Supplementary Information for

Simple Efficient Syntheses of 2-Hydroxy-3*H*-phenoxazin-3-ones in

Water by Aerobic Oxidative Cross-Cyclocondensations

Wenxue Duan, Wenhao Li, Qingxuan Tang, Zhan-ting Li* and Guanyu Yang*

Email: yangguanyu@zzu.edu.cn ORCID: Guanyu Yang 0000-0003-4216-8891 Zhan-Ting Li 0000-0003-3954-0015

Contents

- (A) General remarks
- (B) Typical experimental procedure
- (C) Characterization data of the products
- (D) Single crystal diffraction patterns of eight products
- (E) Copies of all NMR spectra

(A) General Remarks

All starting materials and catalysts were purchased from commercial sources and used without further treatment unless noted.

High Performance Liquid Chromatography was conducted using a WATERS 1525 LC system with UV detector and a Symmetry C18 5μ m column (4.8×250 mm).

¹H NMR and ¹³C NMR spectra were recorded on 600 MHz or 400 MHz BRUKER spectrometers. The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad).

High resolution mass spectra (HRMS) data were measured on a AB SCIEX TripleTOF 6600 or a Thermo Fisher Scientific Q Exactive Focus Mass spectrometer by means of the positive or negative ESI modes.

The single crystal diffraction was performed on the RIGAKU Gemini E X-ray single crystal diffractometor.

The melting points were determined by an X-4 micro-melting point apparatus (Beijing, China).

The pH values were determined by a REX PHS-3C pH meter of Shanghai Rex Instrument Factory.

A KQ3200E ultrasonic cleaner of Kunshan Ultrasonic Instrument Co., Ltd. was used in all ultrasonication.

(B) Typical experimental procedure

General Typical Procedure for the Aerobic Oxidative Corss-Cyclocondensation

The catalytic reactions were performed in a 150-mL autoclave and the general procedure is described typically with corss-cyclocondensation of **1a** and **2a** as follows: 2-aminophenol (1.0 mmol), 2-hydroxylphenol (1.0 mmol) and H₂O (50 mL) are added into 250-mL beaker, and treated by ultrasound sonication in an ultrasonic cleaner. After sonication, the resulted clear solution and 0.5 mL solution of **GA** (0.25 mol%) and Mn(OAc)₂ (0.25 mol%) are transferred into the autoclave, and then is adjusted pH to 10 by NaOH solution under stirring. After the reactor closed, the atmosphere over the mixture is changed with O₂ for three times. The reactor was heated to 25 °C under stirring under 0.3 MPa for the desired reaction time. When the pressure dropped down below 0.2 MPa, O₂ was recharged up to 0.3 MPa. As soon as the pressure stops falling stirring is stoped. The ending reaction mixture was acidized with HCl solution to pH 1-2, and centrifugated. The solid cake was washed with water for three times. The pure product **3a** was obtained by recrystallization of the dried solid cake with ethanol-H₂O (v:v = 1:1).

(C) Characterization Data of the Products 3a-z

2-hydroxy-3H-phenoxazin-3-one (3a) *Color and State*: orange solid; mp: 262 °C (decomp.) (lit¹ 264 °C (decomp.); lit² 264 °C; lit³ >240 °C).

¹**H** NMR (400 MHz, DMSO- d_6) δ : 10.84 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.61-7.53 (m, 2H), 7.47-7.43 (m, 1H), 6.69 (s, 1H), 6.43 (s, 1H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ: 180.7, 156.2, 149.5, 149.1, 143.0, 133.6, 131.5, 129.4, 126.0, 116.6, 107.2, 104.7.

HRMS (ESI, [M+H]⁺) calcd for C₁₂H₈NO₃ 214.0499, found 214.0498.

HRMS (ESI, $[M-H]^-$) calcd for C₁₂H₆NO₃ 212.0353, found 212.0347.

2-hydroxy-8-methyl-3*H*-phenoxazin-3-one (3b)

Color and State: brownish red solid; mp: 264 °C (decomp.)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ: 10.78 (s, 1H), 7.62 (s, 1H), 7.46-7.40 (m, 2H), 6.69 (s,1H), 6.42(s, 1H), 2.41(s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ: 180.6, 156.1, 149.4, 149.2, 141.1, 135.5, 133.4, 132.5, 129.0, 116.3, 107.2, 104.4, 20.8.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₁₀NO₃ 228.0655, found 228.0655.

8-chloro-2-hydroxy-3*H*-phenoxazin-3-one (3c) Color and State: brownish yellow solid; mp: 264 °C (decomp.)

¹**H NMR** (400 MHz, DMSO- d_{δ}) δ : 11.03 (s, 1H), 7.87 (s, 1H), 7.63-7.57 (m, 2H), 6.69 (s, 1H), 6.45 (s, 1H).

¹³C NMR (100 MHz, DMSO- d_{δ}) δ : No useful spectrum was obtained due to the poor solubility of 4c in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₂H₇ClNO₃ 248.0109, found 248.0109.

8-(*tert***-butyl)-2-hydroxy-4-methyl-3***H***-phenoxazin-3-one (3d)** *Color and State***: orange solid; mp: 183-184 °C**

¹**H NMR** (600 MHz, DMSO- d_6) δ : 10.70 (s, 1H), 7.72 (s, 1H), 7.60 (s, J = 8.3 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 6.55 (s, 1H), 2.08 (s, 3H), 1.35 (s, 9H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ: 180.4, 155.4, 149.2, 148.4, 145.1, 141.4, 133.0, 128.7, 125.5. 116.1, 112.6, 106.3, 34.8, 31.5, 8.1.

HRMS (ESI, $[M+H]^+$) calcd for $C_{17}H_{18}NO_3$ 284.1281, found 284.1278.

2-hydroxy-4-methyl-3H-phenoxazin-3-one (3e) Color and State: orange solid; mp: 243-244 °C (lit² 244-246 °C)

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.69 (s, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.56-7.54 (m, 2H), 7.42 (d, J = 7.2, 1H), 6.62 (s, 1H), 2.07 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ: 180.5, 155.5, 149.3, 144.9, 143.4, 133.4, 131.2, 129.2, 125.7, 116.6, 112.8, 106.3, 8.1.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₁₀NO₃ 228.0655, found 228.0656.

2-hydroxy-4,9-dimethyl-3*H***-phenoxazin-3-one (3f)** *Color and State*: orange solid; mp: 222 °C (decomp.)

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.63 (s, 1H), 7.47-7.44 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 6.64 (s, 1H), 2.60 (s, 3H), 2.08 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 180.4, 155.4, 148.0, 144.8, 143.5, 137.9, 132.0, 130.7, 126.5, 114.2, 112.4, 106.5, 17.0, 8.0.

HRMS (ESI, [M+H]⁺) calcd for C₁₄H₁₂NO₃ 242.0812, found 242.0814.

2-hydroxy-4,8-dimethyl-3*H***-phenoxazin-3-one (3g)** *Color and State*: orange solid; mp: 272 °C (decomp.)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ: 10.66 (s, 1H), 7.60 (s, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.40-7.38 (m, 1H), 6.63 (s, 1H), 2.41 (s, 3H), 2.08 (s, 3H).

¹³C NMR (100 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of 4g in DMSO or CD₃OD.

HRMS (ESI, $[M+H]^+$) calcd for C₁₄H₁₂NO₃ 242.0812, found 241.0812.

2-hydroxy-4,7-dimethyl-3*H***-phenoxazin-3-one (3h)** *Color and State*: orange solid; mp: 243 °C (decomp.)

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.56 (s, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.37 (s, 1H) 7.23 (d, J = 7.8 Hz, 1H), 6.59 (s, 1H), 2.44 (s, 3H), 2.06 (s, 3H).

¹³C NMR (100 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of **4h** in DMSO or CD₃OD.

HRMS (ESI, $[M+H]^+$) calcd for $C_{14}H_{12}NO_3 242.0812$, found 242.0812.

8-chloro-2-hydroxy-4-methyl-3*H*-phenoxazin-3-one (3i) *Color and State*: orange red solid; mp: 260 °C (decomp.)

¹**H NMR** (600 MHz, DMSO-*d*₆) δ: 10.90 (s, 1H), 7.80 (s, 1H), 7.57 (s, 2H), 6.60 (s, 1H), 2.06 (s, 3H).

¹³C NMR (100 MHz, DMSO- d_{δ}) δ : No useful spectrum was obtained due to the poor solubility of **4i** in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉ClNO₃ 262.0265, found 262.0264.

H7-chloro-2-hydroxy-4-methyl-3H-phenoxazin-3-one (3j)Color and State: orange yellow solid; mp: 224 °C (decomp.)

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.80 (s, 1H), 7.75 (d, J = 8.5, 1H), 7.72 (s, 1H), 7.45 (d, J = 8.4, 1H), 6.60 (s, 1H), 2.06 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-*d*₆) δ: 180.7, 156.1, 149.4, 144.5, 143.7, 134.4, 132.3, 130.1, 125.9, 116.7, 113.3, 106.2, 8.1.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉ClNO₃ 262.0265, found 262.0264.

8-bromo-2-hydroxy-4-methyl-3*H*-phenoxazin-3-one (3k) *Color and State*: orange red solid; mp: 237 °C (decomp.)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ : 10.90 (s, 1H), 7.93 (s, 1H), 7.69 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 6.59(s, 1H), 2.07 (s, 3H).

¹³C NMR (100 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of 4k in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉BrNO₃ 305.9760, found 305.9754.

7-bromo-2-hydroxy-4-methyl-3*H***-phenoxazin-3-one (31)** *Color and State*: orange-yellow solid; mp: 249 °C (decomp.)

¹**H NMR** (400 MHz, DMSO-*d*₆) δ: 10.83 (s, 1H), 7.85-7.66 (m, 2H), 7.58-7.43 (m, 1H), 6.60 (s, 1H), 2.06 (s, 3H).

¹³C NMR (100 MHz, *DMSO-d*₆) δ : No useful spectrum was obtained due to the poor solubility of **41** in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉BrNO₃ 305.9760, found 305.9754.

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.89 (s, 1H), 7.78 (d, J = 6.3 Hz, 1H), 7.60-7.57 (m, 2H), 7.43 (t, 1H), 6.62 (s, 1H), 3.91 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 176.8, 156.0, 148.8, 142.9, 138.0, 135.4, 133.4, 131.2, 129.0, 125.8, 116.6, 105.4, 60.5.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₁₀NO₄ 244.0604, found 244.0604.

7-fluoro-2-hydroxy-4-methyl-3*H*-phenoxazin-3-one (3n) Color and State: brown solid; mp: 222 °C (decomp.)

¹**H** NMR (400 MHz, DMSO- d_{δ}) δ : 10.71 (s, 1H), 7.79-7.76 (m, 1H), 7.49 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 1H), 7.26 (m, 1H), 6.56 (s, 1H), 2.03 (s, 3H)

¹³C NMR (100 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of **4n** in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉FNO₃ 246.0561, found 246.0562.

2-hydroxy-4,8-dimethoxy-3H-phenoxazin-3-one (30) *Color and State*: red solid; mp: 183 °C (decomp.)

¹**H NMR** (600 MHz, DMSO- d_6) δ : 10.89 (s, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.32 (s, 1H), 7.18 (d, J = 7.7, 1H), 6.60 (s, 1H), 3.89 (s, 3H), 3.85 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 176.3, 156.8, 156.0, 148.8, 138.2, 137.2, 135.2, 133.9, 118.9, 117.2, 111.1, 105.1, 60.4, 56.2.

HRMS (ESI, [M+H]⁺) calcd for C₁₄H₁₂NO₅ 274.0710, found 274.0714.

4-bromo-2-hydroxy-8-methyl-3*H***-phenoxazin-3-one (3p)** *Color and State*: orange-yellow solid; mp: 265°C (decomp.)

¹**H NMR** (400 MHz, DMSO- d_6) δ : 11.55 (s, 1H), 7.74 (s, 1H), 7.52-7.46 (m, 2H), 6.46 (s, 1H), 2.43 (s, 3H)

¹³C NMR (100 MHz, DMSO- d_{δ}) δ : No useful spectrum was obtained due to the poor solubility of **4p** in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₉BrNO₃ 305.9760, found 305.9763.

4-bromo-7-fluoro-2-hydroxy-3H-phenoxazin-3-one (3q)Color and State: brown solid; mp: 253 °C (decomp.)

¹**H NMR** (400 MHz, DMSO- d_6) δ : 11.60 (s, 1H), 7.97 (dd, $J_1 = 8.9$ Hz, $J_2 = 6.1$ Hz, 1H), 7.60 (dd, $J_1 = 9.1$ Hz, $J_2 = 2.6$ Hz, 1H), 7.37(m, 1H), 6.49 (s, 1H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ: 178.1, 164.1, 162.5, 154.5, 149.4, 144.9, 144.0, 143.9, 131.5, 130.4, 114.0, 103.9.

4-bromo-8-chloro-2-hydroxy-3H-phenoxazin-3-one (3r) *Color and State*: brownish yellow solid; mp: 275 °C (decomp.)

¹**H** NMR (400 MHz, DMSO- d_6) δ : 11.79 (s, 1H), 7.96 (d, J = 2.0 Hz, 1H), 7.65-7.61 (m, 2H), 6.49 (s, 1H).

¹³C NMR (100 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of **4r** in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₂H₆BrClNO₃ 325.9214, found 325.9214.

4-bromo-2-hydroxy-3-oxo-3*H*-phenoxazine-8-carboxylic acid (3s)

Color and State: yellow solid; mp: >300 °C

¹**H NMR** (600 MHz, DMSO- d_6) δ : 13.29 (s, 1H), 11.73 (s, 1H), 8.31 (s, 1H), 8.10 (d, J = 5.8 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 6.52 (s, 1H).

¹³C NMR (125 MHz, DMSO- d_6) δ : No useful spectrum was obtained due to the poor solubility of 4s in DMSO or CD₃OD.

HRMS (ESI, [M+H]⁺) calcd for C₁₃H₇BrNO₅ 335.9502, found 335.9502.

¹**H** NMR (600 MHz, DMSO- d_6) δ : 13.20 (s, 1H), 11.06 (s, 1H), 8.21 (s, 1H), 8.05 (d, J = 7.0 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 6.63 (s, 1H), 3.92 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 177.0, 166.6, 155.7, 150.0, 145.9, 137.5, 135.6, 133.4, 131.7, 130.2, 128.1, 117.0, 105.7, 60.6.

HRMS (ESI, [M+H]⁺) calcd for C₁₄H₁₀NO₆ 288.0503, found 288.0499.

2-hydroxy-3-oxo-3*H***-phenoxazine-4-carboxylic acid (3u)** *Color and State*: brown solid; mp: 275 °C (decomp.)

¹**H NMR** (600 MHz, DMSO- d_6) δ : 10.10 (s, 1H), 8.62 (s, 1H), 7.27 (d, J = 7.9 Hz, 1H), 7.02 (t, $J_1 = 7.9$ Hz, $J_2 = 7.5$ Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.85 (t, $J_1 = 7.7$ Hz, $J_2 = 7.6$ Hz, 1H), 5.67 (s, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 181.4, 176.8, 176.1, 150.3, 148.2, 126.4, 125.9, 122.9, 119.9, 119.0, 116.3, 98.2, 87.3.

HRMS (ESI, [M-H]⁻) calcd for C₁₃H₆NO₅ 256.0251, found 256.0439; (ESI, [M-2H]^{-•}) calcd

7-bromo-2-hydroxy-3-oxo-3*H*-phenoxazine-4-carboxylic acid (3v) Color and State: red solid; mp: 262 °C (decomp.)

¹**H NMR** (400 MHz, DMSO- d_6) δ : 10.67 (s, 1H), 8.64 (s, 1H), 7.23 (d, J = 8.5 Hz, 1H), 7.09 (d, J = 1.9 Hz, 1H), 7.02 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.9$ Hz, 1H), 5.62 (s, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 181.6, 176.7, 176.0, 151.6, 148.1, 125.4, 124.5, 122.4, 118.91, 118.85, 117.8, 98.6, 87.3.

HRMS (ESI, $[M-H]^-$) calcd for $C_{13}H_5BrNO_5$ 333.9357, found 333.9550; (ESI, $[M-2H]^-$) calcd for $C_{13}H_4BrNO_5$ 332.9284, found 332.9516.

2-hydroxy-3-oxo-3H-phenoxazine-4,8-dicarboxylic acid (3w) Color and State: black solid; mp: >300 °C.

¹**H NMR** (600 MHz, DMSO- d_6) δ : 12.67 (s, 1H), 11.19 (s, 1H), 8.71 (s, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.65 (dd, $J_I = 8.5$ Hz, $J_2 = 1.7$ Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 5.64 (s, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 181.6, 176.6, 176.0, 167.2, 154.7, 148.3, 128.2, 125.7, 124.0, 122.1, 118.9, 116.1, 98.4, 87.3.

HRMS (ESI, $[M-H]^-$) calcd for $C_{14}H_6NO_7$ 300.0150, found 300.0339; (ESI, $[M-2H]^-$) calcd for $C_{14}H_5NO_7$ 299.0077, found 299.0307.

¹**H NMR** (600 MHz, DMSO- d_6) δ : 10.80 (s, 1H), 7.91 (s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 6.68 (s, 1H), 2.08 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 180.6, 155.6, 149.7, 145.4, 144.9, 143.4, 132.5, 128.6, 126.0, 116.1, 113.1, 106.4, 8.1.

HRMS (ESI, $[M+H]^+$) calcd for $C_{13}H_{10}NO_6S$ 308.0223, found 308.0223.

2-hydroxy-3-oxo-8-sulfo-3*H*-phenoxazine-4-carboxylic acid (3y) Color and State: red solid; mp: >300 °C.

¹**H** NMR (600 MHz, DMSO- d_6) δ : 10.61 (s, 1H), 8.74 (s, 1H), 7.50 (s, 1H), 7.29 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 5.68 (s, 1H).

¹³**C NMR** (125 MHz, DMSO-*d*₆) δ: 181.5, 176.9, 176.1, 150.8, 148.4, 139.7, 124.6, 124.1, 120.3, 118.8, 115.3, 98.0, 87.3.

HRMS (ESI, $[M-H]^-$) calcd for C₁₃H₆NO₈S 335.9820, found 336.0015; (ESI, $[M-2H]^-$) calcd for C₁₃H₅NO₈S 334.9747, found 334.9978.

4-fluoro-2-hydroxy-3H-phenoxazin-3-one (3z-4) *Color and State*: orange solid; mp: 235 °C (decomp.)

¹**H** NMR (600 MHz, DMSO- d_6) δ : 11.36 (s, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.66-7.56 (m, 1H), 7.48 (d, J = 5.4 Hz, 1H), 6.67 (s, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ: 127.7, 156.1, 147.5, 142.2, 140.2, 138.5, 133.6, 131.8, 129.5, 126.3, 116.7, 105.9.

HRMS (ESI, [M+H]⁺) calcd for C₁₂H₇NO₃ 232.0404, found 232.0400.

1-fluoro-2-hydroxy-3H-phenoxazin-3-one (3z-1) Color and State: brown solid; mp: 239 °C (decomp.)

HRMS (ESI, [M+H]⁺) calcd for C₁₂H₇NO₃ 232.0404, found 232.0401.

2-amino-3 <i>H</i> -phenoxazin-3-one (4a)				
Color and State: Reddish brown solid; mp: 248-250 °C (lit ⁴ 249-				
250 °C; lit ⁵ 258 °C; lit ⁶ 250-252 °C; lit ⁷ 259 °C; lit ⁸ 256-258 °C;				
lit ⁹ 256-257 °C ⁻ lit ¹⁰ 254-256 °C)				

¹**H NMR** (400 MHz, DMSO-*d*₆) δ: 7.69 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50-7.43 (m, 2H), 7.40-7.36 (m, 1H), 6.82 (s, 2H), 6.35(d, *J* = 1.5 Hz, 1H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ: 180.7, 149.3, 148.7, 147.8, 142.4, 134.2, 129.2, 128.4, 125.7, 116.4, 103.9, 98.8.

HRMS (ESI, $[M+H]^+$) calcd for $C_{12}H_8N_2O_2$ 213.0659, found 213.0669.

References

- [1] G. W. K. Cavill, P. S. Clezy, F. B. Whitfield, Tetrahedron 1961, 12, 139-145.
- [2] J. F. Corbett, Spectrochim. Acta 1965, 21(8), 1411-1417.
- [3] C. W. Bird, M. Latif, Tetrahedron 1980, 36(4), 529-533
- [4] R. Meier, F. Bohler, Chem. Ber. 1956, 89, 2301-5
- [5] G. Miroslaw, K. Piekielska, M. Gebala, B. Ditkowski, M. Wolanski, W. Peczynska-Czoch, J. Mlochowski, Synth. Commun. 2007, 37(11), 1779-1789.
- [6] T. Horváth, J. Kaizer, J. Mol. Catal. A Chem. 2004, 215(1-2), 9-15.
- [7] M. Puiu, A. Raducan, D. Oancea, Rev. Roum. Chim. 2008, 52(11), 1039-1044.
- [8] M. B. Gents, S. T. Nielsen, Mortensen, G. Anne, C. Christophersen, I. S. Fomsgaard, *Chemosphere* **2005**, *61(1)*, 74-84
- [9] G. W. K. Cavill, P. S. Clezy, F. B. Whitfield, Tetrahedron 1961, 12, 139-45
- [10] M. R. Maurya, S. Sikarwar, T.Joseph, S. B. Halligudi, J. Mol. Catal. A Chem. 2005, 236(1-2), 132-138

Product Number	Structure	Single crystal diffraction pattern	CCDC Number
Зе	N O Me	$\begin{array}{c} c_{2} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{4} \\ c_{5} \\ c_{4} \\ c_{5} \\ c_{7} \\ c_{1} \\ c_{7} \\ c_{12} \\ c_{10} $	2012641
3f	Me N O O Me	$\begin{array}{c} c_{1} \\ c_{2} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{13} \\ c$	2012642
31	Br OH Me	$\begin{array}{c} C_{11} \\ C_{11} \\ C_{12} \\ C_{12} \\ C_{11} \\ C_{12} \\ C_{11} \\ C_{12} \\ C_{11} \\ C_{12} \\ C_{13} \\ C_{13$	2012644
3m	OH OH OMe	$\begin{array}{c} 01 \\ c2 \\ c2 \\ c4 \\ c5 \\ c4 \\ c13 \end{array}$	2020212
3n	F O Me	F10 - C2 - C1 - C13 - C13 - C10 - C13 - C10 -	2012643

(D) Single crystal diffraction patterns of eight products

(E) Copies of all NMR spectra

3a

3b

17

3j

3m

30

33

36

3z-4

3z-4 and 3z-1

Aromatic ¹H NMR of 3z-4 and 3z-1 in reaction mixture

a