s), 37.75 (s), 36.48 (t, J = 22.9 Hz), 27.95 (s), 13.94 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.07, -103.76, -106.46, -107.16.

HRMS: C₁₇H₁₈F₂N₂O₄[M+H]⁺;calculated: 353.1307, found: 353.1303.

ethyl 2,2-difluoro-3-(6-methyl-12-oxo-6,12-dihydroindolo[2,1-b]quinazolin-6-yl)propanoate (3t)

CF₂COOEt White solid, yield 78% (120 mg), 88.7 -89.8 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, J = 8.0 Hz, 1H), 8.48 (d, J = 7.9 Hz, 1H), 7.86 -7.79 (m, 2H), 7.60 -7.55 (m, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.4 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 4.01 -3.91 (m, 1H), 3.90 -3.80 (m, 1H), 3.23 (q, J = 14.4 Hz, 1H), 3.14 -3.00 (m, 1H), 1.71 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.43 (t, *J* = 32.3 Hz), 162.03 (s), 159.95 (s), 147.23 (s), 139.17 (s), 134.33 (s), 132.97 (s), 129.15 (s), 127.29 (s), 126.93 (s), 126.13 (s), 123.70 (s), 121.47 (s), 117.39 (s), 114.49 (t, *J* = 251.0 Hz), 62.99 (s), 45.48 (s), 42.93 (t, *J* = 23.3 Hz), 27.94 (s), 13.57 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.63, -99.34, -104.63, -105.34.

HRMS: C₂₁H₁₈F₂N₂O₃[M+H]⁺;calculated: 385.1358, found: 385.1355.

ethyl 3-(3-bromo-6-methyl-12-oxo-6,12-dihydroindolo[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3u**)

^N CF₂COOEt Light yellow solid, yield 81% (150 mg), 132.5 -133.6 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 1.2 Hz, 1H), 7.67 (dd, J = 8.5, 1.4 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 4.05 -3.79 (m, 2H), 3.35 -2.96 (m, 2H), 1.70 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.43 (s), 163.371 (t, J = 31.9 Hz), 159.44 (s), 148.31 (s), 138.97 (s),

132.84 (s), 130.23 (s), 130.17 (s), 129.24 (s), 129.03 (s), 128.33 (s), 126.33 (s), 123.77 (s), 120.33 (s), 117.40 (s), 116.98 (t, J = 250.5 Hz), 63.05 (s), 45.59 (s), 42.90 (t, J = 22.9 Hz), 27.87 (s), 13.60 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.58 (s), -99.29 (s), -105.04 (s), -105.75 (s).

HRMS: $C_{21}H_{17}BrF_2N_2O_3$ [M+H]⁺; calculated: 463.0463, found: 463.0467.

ethyl 3-(2,6-dimethyl-12-oxo-6,12-dihydroindolo[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3v**)

^{CF₂COOEt} White solid, yield 74% (118 mg), 114.1 -115.7 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 -8.26 (m, 1H), 7.79 -7.65 (m, 2H), 7.52 -7.43 (m, 1H), 4.36 (dd, *J* = 13.8, 6.7 Hz, 5H), 4.03 -3.88 (m, 1H), 3.78 -3.63 (m, 1H), 3.37 -3.14 (m, 1H), 2.82 -2.66 (m, 1H), 2.42 - 2.18 (m, 1H), 2.15 -1.98 (m, 1H), 1.49 -1.42 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 163.44 (t, *J* = 35.4 Hz), 161.06 (s), 160.01 (s), 145.32 (s), 139.25 (s), 137.08 (s), 135.69 (s), 133.06 (s), 129.08 (s), 127.12 (s), 126.40 (s), 126.01 (s), 123.66 (s), 121.21 (s),

117.37 (s), 114.51 (t, *J* = 251.5 Hz), 62.95 (s), 45.30 (s), 42.98 (t, *J* = 23.4 Hz), 27.95 (s), 21.30 (s), 13.56 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.66, -99.37, -104.47, -105.18.

HRMS: $C_{22}H_{20}F_2N_2O_3$ [M+H]⁺; calculated: 399.1515, found: 399.1515.

ethyl 3-(3-chloro-6-methyl-12-oxo-6,12-dihydroindolo[2,1-*b*]quinazolin-6-yl)-2,2-difluoropropanoate (**3w**)

^N CF₂COOEt White solid, yield 82% (137 mg), 116.2 -117.2 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 8.1 Hz, 1H), 8.38 (d, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 1.4 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 4.07 -3.93 (m, 1H), 3.92 -3.81 (m, 1H), 3.31 -2.99 (m, 2H), 1.70 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.47 (s), 163.3 (t, *J* = 32.3 Hz), 159.31 (s), 148.31 (s), 140.51 (s), 138.97 (s), 132.84 (s), 129.23 (s), 128.31 (s), 127.44 (s), 127.01 (s), 126.30 (s), 123.76 (s), 119.96 (s), 117.18 (s), 114.47 (t, *J* = 246.9 Hz), 63.04 (s), 45.61 (s), 42.87 (t, *J* = 23.3 Hz), 27.86 (s), 13.60 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -98.59, -99.30, -104.96, -105.67.

HRMS: C₂₁H₁₇ClF₂N₂O₃ [M+H]⁺;calculated: 419.0969, found: 419.0976.

ethyl 2,2-difluoro-3-(2-fluoro-6-methyl-12-oxo-6,12-dihydroindolo[2,1-*b*]quinazolin-6-yl)propanoate (**3x**)

N CF₂COOEt White solid, yield 77% (124 mg), 114.3 -115.2 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 -8.22 (m, 1H), 7.76 -7.67 (m, 1H), 7.67 -7.58 (m, 1H), 7.50 -7.40 (m, 1H), 5.08 -4.91 (m, 1H), 4.39 -4.27 (m, 1H), 4.02 -3.89 (m, 1H), 3.59 -3.40 (m, 1H), 3.21 (s, 1H), 2.46 -2.26 (m, 3H), 2.07 -1.94 (m, 3H), 1.82 -1.67 (m, 3H), 1.41 -1.32 (m, 1H), 1.29 -1.22 (m, 1H), 1.09 -0.97 (m, 1H), 0.92 -0.83 (m, 8H), 0.80 -0.78 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.37 (t, J = 31.9 Hz), 161.82 (d, J = 78.3 Hz), 161.41 (s), 159.74 (s), 159.13 (d, J = 3.3 Hz), 143.97 (s), 138.92 (s), 133.00 (s), 129.62 (d, J = 8.2 Hz), 129.19 (s), 126.34 (s), 123.76 (s), 122.83 (d, J = 7.1 Hz), 122.56 (s), 117.56 -116.91 (m), 114.50 (d, J = 5.9 Hz), 112.01 (s), 111.78 (s), 63.01 (s), 45.39 (d, J = 5.0 Hz), 43.07 (t, J = 22.3 Hz), 27.89 (s), 13.58 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.59, -99.30, -104.82, -105.53, -112.73.

HRMS: $C_{21}H_{17}F_3N_2O_3$ [M+H]⁺; calculated: 403.1264, found: 403.1263.

methyl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**4a**)

F F Colorless oil, yield 78% (100 mg);

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 -8.22 (m, 1H), 7.77 -7.69 (m, *J* = 5.3, 3.2, 2.1 Hz, 1H), 7.66 -7.60 (m, 1H), 7.48 -7.41 (m, 1H), 4.42 -4.31 (m, 1H), 3.99 -3.90 (m, 1H), 3.83 (s, 3H), 3.47 -3.30 (m, 1H), 3.29 -3.18 (m, 1H), 2.44 -2.30 (m, 2H), 2.10 -1.99 (m, 2H), 1.78 -1.66 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.61 (t, J = 32.9 Hz), 161.87 (s), 155.51 (s), 146.87 (s), 134.16 (s), 126.84 (s), 126.69 (s), 126.51 (s), 120.24 (s), 116.09 (t, J = 251.5 Hz), 53.45 (s), 41.06 (s), 36.93 (t, J = 23.1 Hz), 35.09 (t, J = 3.8 Hz), 25.95 (s), 20.74 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -99.78, -100.46, -105.62, -106.31.

HRMS: C₁₆H₁₆F₂N₂O₃ [M+H]⁺; calculated: 323.1202, found: 323.1189.

butyl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (4b)

Colorless oil, yield 64% (93 mg);

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.76 -7.70 (m, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.49 -7.42 (m, 1H), 4.37 (dt, *J* = 14.0, 6.3 Hz, 1H), 4.24 -4.16 (m, 2H), 4.00 -3.90 (m, 1H), 3.50 - 3.32 (m, 1H), 3.30 -3.18 (m, 1H), 2.44 -2.30 (m, 2H), 2.07 -1.99 (m, 2H), 1.78 -1.62 (m, 3H), 1.42 -1.32 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.20 (t, J = 32.7 Hz), 161.87 (s), 155.52 (s), 146.86 (s), 134.13 (s), 126.86 (s), 126.66 (s), 126.49 (s), 120.23 (s), 116.12 (t, J = 252.0 Hz), 66.75 (s), 41.07 (s), 37.09 (s), 36.86 (t, J = 23.2 Hz), 36.63 (s), 35.14 (t, J = 3.7 Hz), 30.25 (s), 25.88 (s), 20.72 (s), 18.91 (s), 13.59 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.11, -100.79, -105.49, -106.17.

HRMS: C₁₉H₂₂F₂N₂O₃ [M+H]⁺;calculated: 365.1671, found: 365.1670.

isopropyl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate **(4c)**

White solid, yield 68% (95 mg), 82.5 -91.0 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.0 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 5.10 (dt, J = 12.5, 6.3 Hz, 1H), 4.39 -4.29 (m, 1H), 3.98 -3.88 (m, 1H), 3.48 -3.33 (m, 1H), 3.27 -3.17 (m, 1H), 2.44 -2.30 (m, 2H), 2.08 -1.96 (m, 2H), 1.76 -1.64 (m, 1H), 1.34 -1.27 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 163.61 (t, J = 32.6 Hz), 161.89 (s), 155.52 (s), 146.91 (s), 134.07 (s), 126.89 (s), 126.63 (s), 126.43 (s), 120.24 (s), 117.31 (t, J = 250.4 Hz), 71.25 (s), 41.10 (s), 36.75 (t, J = 23.0 Hz), 35.16 (t, J = 3.6 Hz), 25.82 (s), 21.49 (d, J = 4.8 Hz), 20.66 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.88, -101.57, -105.72, -106.41.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1508.

(1*r*,3*r*,5*r*,7*r*)-adamantan-2-yl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**4d**)

White solid, yield 61% (108 mg), 113.5 -115.5 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.77 -7.70 (m, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.49 -7.42 (m, 1H), 5.03 (s, 1H), 4.43 -4.28 (m, 1H), 4.01 -3.90 (m, 1H), 3.61 -3.34 (m, 1H), 3.30 - 3.15 (m, 1H), 2.50 -2.32 (m, 2H), 2.09 -1.96 (m, 6H), 1.90 -1.83 (m, 4H), 1.78 -1.70 (m, 5H), 1.59 (d, *J* = 11.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 163.45 (t, J = 32.5 Hz), 161.94 (s), 155.47 (s), 146.88 (s), 134.11 (s), 126.88 (s), 126.64 (s), 126.47 (s), 120.21 (s), 116.19 (t, J = 251.9 Hz), 80.28 (s), 41.14 (s), 37.13 (s), 36.91 (s), 36.68 (s), 36.12 (s), 36.11 (s), 35.44 - 35.04 (m), 31.65 (s), 31.64 (s), 31.56 (s), 27.01 (s), 26.74 (s), 25.84 (s), 20.72 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -100.12, -100.80, -105.31, -105.99.

HRMS: C₂₅H₂₈F₂N₂O₃ [M+Na]⁺; calculated: 465.1960, found: 465.1950.

2,2-difluoro-*N*-methyl-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanamide (4e)

White solid, yield 72% (96 mg), 113.6 -114.3 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 7.9 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.67 (s, 1H), 4.41 -4.28 (m, 1H), 4.07 -3.87 (m, 1H), 3.50 -3.32 (m, 3H), 3.32 -3.21 (m, 1H), 2.60 -2.30 (m, 2H), 2.12 -1.94 (m, 2H), 1.82 -1.64 (m, 1H), 1.24 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.00 (t, J = 28.7 Hz), 161.95 (s), 155.73 (s), 146.92 (s), 134.08 (s), 126.83 (s), 126.64 (s), 126.40 (s), 120.20 (s), 116.59 (t, J = 252.8 Hz), 41.10 (s), 36.30 (t, J = 22.9 Hz), 35.16 (s), 34.55 (s), 25.71 (s), 20.55 (s), 14.44 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -101.70, -102.37, -105.25, -105.92.

HRMS: C₁₇H₁₉F₂N₂O₃ [M+H]⁺;calculated: 336.1518, found: 336.1528

2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-b]quinazolin-6-yl)-*N*-phenylpropanamide (**4f**)

White solid, yield 64% (98 mg), 156.9 -159.0 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.26 (dd, J = 8.0, 1.2 Hz, 1H), 7.67 -7.62 (m, 1H), 7.58 (d, J = 7.8 Hz, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.45 -7.40 (m, 1H), 7.36 (t, J = 7.9 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 4.34 (dt, J = 14.0, 6.2 Hz, 1H), 4.04 -3.93 (m, 1H), 3.59 -3.41 m, 1H), 3.39 -3.29 (m, 1H), 2.61 -2.45 (m, 1H), 2.39 (td, J = 12.8, 6.3 Hz, 1H), 2.10 -1.99 (m, 2H), 1.82 -1.73 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.94 (t, *J* = 28.8 Hz), 155.60 (s), 146.75 (s), 136.19 (s), 134.08 (s), 129.18 (s), 126.78 (s), 126.63 (s), 126.47 (s), 125.50 (s), 120.23 (s), 120.18 (s), 117.77 (t, *J* = 255.3 Hz), 115.24 (s), 41.20 (s), 36.59 (t, *J* = 23.2 Hz), 35.25 (s), 25.87 (s), 20.50 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -99.99, -100.66, -104.10, -104.78.

HRMS: C₂₁H₁₉F₂N₃O₂ [M+H]⁺;calculated: 384.1518, found: 384.1513.

2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-*N*-phenethylpropanamide (**4**g)

White solid, yield 60% (99 mg), 143.9 -147.6 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 7.7 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 7.1 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.72 (s, 1H), 4.34 -4.27 (m, 1H), 3.99 -3.91 (m, 1H), 3.62 (ddq, J = 19.8, 13.5, 6.7 Hz, 2H), 3.46 -3.30 (m, 1H), 3.21 -3.12 (m, 1H), 2.89 (t, J = 6.9 Hz, 2H), 2.47 -2.29 (m, 2H), 2.04 -1.95 (m, 2H), 1.75 -1.64 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.09 (t, J = 28.9 Hz), 161.94 (s), 155.72 (s), 146.86 (s), 138.11 (s), 134.13 (s), 128.71 (s), 126.79 (s), 126.74(s), 126.67 (s), 126.45 (s), 120.22 (s), 117.79 (t, J = 252.7 Hz), 41.19 (s), 40.62 (s), 36.42 (t, J = 22.9 Hz), 35.21 (s), 35.16 (t, J = 3.3 Hz), 25.79 (s), 25.59 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -101.03, -101.71, -105.00, -105.68.

HRMS: C₂₃H₂₃F₂N₃O₂ [M+H]⁺;calculated: 412.1831, found: 412.1833.

N,*N*-diethyl-2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanamide (**4h**)

White solid, yield 65% (94 mg), 62.8 -68.1 °C;

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.0 Hz, 1H), 7.81 -7.66 (m, 2H), 7.48 (t, J = 7.3 Hz, 1H), 4.45 -4.30 (m, 1H), 4.04 -3.89 (m, 1H), 3.69 -3.58 (m, 3H), 3.50 -3.41 (m, 2H), 3.40 -3.26 (m, 1H), 2.75 -2.63 (m, 1H), 2.51 -2.33 (m, 1H), 2.18 -2.01 (m, 1H), 1.28 (t, J = 7.0 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.77 (t, J = 28.9 Hz), 162.04 (s), 156.17 (s), 147.03 (s), 134.04 (s), 126.94 (s), 126.63 (s), 126.32 (s), 120.21 (s), 119.42 (t, J = 255.5 Hz), 42.06 (t, J = 6.1 Hz), 41.63 (s), 41.01 (s), 36.85 (s, J = 22.7 Hz), 35.22 (t, J = 3.3 Hz), 25.92 (s), 20.58 (s), 14.37 (s), 12.36 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.33, -97.05, -98.90, -99.62.

HRMS: C₁₉H₂₃F₂N₃O₂ [M+H]⁺;calculated: 364.1831, found: 364.1833.

2,2-difluoro-*N*-methyl-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)-*N*-phenylpropanamide (**4i**)

White solid, yield 63% (100 mg), 133.6 -135.0 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.9 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.47 -7.42 (m, 3H), 7.42 -7.33 (m, 3H), 4.38 -4.26 (m, 1H), 3.97 -3.87 (m, 1H), 3.71 -3.34 (m, 2H), 3.30 (s, 3H), 3.24 -3.12 (m, 1H), 2.38 -2.24 (m, 2H), 2.01 -1.91 (m, 2H), 1.72 -1.60 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.37 (t, J = 28.8 Hz), 161.95 (s), 156.03 (s), 147.00 (s), 142.48 (s), 134.02 (s), 129.25 (s), 128.24 (s), 127.52 (s), 126.81 (s), 126.68 (s), 126.31 (s), 120.26 (s), 118.78 (t, J = 256.5 Hz), 41.04 (s), 40.07 (s), 37.60 (t, J = 23.8 Hz), 35.26 (s), 25.81 (s), 20.54 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -92.33, -93.03, -96.26, -96.97.

HRMS: C₂₂H₂₁F₂N₃O₂ [M+H]⁺;calculated: 398.1675, found: 398.1679.

6-(2,2-difluoro-3-oxo-3-(pyrrolidin-1-yl)propyl)-6,7,8,9-tetrahydro-11*H*-pyrido[2,1-*b*]quinazolin-11-one (**4j**)

White solid, yield 66% (95 mg), 131.4 -133.4 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.28 - 8.22 (m, 1H), 7.72 - 7.67 (m, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.45 - 7.40 (m, 1H), 4.35 (m, 1H), 3.98 - 3.89 (m, 1H), 3.75 (t, *J* = 6.1 Hz, 2H), 3.54 - 3.38 (m, 3H), 3.32 - 3.24 (m, 1H), 2.52 - 2.32 (m, 2H), 2.04 - 1.94 (m, 4H), 1.89 - 1.79 (m, 2H), 1.75 (m, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 162.14 (t, *J* = 29.8 Hz), 161.98 (s), 156.11 (s), 147.04 (s), 133.97 (s), 126.87 (s), 126.67 (s), 126.28 (s), 120.26 (s), 118.89 (t, *J* = 254.5Hz), 47.45 (s), 46.69 (t, *J* = 6.2 Hz),

41.04 (s), 36.33 (t, J = 22.7 Hz), 35.26 (t, J = 3.4 Hz), 26.55 (s), 25.85 (s), 23.27 (s), 20.63 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.95, -99.67, -101.66, -102.38.

HRMS: C₁₉H₂₁F₂N₃O₂ [M+H]⁺; calculated: 362.1675, found: 362.1673

6-(2,2-difluoro-3-oxo-3-(piperidin-1-yl)propyl)-6,7,8,9-tetrahydro-11*H*-pyrido[2,1-*b*]quinazolin-11- one (**4**k)

White solid, yield 61% (92 mg), 116.0 -118.1 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (dd, J = 8.0, 1.2 Hz, 1H), 7.78 -7.68 (m, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.47 -7.42 (m, 1H), 4.39 (dt, J = 14.0, 6.2 Hz, 1H), 3.98 -3.90 (m, 1H), 3.73 (d, J = 4.7 Hz, 2H), 3.65 -3.49 (m, 3H), 3.35 -3.25 (m, 1H), 2.49 -2.34 (m, 2H), 2.10 -1.95 (m, 2H), 1.76 -1.63 (m, 7H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.02 (s), 161.77(t, J = 28.7 Hz), 161.49 (s), 156.15 (s), 147.07 (s), 134.01 (s), 126.65 (t, J = 33.3 Hz), 120.24 (s), 47.02 (t, J = 6.3 Hz), 44.51 (s), 41.02 (s), 37.16 (s), 36.94 (s), 36.72 (s), 35.26 (t, J = 3.2 Hz), 26.55 (s), 26.02 (s), 25.65 (s), 24.48 (s), 20.65 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -95.85, -96.57, -98.38, -99.10.

HRMS: $C_{20}H_{23}F_2N_3O_2$ [M+H]⁺; calculated: 376.1831, found: 376.1813.

6-(2,2-difluoro-3-morpholino-3-oxopropyl)-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one (41)

^O White solid, yield 75% (113 mg), 116.1 -119.3 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 4.41 -4.33 (m, 1H), 3.98 -3.90 (m, 1H), 3.81 (d, J = 4.4 Hz, 2H), 3.74 (dd, J = 10.7, 5.2 Hz, 4H), 3.64 (m, 2H), 3.60 -3.47 (m, 1H), 3.34 -3.23 (m, 1H), 2.50 -2.34 (m, 2H), 2.07 - 1.98 (m, 2H), 1.80 -1.67 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.01 (t, J = 29.2 Hz), 161.72 (s), 155.96 (s), 147.00 (s), 134.05 (s), 126.89 (s), 126.66 (s), 126.35 (s), 120.24 (s), 119.31 (t, J = 255.0 Hz), 66.76 (s), 66.72(s), 46.66 (t, J = 6.1 Hz), 43.43 (s), 41.02 (s), 36.74 (t, J = 22.2 Hz), 35.17 (t, J = 3.2 Hz), 26.07 (s), 20.63 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -95.61, -96.34, -98.36, -99.09.

HRMS: C₁₉H₂₁F₂N₃O₂ [M+H]⁺;calculated: 378.1624, found: 378.1610.

6-(2,2-difluoro-3-oxo-3-phenylpropyl)-6,7,8,9-tetrahydro-11*H*-pyrido[2,1-*b*]quinazolin-11-one (4m)

White solid, yield 61% (90 mg), 130.1 -133.7 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, J = 7.9 Hz, 1H), 8.19 (d, J = 7.8 Hz, 2H), 7.69 (q, J = 7.8 Hz, 2H), 7.56 (t, J = 7.7 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 4.49 -4.36 (m, 1H), 4.08 -3.90 (m, 1H), 3.61 (dtd, J = 23.1, 15.9, 4.5 Hz, 1H), 3.37 (td, J = 11.2, 6.8 Hz, 1H), 2.70 -2.51 (m, 1H), 2.51 -2.38 (m, 1H), 2.15 -2.00 (m, 2H), 1.86 -1.71 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 189.20 (t, J = 30.4 Hz), 161.78 (s), 161.24 (d, J = 3.5 Hz), 159.32 (s), 155.09 (d, J = 2.1 Hz), 143.46 (s), 134.32 (s), 132.07 (s), 130.26 (t, J = 3.3 Hz), 129.16 (d, J = 8.2 Hz), 128.69 (s), 122.75 (s), 122.51 (s), 121.35 (d, J = 8.8 Hz), 118.36 (t, J = 254.2 Hz), 111.43 (s), 111.19 (s), 41.20 (s), 36.59 (t, J = 22.5 Hz), 35.07 (t, J = 3.6 Hz), 26.02 (s), 20.70 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -95.78, -96.52, -99.56, -100.30.

HRMS: $C_{21}H_{18}F_2N_2O_2$ [M+H]⁺; calculated: 369.1409, found: 369.1410.

diethyl (1,1-difluoro-2-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6yl)ethyl)phosphonate (**4n**)

White solid, yield 56% (90 mg), 46.0 -47.3 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 -8.18 (m, 1H), 7.78 -7.69 (m, 1H), 7.67 -7.61 (m, 1H), 7.54 -7.40 (m, 1H), 4.45 -4.27 (m, 5H), 4.02 -3.91 (m, 1H), 3.67 -3.44 (m, 1H), 3.44 -3.33 (m, 1H), 2.56 -2.41 (m, 1H), 2.42 -2.23 (m, 1H), 2.11 -1.97 (m, 2H), 1.76 -1.63 (m, 1H), 1.44 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 161.99 (s), 155.79 (s), 146.95 (s), 134.06 (s), 126.93 (s), 126.64 (s), 126.38 (s), 124.77 (s), 122.62 (s), 122.17 (s), 124.80 -117.10 (m), 120.11 (d, *J* = 15.9 Hz), 64.65 (d, *J* = 6.6 Hz), 41.16 (s), 35.80 (dd, *J* = 35.2, 19.5 Hz), 34.83 -34.57 (m), 26.02 (s), 20.70 (s), 16.45 (d, *J* = 5.4 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -106.81 (s), -107.09 (s), -107.60 (s), -107.88 (s), -111.84 (s), -112.12 (s), -112.62 (s), -112.91 (s).

HRMS: C₁₈H₂₃F₂N₂O₄P [M+Na]⁺;calculated: 423.1256, found: 423.1245.

6-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl)-6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one (40)

^F White solid, yield 54% (115 mg), 124.1 -125.2 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 4.47 -4.31 (m, 1H), 4.10 -3.95 (m, 1H), 3.76 -3.52 (m, 1H), 3.42 -3.25 (m, 1H), 2.62 -2.24 (m, 2H), 2.17 -2.02 (m, 2H), 1.86 -1.66 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.85 (s), 154.92 (s), 146.70 (s), 134.20 (s), 126.95 (s), 126.63 (s), 121.62 -105.01 (m), 120.16 (s), 41.06 (s), 34.32 (d, *J* = 3.3 Hz), 32.66 (t, *J* = 20.4 Hz), 25.87 (d, *J* = 3.0 Hz), 20.68 (s).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -80.72– -80.88 (m), -109.71 – -110.04 (m), -110.43 – -110.75 (m), -113.97 – -114.22 (m), -114.68 – -114.93 (m), -121.26 – -122.07 (m), -122.40 – -123.20 (m), -123.27 – 123.68 (m), -125.90 – -126.28 (m).

HRMS: $C_{19}H_{13}F_{13}N_2O [M+H]^+$; calculated: 533.0893, found: 533.0898

6-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononyl)-6,7,8,9-tetrahydro-11*H*-pyrido[2,1*b*]quinazolin-11-one (**4p**)

^F White solid, yield 43% (109 mg), 132.2 -133.7 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, *J* = 7.9 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 6.5 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 4.49 -4.30 (m, 1H), 4.10 -3.91 (m, 1H), 3.74 -3.53 (m, 1H), 3.41 -3.26 (m, 1H), 2.54 -2.26 (m, 2H), 2.14 -1.99 (m, 2H), 1.85 -1.64 (m, 1H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -80.83 (t, J = 10.0 Hz), -109.74 - -110.02 (m), -110.45 - -110.76 (m), -114.10 (t, J = 13.4 Hz), -114.81 (t, J = 13.5 Hz), -121.48 (s), -121.86 (s), -122.69 (s), -123.40 (s), -125.92 - -126.31 (m).

HRMS: C₂₁H₁₃F₁₇N₂O [M+H]⁺;calculated: 633.0829, found: 633.0825.

isopropyl 2,2-difluoro-3-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (4q)

White solid, yield 65% (87 mg), 94.8 -96.2 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.33 (d, *J* = 7.8 Hz, 1H), 7.78 (t, *J* = 7.3 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 1H), 5.29 -5.12 (m, 1H), 4.51 -4.34 (m, 1H), 4.05 -3.92 (m, 1H), 3.66 -3.52 (m, 1H), 3.32 -3.14 (m, 1H), 2.78 -2.67 (m, 1H), 2.42 -2.22 (m, 1H), 2.16 -2.02 (m, 1H), 1.41 (d, *J* = 6.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 163.61 (t, *J* = 32.6 Hz), 161.89 (s), 155.52 (s), 146.91 (s), 134.07 (s), 126.89 (s), 126.63 (s), 126.43 (s), 120.24 (s), 116.07 (t, *J* = 252.0 Hz), 71.25 (s), 41.10 (s), 36.75 (t, *J* = 23.0 Hz), 35.16 (t, *J* = 3.6 Hz), 25.82 (s), 21.49 (d, *J* = 4.8 Hz), 20.66 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.39, -104.08, -106.66, -107.35.

HRMS: C₁₇H₁₈F₂N₂O₃ [M+H]⁺;calculated: 337.1358, found: 337.1353.

butyl 2,2-difluoro-3-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanoate (4r)

Colorless oil, yield 63% (88 mg);

¹**H NMR** (400 MHz, CDCl3) δ 8.29 (d, *J* = 7.9 Hz, 1H), 7.75 (t, *J* = 7.3 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 4.44 -4.29 (m, 3H), 4.00 -3.90 (m, 1H), 3.62 -3.51 (m, 1H), 3.32 -3.13 (m, 1H), 2.75 -2.64 (m, 1H), 2.40 -2.22 (m, 1H), 2.12 -1.99 (m, 1H), 1.81 -1.69 (m, 2H), 1.53 -1.38 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.81 (t, J = 32.2 Hz), 160.70 (s), 159.31 (s), 148.81 (s), 134.18 (s), 126.95 (s), 126.54 (s), 126.40 (s), 120.78 (s), 115.64 (t, J = 251.2 Hz), 66.96 (s), 44.81 (s), 38.02 (s), 36.44 (t, J = 23.0 Hz), 30.28 (s), 27.80 (s), 18.90 (s), 13.57 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -102.92, -103.61, -106.36, -107.05.

HRMS: C₁₈H₂₀F₂N₂O₃ [M+H]⁺;calculated: 351.1515, found: 351.1503.

N-ethyl-2,2-difluoro-3-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-*b*]quinazolin-3-yl)propanamide (4s)

White solid, yield 67% (86 mg), 109.8 -110.7 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.32 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 6.58 (s, 1H), 4.47 -4.33 (m, 1H), 4.05 -3.92 (m, 1H), 3.72 -3.58 (m, 1H), 3.49 -3.39 (m, 2H), 3.32 -3.13 (m, 1H), 2.79 -2.65 (m, 1H), 2.50 -2.31 (m, 1H), 2.19 -2.03 (m, 1H), 1.28 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.58 (t, *J* = 28.2 Hz), 160.72 (s), 159.66 (s), 148.59 (s), 134.27 (s), 126.81 (s), 126.61 (s), 126.45 (s), 120.72 (s), 117.40 (t, *J* = 254.0 Hz), 44.94 (s), 38.18 (s), 36.16 (t, *J* = 23.3 Hz), 34.62 (s), 27.79 (s), 14.43 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.57, -104.25, -106.13, -106.81.

HRMS: $C_{16}H_{17}F_2N_3O_2$ [M+Na]⁺; calculated: 344.1181, found: 344.1184.

N,N-diethyl-2,2-difluoro-3-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl)propanamide (4t)

White solid, yield 59% (82 mg), 127.1 -127.8 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.31 (d, *J* = 8.0 Hz, 1H), 7.81 -7.66 (m, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 4.45 -4.30 (m, 1H), 4.04 -3.89 (m, 1H), 3.69 -3.58 (m, 3H), 3.44 (q, *J* = 7.0 Hz, 2H), 3.40 -3.26 (m, 1H), 2.75 -2.63 (m, 1H), 2.51 -2.33 (m, 1H), 2.18 -2.01 (m, 1H), 1.28 (t, *J* = 7.0 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.30 (t, J = 28.8 Hz), 160.89 (s), 159.90 (s), 149.08 (s), 134.05 (s), 127.14 (s), 126.34 (s), 121.80 (s), 120.81 (s), 119.26 (s), 44.80 (s), 41.92 (t, J = 6.2 Hz), 41.59 (s), 38.39 (t, J = 3.6 Hz), 36.99 (t, J = 22.7 Hz), 28.19 (s), 14.30 (s), 12.33 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -97.06, -97.80, -99.78, -100.52.

HRMS: C₁₈H₂₁F₂N₃O₂ [M+Na]⁺;calculated: 372.1494, found: 372.1491.

3-(2,2-difluoro-3-oxo-3-(piperidin-1-yl)propyl)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (4u)

Colorless oil, yield 60% (87 mg);

¹**H NMR** (400 MHz, CDCl3) δ 8.37 (d, *J* = 8.0 Hz, 1H), 7.85 -7.74 (m, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 4.50 -4.41 (m, 1H), 4.08 -3.96 (m, 1H), 3.85 -3.76 (m, 2H), 3.75 -3.62 (m, 3H), 3.51 -3.32 (m, 1H), 2.81 -2.70 (m, 1H), 2.58 -2.38 (m, 1H), 2.22 -2.07 (m, 1H), 1.82 -1.70 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.26 (t, *J* = 30.6 Hz), 160.93 (s), 159.87 (s), 149.09 (s), 134.08 (s), 127.15 (s), 126.36 (s), 126.33 (s), 120.76 (s), 119.26 (t, *J* = 256.0 Hz), 46.91 (t, *J* = 6.4 Hz), 44.80 (s), 44.49 (s), 38.38 (s), 36.99 (t, *J* = 22.9 Hz), 28.21 (s), 26.54 (s), 25.62 (s), 24.42 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -96.38, -97.12, -99.17, -99.91.

HRMS: C₁₉H₂₁F₂N₃O₂ [M+H]⁺;calculated: 362.1675, found: 362.1674.

3-(2,2-difluoro-3-morpholino-3-oxopropyl)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (4v)

White solid, yield 62% (90 mg), 121.2 -121.9 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.31 (d, J = 7.9 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 4.48 -4.30 (m, 1H), 3.99 -3.89 (m, 1H), 3.85 -3.80 (m, 2H), 3.79 -3.74 (m, 4H), 3.74 -3.65 (m, 2H), 3.65 -3.58 (m, 1H), 3.47 -3.25 (m, 1H), 2.75 -2.60 (m, 1H), 2.51 -2.31 (m, 1H), 2.16 -1.99 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.51 (t, J = 29.1 Hz), 160.86 (s), 159.69 (s), 149.04 (s), 134.11 (s), 127.14 (s), 126.41 (s), 126.36 (s), 120.80 (s), 119.20 (t, J = 256.5 Hz), 66.74 (d, J = 6.3 Hz), 46.56 (t, J = 6.0 Hz), 44.78 (s), 43.44 (s), 38.25 (s), 36.85 (d, J = 22.5 Hz), 36.51 (s), 28.22 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -96.22, -96.97, -99.23, -99.97.

HRMS: C₁₈H₁₉F₂N₃O₃ [M+H]⁺;calculated: 364.1467, found: 364.1472.

diethyl (1,1-difluoro-2-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-*b*]quinazolin-3-yl)ethyl)phosphonate (4w)

White solid, yield 52% (80 mg), 77.8 -80.1 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 -8.26 (m, 1H), 7.79 -7.65 (m, 2H), 7.52 -7.43 (m, 1H), 4.41 -4.31 (m, 5H), 4.03 -3.88 (m, 1H), 3.78 -3.63 (m, 1H), 3.37 -3.14 (m, 1H), 2.82 -2.66 (m, 1H), 2.42 -2.18 (m, 1H), 2.15 -1.98 (m, 1H), 1.49 -1.42 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 160.86 (s), 159.63 (s), 149.04 (s), 134.16 (s), 127.10 (s), 126.48 (s), 126.43 (s), 120.84 (s), 124.62 -111.94 (m), 65.03 -64.52 (m), 44.88 (s), 37.78 (s), 36.33 -35.70 (m), 28.23 (s), 16.47 (d, *J* = 5.2 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -108.26, -108.54, -109.05, -109.33, -112.52, -112.81, -113.31, -113.60. **HRMS**: C₁₇H₂₁F₂N₂O₄P [M+Na]⁺;calculated: 409.1099, found: 409.1089

(4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (**4x**)

White solid, yield 60% (107 mg), 88.2 -90.3 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.31 -8.22 (m, 1H), 7.76 -7.67 (m, 1H), 7.67 -7.58 (m, 1H), 7.50 -7.40 (m, 1H), 5.08 -4.91 (m, 1H), 4.39 -4.27 (m, 1H), 4.02 -3.89 (m, 1H), 3.59 -3.40 (m, 1H), 3.27 -3.13 (m, 1H), 2.46 -2.26 (m, 3H), 2.07 -1.94 (m, 3H), 1.82 -1.67 (m, 3H), 1.41 -1.32 (m, 1H), 1.29 -1.22 (m, 1H), 1.09 -0.97 (m, 1H), 0.92 -0.83 (m, 8H), 0.80 -0.78 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.46 (s), 164.12 (t, *J* = 32.3 Hz), 161.44 (s), 156.25 (s), 149.09 (s), 128.23 (s), 116.77 (s), 116.04 (t, *J* = 252.5 Hz), 113.82 (s), 107.28 (s), 62.95 (s), 55.64 (s), 40.94 (s), 36.86 (t, *J* = 23.1 Hz), 35.15 (s), 31.93 (s), 29.70 (s), 29.37 (s), 25.83 (s), 22.70 (s), 20.69 (s), 14.12 (s), 13.93 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -99.98 (d, *J* = 65.6 Hz), -100.08 - -100.27 (m), -100.57, -100.75, -105.13, -105.46, -105.82, -106.14.

HRMS: C₂₅H₃₀F₂N₂O₃ [M+H]⁺;calculated: 445.2297, found: 445.2291.

ethyl (2,2-difluoro-3-(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoyl)-*L*-phenylalaninate (**4**y)

White solid, yield 53% (102 mg), 119.9 -122.6 °C;

¹**H NMR** (400 MHz, CDCl3) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 9.2 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.33 -7.29 (m, 1H), 7.27 -7.21 (m, 2H), 7.16 -7.10 (m, 2H), 7.10 -7.04 (m, 1H), 4.86 (dd, *J* = 13.2, 6.8 Hz, 1H), 4.38 -4.29 (m, 1H), 4.26 -4.18 (m, 2H), 3.97 -3.87 (m, 1H), 3.47 - 3.32 (m, 1H), 3.27 -3.07 (m, 3H), 2.39 -2.27 (m, 2H), 2.02 -1.95 (m, 2H), 1.72 -1.61 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.53 (s), 163.62 (t, *J* = 12.0 Hz), 161.92 (s), 155.64 (s), 146.83 (s), 135.23 (s), 134.10 (s), 129.26 (d, *J* = 4.5 Hz), 128.65 (d, *J* = 6.7 Hz), 127.31 (d, *J* = 7.3 Hz), 126.87 (s),

126.66 (s), 126.43 (s), 120.22 (s), 116.39 (t, J = 253.7 Hz), 61.93 (s), 53.14 (d, J = 18.3 Hz), 41.05 (d, J = 3.6 Hz), 37.64 (d, J = 5.3 Hz), 36.59 -35.80 (m), 35.13 -34.86 (m), 25.67 (s), 20.56 (s), 14.10 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -99.95, -100.63, -102.72, -103.40, -104.42, -105.10, -105.75, -106.44. HRMS: C₂₆H₂₇F₂N₃O₄ [M+Na]⁺;calculated: 506.1862, found: 506.1872. (3*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 2,2-difluoro-3-

(11-oxo-6,8,9,11-tetrahydro-7*H*-pyrido[2,1-*b*]quinazolin-6-yl)propanoate (4z)

White solid, yield 21% (57 mg), 130.1 -132.5 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 5.41 -5.25 (m, 1H), 4.78 -4.66 (m, 1H), 4.43 -4.32 (m, 1H), 4.01 -3.90 (m, 1H), 3.51 -3.32 (m, 1H), 3.24 (d, *J* = 6.4 Hz, 1H), 2.44 -2.34 (m, 3H), 2.08 -1.97 (m, 4H), 1.91 -1.81 (m, 3H), 1.78 -1.66 (m, 3H), 1.60 -1.44 (m, 6H), 1.42 -1.24 (m, 5H), 1.20 -1.07 (m, 7H), 1.05 -1.01 (m, 4H), 0.97 -0.91 (m, 4H), 0.90 -0.86 (m, 6H), 0.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.53 (t, J = 32.5 Hz), 161.90 (s), 155.57 (s), 146.85 (s), 138.78 (d, J = 6.0 Hz), 134.15 (s), 126.88 (s), 126.58 (d, J = 18.2 Hz), 123.38 (d, J = 3.5 Hz), 120.24 (s), 114.81 (t, J = 252.0 Hz), 56.66 (s), 56.14 (s), 49.96 (s), 42.31 (s), 41.11 (d, J = 6.0 Hz), 39.61 (d, J = 17.3 Hz), 37.65 (d, J = 4.6 Hz), 36.79 (d, J = 2.7 Hz), 36.53 (s), 36.19 (s), 35.79 (s), 35.18 (s), 31.84 (d, J = 6.3 Hz), 28.12 (d, J = 19.9 Hz), 27.45 (d, J = 3.8 Hz), 25.83 (s), 24.28 (s), 23.83 (s), 22.82 (s), 22.57 (s), 21.03 (s), 20.69 (s), 19.27 (s), 18.72 (s), 11.86 (s).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -100.47 (d, J = 37.1 Hz), -101.15 (d, J = 37.2 Hz), -105.52 (d, J = 17.3 Hz), -106.20 (d, J = 17.2 Hz).

HRMS: C₄₂H₅₈F₂N₂O₃ [M+H]⁺;calculated: 677.4488, found: 677.4493.

XI. Copies of NMR Spectra of some raw materials

3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1t)

7-bromo-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1**u**)

6-methyl-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1v)

90 80 f1 (ppm) -1

7-chloro-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1w)

6-fluoro-3-(2-(prop-1-en-2-yl)phenyl)quinazolin-4(3*H*)-one (1**x**)

XII. Copies of NMR Spectra of products **3**a

3k

3m

30

S65

3u

4c

S81

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

4k

S93

S96

4w

S108

