Supplementary Information

Selective electrocatalytic hydroboration of aryl alkenes

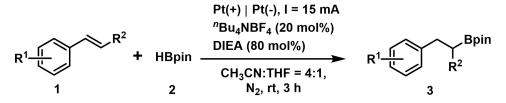
Yahui Zhang,^{*a*} Xiangyu Zhao,^{*c*} Ce Bi,^{*a,b*} Wenqi Lu,^{*a*} Mengyuan Song,^{*a*} Dongdong Wang^{*a*} and Guangyan Qing^{**a,b*}

^aKey Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.

^bCollege of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China.

^cSixth Laboratory, Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, 96 Nankai Road, Dalian 116045, P. R. China.

Table of Contents


I. General Information	S3
II. Experimental Procedures and Analytical Data	
III. Spectroscopic Data of Products	
IV. References	
V. Gas Spectra	S28
VI. Electrochemical Conditions Screening	
VII. Crystal Information	
VIII. NMR Spectra	
IX. Cyclic Voltammogram	
X. EPR Spectra	
XI. Mass Spectra	
XII. FT-IR (ATR) Spectra	
XIII. Proposed Electrochemical Cycle in the Absence of DIEA	S100
XIV. Proposed Electrochemical Cycle for Diboration	S100

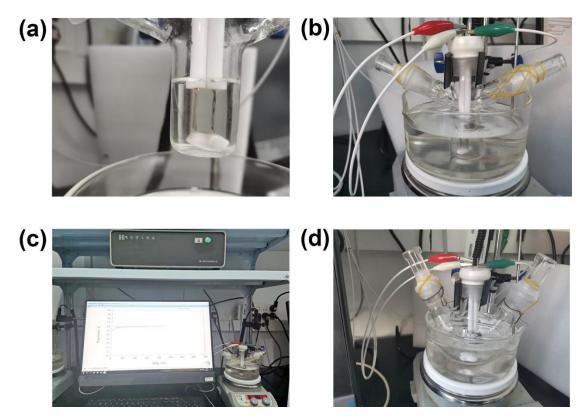
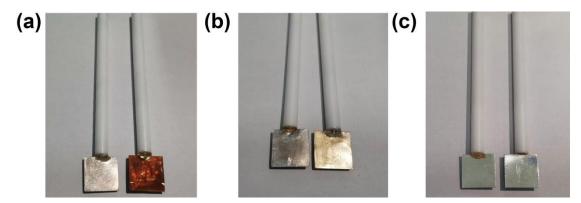
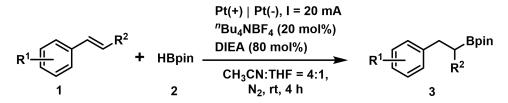
I. General Information

Materials. All manipulations were carried out under argon atmosphere by using standard Schlenk techniques and Mikrouna argon-filled glove box. All solvents were dried and distilled over appropriate drying agents under argon. Various alkenes (aladdin), pinacolborane (HBpin, Aldrich), "Bu₄NBF₄ (aladdin), NaO'Bu (aladdin), 2,2',6,6'-tetramethyl-1-piperidinyloxy (TEMPO, aladdin), galvinoxyl free radical (Aldrich), d_8 -styrene (Aldrich), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO, aladdin), triethylamine (Et₃N, aladdin), *N*,*N*-diisopropylethylamine (DIEA, aladdin), NaBD₄ (Heowns), pinacol (Heowns), allyl bromide (Allyl-Br, aladdin) and NaBO₃ • 4H₂O (Energy Chemical) were obtained from commercial suppliers and used without further purification. THF- d_8 and CD₃CN were purchased from Alfa Aesar and used with dried with 4Å molecular sieve. DBpin was prepared according to literature procedures.¹⁻²

Instruments. Instrument for electrolysis was dual display potentiostat (CHI760E) (Shanghai Chenhua). The anode and cathode electrodes were all platinum electrodes (15 mm × 15 mm × 0.3 mm), which were purchased from Shanghai Vietnamese Magnetic Electronics. Gas chromatographic (GC) analyses were performed on an Agilent GC-8860 gas chromatography instrument with a FID detector and naphthalene was added as internal standard. Hydrogen detection experiments were recorded on a SHIMADZU GC-2014 gas chromatography instrument. ¹H, ²D, ¹¹B, ¹³C and ¹⁹F NMR spectra were recorded on a Brüker 400 M Ultra Shield spectrometer. Chemical shifts (δ) were given in parts per million relative to CDCl₃ (7.26 ppm for ¹H; 77.16 ppm for ¹³C). ESI-HRMS data were recorded on a HPLC/Q-Tof mass spectrometer. EPR spectra were recorded at room temperature on a JEOL JES-FE3AX spectrometer. Infrared spectra were recorded on a NICOLET iS50 ATR spectrometer. Molecular structure of compound **7t** was obtained on a Brüker SMART APEX CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å).

II. Experimental Procedures and Analytical Data

General procedures for alkene hydroboration with pinacolborane (HBpin) (3a–3h). In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, alkenes (1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h, and the set-up diagrams are shown in Figure S1a–1c. After the solution of the crude products were concentrated in vacuum, the pure products (**3a–3h**) were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

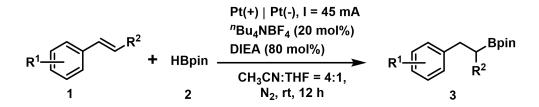
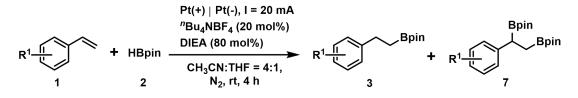
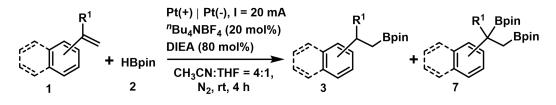

Figure S1. (a, b, c) Set-up diagrams of undivided cell electrolysis. (d) Device for gram scale synthesis.

Figure S2. Varying degrees of attachment of unknown yellow compounds on the anode surface after the electrolyzed reaction between styrene and HBpin under different conditions. (a) In the absence of THF and DIEA. (b) In the absence of DIEA. (c) Under the standard conditions. The cathode is in the left and the anode is on the right.

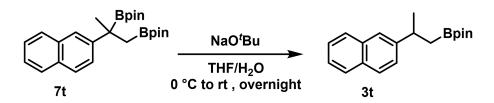


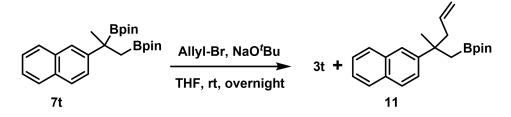
General procedures for alkene hydroboration with HBpin (3i–3r). In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm \times 15 mm \times 0.3 mm) as both anode and cathode, alkenes (1.0 mmol), HBpin (160 µL, 1.1 mmol), DIEA (132 µL, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 20 mA constant current under room temperature for 4 h, and the set-up diagrams are shown in Figure S1a–1c. After the solution of the crude products were concentrated in vacuum, the pure products (**3i–3r**) were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.



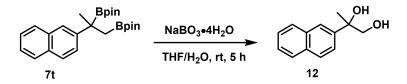
General procedures for gram scale synthesis (3a, 3b, 3d, 3e, 3g and 3h). In an

over-dried undivided three-neck flask (250 mL) equipped with two platinum electrodes (15 mm \times 15 mm \times 0.3 mm) as both anode and cathode, alkenes (10 mmol), HBpin (1.6 mL, 11 mmol), DIEA (1.32 mL, 8 mmol), "Bu₄NBF₄ (658 mg, 2 mmol), CH₃CN (80 mL) and THF (20 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 45 mA constant current under room temperature for 12 h, and the set-up diagram is shown in Figure S1d. After the solution of the crude products were concentrated in vacuum, the pure products were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.


General procedures for alkene diborylation with HBpin (7a, 7b and 7g). In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm \times 15 mm \times 0.3 mm) as both anode and cathode, alkenes (1.0 mmol), HBpin (1280 µL, 8.8 mmol), DIEA (132 µL, 0.8 mmol), ^{*n*}Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 20 mA constant current under room temperature for 4 h, and the set-up diagrams are shown in Figure S1a-1c. After the solution of the crude products were concentrated in vacuum, the pure products were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.


General procedures for alkene diborylation with HBpin (7r–7t). In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, alkenes (1.0 mmol), HBpin (640 μ L, 4.4 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF

(2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 20 mA constant current under room temperature for 4 h, and the set-up diagrams are shown in Figure S1a–1c. After the solution of the crude products were concentrated in vacuum, the pure products (7r-7t) were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.


General procedures for the transformations of diboronate ester 7t.

A Schlenk tube (10 mL) equipped with a magnetic stir bar was added with diboronate ester **7t** (84 mg, 0.20 mmol), NaO'Bu (19 mg, 0.20 mmol) and THF (1.0 mL) at 0 °C, followed by three drops of water. The resulting solution was warming to room temperature overnight. Then the mixture was diluted with CH_2Cl_2 , dried with anhydrous Na₂SO₄ and filtered with diatomite. After the solution was concentrated in vacuum, the pure product **3t** (36 mg, 0.12 mmol, 61% yield) was obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

In an argon-filled glove-box, a Schlenk tube (10 mL) equipped with a magnetic stir bar was added with diboronate ester **7t** (84 mg, 0.20 mmol), NaO'Bu (192 mg, 2.00 mmol), Allyl-Br (86 μ L, 1.00 mmol) and anhydrous THF (1.0 mL) at room temperature, then the mixture was stirred overnight. Then the mixture was diluted with CH₂Cl₂ and filtered with diatomite. After the solution was concentrated in vacuum, the pure product **3t** (17 mg, 0.06 mmol, 29% yield) and **11** (30 mg, 0.09 mmol, 45% yield) were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

A Schlenk tube (10 mL) equipped with a magnetic stir bar was added with diboronate ester **7t** (127 mg, 0.30 mmol), NaBO₃•4H₂O (370 mg, 2.40 mmol), THF (3.0 mL) and H₂O (3.0 mL) at room temperature, then the resulting solution was stirred for 5 h and quenched with saturated Na₂S₂O₃ aqueous solution. Then the mixture was extracted with CH₂Cl₂, dried with anhydrous Na₂SO₄ and filtered with diatomite. After the solution was concentrated in vacuum, the pure product **12** (57 mg, 0.28 mmol, 94% yield) was obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

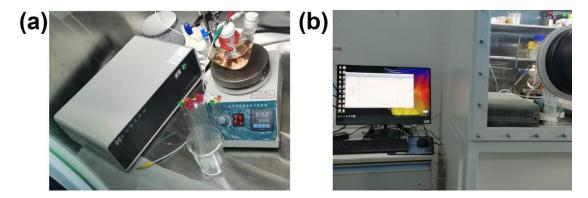
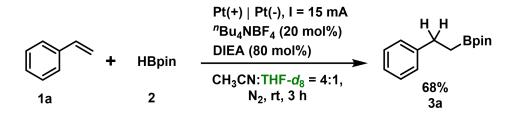
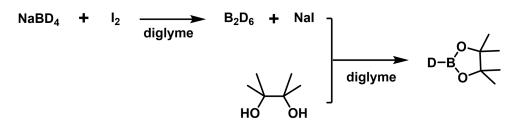
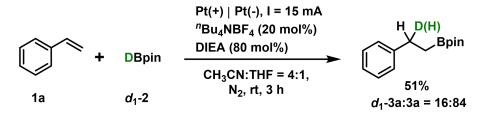
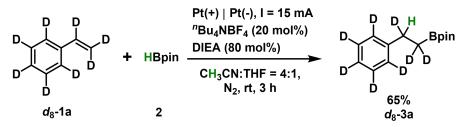



Figure S3. (a, b) Set-up diagrams for *in situ* ¹H NMR experiments.


In situ ¹H NMR experiments to monitor the electrochemical reaction between styrene and HBpin. In an over-dried undivided three-neck flask (250 mL) equipped with two platinum electrodes (15 mm \times 15 mm \times 0.3 mm) as both anode and cathode, styrene (1.14 mL, 10 mmol), HBpin (11 mmol or 88 mmol), DIEA (1.32 mL, 8 mmol), ^{*n*}Bu₄NBF₄ (658 mg, 2 mmol), CH₃CN (80 mL) and THF (20 mL) were added in an argon-filled glove box. Then the reaction mixture was stirred and electrolyzed at a 45 mA constant current under room temperature for 12 h, and the set-up diagram is shown in Figure S3. The ¹H NMR spectra were collected every 0.5 h. The test samples were made up of 0.3 mL original samples and 0.2 mL CD₃CN, and the sample collection was completed in the glove box.


Deuterium-labelling experiment in THF-*d*₈. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF-*d*₈ (2 mL) were added under argon atmosphere. Then the mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. After the solution of the crude product was concentrated in vacuum, the pure product **3a** was obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.


Deuterium-labelling experiment in CD₃**CN.** In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CD₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. After the solution of the crude products were concentrated in vacuum, the mixed products *d*₁-3a and 3a were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

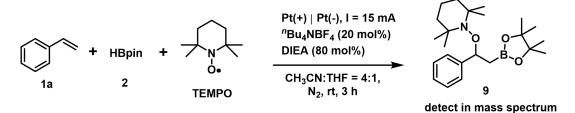
Preparation of DBpin. The procedures were conducted the literature method.¹⁻² A suspension solution of NaBD₄ (0.5 g, 12.2 mmol) in diglyme (10 mL) was added to the Schlenk tube equipped with a magnetic stir bar in an argon atmosphere. Then the above tube was connected to the second Schlenk tube with the cooled solution (0 °C) of pinacol (0.48 g, 4.08 mmol) in absolute THF (5 mL) *via* a plastic cannula, and the cannula submersed in THF solution. Iodine (1.55 g, 6.11 mmol) was dissolved in diglyme (6 mL) and the solution was slowly added to the NaBD₄ suspension over 1 h with a syringe. At the end of the addition of iodine, stream of N₂ was pass through the THF solution for about 2 h to remove the excess unreacted B₂D₆ at room temperature. ¹H NMR data confirmed that the transformation of pinacol was completed. The 3.0 mL of THF solution was considered to be concentrated at 1.36 M DBpin.

Deuterium-labelling experiment with DBpin. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), DBpin (0.8 mL, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (1.4 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. After the solution of the crude products were concentrated in vacuum, the mixed products *d*₁-3a and 3a were obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.

Deuterium-labelling experiment with d_8 -styrene. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, d_8 -styrene (114 µL, 1.0 mmol), HBpin (160 µL, 1.1 mmol), DIEA (132 µL, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. After the solution of the crude product was concentrated in vacuum, the pure product d_8 -3a was obtained by flash chromatography on silica gel using petroleum and ethyl acetate as eluent.


H₂ detection experiment under the standard conditions. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. A large number of tiny bubbles were observed during electrolysis and the release rate (mL·min⁻¹) of gas with time was analyzed by SHIMADZU GC-2014 gas chromatography instrument.

H₂ detection experiment to monitor the electrochemical reaction in the absence of styrene and HBpin. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. The release rate (mL·min⁻¹) of gas during the electrochemical reaction with time was analyzed by SHIMADZU GC-2014 gas chromatography instrument. H_2 detection experiment to monitor the electrochemical reaction in the absence of styrene, HBpin, DIEA and THF. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, "Bu₄NBF₄ (65.8 mg, 0.2 mmol) and CH₃CN (8 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. The release rate (mL·min⁻¹) of gas during the electrochemical reaction with time was analyzed by SHIMADZU GC-2014 gas chromatography instrument.


H₂ detection experiment to monitor the electrochemical reaction in the absence of DIEA. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. The release rate (mL·min⁻¹) of gas during electrolysis with time was analyzed by SHIMADZU GC-2014 gas chromatography instrument.

H₂ detection experiment to monitor the electrochemical reaction in the absence of styrene, HBpin and DIEA. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, *n*Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h. The release rate (mL·min⁻¹) of gas during the electrochemical reaction with time was analyzed by SHIMADZU GC-2014 gas chromatography instrument.

three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), galvinoxyl radical (422 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h, and the yield of product **3a** was determined by gas chromatography analysis. The adduct **8** of galvinoxyl radical and boron radical was determined by mass spectrometry.

Radical inhibition experiment with 2,2',6,6'-tetramethyl-1-piperidinyloxy (TEMPO). In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then different equivalents (0.25, 0.50, 0.75 or 1.0 mmol) of TEMPO were added to this system, respectively. The reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature for 3 h, and the yield of product **3a** was determined by gas chromatography analysis. The adduct **9** of carbon radical at the benzyl site with TEMPO was determined by mass spectrometry.

The radical inhibition experiment using 2-vinylphthalene as substrate was similar to the above method. The adducts of boron radical (namely compound **13**) and carbon radical (namely compound **14**) at the benzyl site with TEMPO were determined by gas chromatography-mass spectrometry and mass spectrometry, respectively.

Procedures for cyclic voltammetry (CV) in CH₃CN. Cyclic voltammetry experiments were conducted in a 10 mL three-electrode cell equipped with a glassy carbon working electrode, a Ag/AgCl reference electrode and a platinum wire counter

electrode, and the reference electrode was submerged in a saturated aqueous KCl solution. The CV experiments were performed in CH₃CN (10 mL) with "Bu₄NBF₄ (32.9 mg, 0.1 mmol). The scan rate was 100 mV·S⁻¹ and the potential range was 0-5 V. The current was reported in mA and potential were reported in V against $Fc^{+/0}$ redox couple.

Procedures for cyclic voltammetry (CV) of DIEA in CH₃CN. Cyclic voltammetry experiments were conducted in a 10 mL three-electrode cell equipped with a glassy carbon working electrode, a Ag/AgCl reference electrode and a platinum wire counter electrode, and the reference electrode was submerged in a saturated aqueous KCl solution. The CV experiments were performed in CH₃CN (10 mL) containing n Bu₄NBF₄ (32.9 mg, 0.1 mmol) and DIEA (16.5 µL, 0.1 mmol). The scan rate was 100 mV·S⁻¹ and the potential range was 0-5 V. The current was reported in mA and potential were reported in V against Fc^{+/0} redox couple.

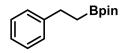
Procedures for cyclic voltammetry (CV) of HBpin in CH₃CN. Cyclic voltammetry experiments were conducted in a 10 mL three-electrode cell equipped with a glassy carbon working electrode, a Ag/AgCl reference electrode and a platinum wire counter electrode, and the reference electrode was submerged in a saturated aqueous KCl solution. The CV experiments were performed in CH₃CN (10 mL) containing n Bu₄NBF₄ (32.9 mg, 0.1 mmol) and HBpin (14.5 µL, 0.1 mmol). The scan rate was 100 mV·S⁻¹ and the potential range was 0-5 V. The current was reported in mA and potential were reported in V against Fc^{+/0} redox couple.

EPR experiment under the standard conditions. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), DMPO (113 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature. After 30 min, the solution was taken out and injected into a capillary tube with one end closed, then the solution was analyzed by EPR spectrometer at room temperature. Only one type of racial had been trapped by

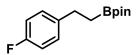
DMPO: DMPO–H: g =2.0071, *A*_N = 14.74 G, *A*_H = 19.74 G.

EPR experiment to monitor the electrochemical reaction in the absence of HBPin.

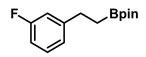
In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, styrene (114 μ L, 1.0 mmol), DIEA (132 μ L, 0.8 mmol), DMPO (113 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature. After 30 min, the solution was taken out and injected into a capillary tube with one end closed, then the solution was analyzed by EPR spectrometer at room temperature. Two type of radicals had been trapped by DMPO: DMPO–H and DMPO–CH₂CN (**10**, g = 2.0052, $A_N = 14.47$ G, $A_H = 20.82$ G).

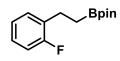

EPR experiment to monitor the electrochemical reaction in the absence of styrene. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, HBpin (160 μ L, 1.1 mmol), DIEA (132 μ L, 0.8 mmol), DMPO (113 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature. After 30 min, the solution was taken out and injected into a capillary tube with one end closed, then the solution was analyzed by EPR spectrometer at room temperature. Only DMPO–H was detected.

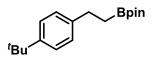
EPR experiment to monitor the electrochemical reaction in the absence of styrene and HBpin. In an over-dried undivided three-neck flask equipped with two platinum electrodes (15 mm × 15 mm × 0.3 mm) as both anode and cathode, DIEA (132 μ L, 0.8 mmol), DMPO (113 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature. After 30 min, the solution was taken out and injected into a capillary tube with one end closed, the the solution was analyzed by EPR spectrometer at room temperature. Two type of radicals had been trapped by DMPO: DMPO–H and **10**.

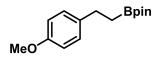

EPR experiment to monitor the electrochemical reaction in the absence of

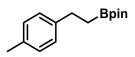
styrene, HBpin and DIEA. In an over-dried undivided three-neck flask equipped with two platinum electrodes ($15 \text{ mm} \times 15 \text{ mm} \times 0.3 \text{ mm}$) as both anode and cathode, DMPO (113 mg, 1.0 mmol), "Bu₄NBF₄ (65.8 mg, 0.2 mmol), CH₃CN (8 mL) and THF (2 mL) were added under argon atmosphere. Then the reaction mixture was stirred and electrolyzed at a 15 mA constant current under room temperature. After 30 min, the solution was taken out and injected into a capillary tube with one end closed, then the solution was analyzed by EPR spectrometer at room temperature. Two type of radicals had been trapped by DMPO: DMPO–H and **10**. The reduction state of the corresponding adduct **10** was detected by mass spectrometry.

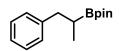

III. Spectroscopic Data of Products

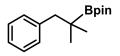

4,4',5,5'-Tetramethyl-2-phenethyl-1,3,2-dioxaborolane (3a)³: Colorless oil was obtained in 70% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.19-7.24 (m, 4H), 7.12-7.15 (m, 1H), 2.74 (t, J = 8.0 Hz, 2H), 1.20 (s, 12H), 1.13 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.5, 128.3, 128.1, 125.6, 83.2, 30.1, 24.9.
¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.02.

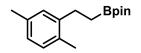

2-(4-Fluorophenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3b)³: Colorless oil was obtained in 69% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.14-7.17 (m, 2H), 6.91-6.95 (m, 2H), 2.71 (t, *J* = 8.0 Hz, 2H), 1.21 (s, 12H), 1.11 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.4 (d, *J* = 241.0 Hz), 140.1 (d, *J* = 3.0 Hz), 129.5 (d, *J* = 8.0 Hz), 115.0 (d, *J* = 21.0 Hz), 83.3, 29.3, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.61. ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ – 118.37.

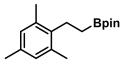

2-(3-Fluorophenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3c)⁴: Colorless oil was obtained in 61% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.17-7.22 (m, 1H), 6.97-6.99 (m, 1H), 6.91-6.94 (m, 1H), 6.81-6.85 (m, 1H), 2.75 (t, *J* = 8.0 Hz, 2H), 1.22 (s, 12H), 1.13 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.2 (d, *J* = 243.0 Hz), 147.1 (d, *J* = 7.0 Hz), 129.6 (d, *J* = 8.0 Hz), 123.8 (d, *J* = 2.0 Hz), 115.1 (d, *J* = 21.0 Hz), 112.5 (d, *J* = 21.0 Hz), 83.3, 29.8, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.77. ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ – 114.20.

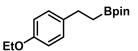

4,4',5,5'-Tetramethyl-2-(2-fluorophenylethyl)-1,3,2-dioxaborolane (3d)⁵: Colorless oil was obtained in 66% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.21-7.25 (m, 1H), 7.10-7.16 (m, 1H), 7.01-7.05 (m, 1H), 6.95-7.00 (m, 1H), 2.78 (t, J= 8.0 Hz, 2H), 1.22 (s, 12H), 1.15 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.4 (d, J = 243.0 Hz), 131.3 (d, J = 16.0 Hz), 130.2 (d, J = 6.0 Hz), 127.3 (d, J = 8.0 Hz), 123.9 (d, J = 3.0 Hz), 115.2 (d, J = 22.0 Hz), 83.2, 24.9, 23.3 (d, J = 2.0 Hz). ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.77. ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -118.78.

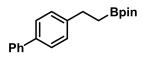

2-(4-(Tert-Butyl)phenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane(3e)⁵:Colorless oil was obtained in 74% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.28-7.30 (m, 2H), 7.14-7.16 (m, 2H), 2.72 (t, J = 8.0 Hz, 2H), 1.30 (s, 9H), 1.22 (s, 12H), 1.14 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 148.4, 141.5, 127.7, 125.2, 83.2, 34.5, 31.6, 29.5, 25.0. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.91.

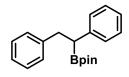

2-(4-Methoxyphenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3f)³: Colorless oil was obtained in 69% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.14 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 3.78 (s, 3H), 2.69 (t, *J* = 8.0 Hz, 2H), 1.22 (s, 12H), 1.12 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 157.8, 136.7, 129.0, 113.7, 83.2, 55.4, 29.2, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.79.


4,4',5,5'-Tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane (3g)³: Colorless oil was obtained in 77% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ7.09 (q, J = 8.0 Hz, 4H), 2.73 (t, J = 8.0 Hz, 2H), 2.32 (s, 3H), 1.25 (s, 12H), 1.14 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ141.5, 134.9, 129.0. 128.0, 83.2, 29.6, 24.9, 21.1. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ34.09.


4,4',5,5'-Tetramethyl-2-(1-phenylpropan-2-yl)-1,3,2-dioxaborolane(3h)³:Colorless oil was obtained in 71% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.13-7.24 (m, 5H), 2.81 (dd, J = 8.0, 12.0 Hz, 1H), 2.55 (dd, J = 8.0, 12.0 Hz, 1H),1.33-1.38 (m, 1H), 1.19 (s, 6H), 1.18 (s, 6H), 0.97 (d, J = 8.0 Hz, 3H). ¹³C NMR (100MHz, CDCl₃, ppm): δ 142.5, 129.0, 128.1, 125.7, 83.1, 39.1, 24.8, 15.3. ¹¹B NMR(128 MHz, CDCl₃, ppm): δ 34.31.


4,4',5,5'-Tetramethyl-2-(2-methyl-1-phenylpropan-2-yl)-1,3,2-dioxaborolane (3i)⁶: Colorless oil was obtained in 57% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.14-7.23 (m, 5H), 2.62 (s, 2H), 1.22 (s, 12H), 0.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): *δ* 140.6, 130.3, 127.8, 125.8, 83.2, 46.5, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): *δ* 34.60.


2-(2,5-Dimethylphenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3j)⁵: Colorless oil was obtained in 70% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.03 (d, J = 8.0 Hz, 2H), 6.90-6.91 (m, 1H), 2.70 (t, J = 8.0 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H), 1.26 (s, 12H), 1.11 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.4, 135.2, 132.6, 130.0, 129.1, 126.4, 83.2, 27.3, 24.9, 21.1, 18.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.03.

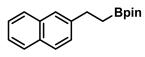

4,4',5,5'-Tetramethyl-2-(2,4,6-trimethylphenethyl)-1,3,2-dioxaborolane (3k)⁴: Pale yellow solid was obtained in 67% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 6.82 (s, 2H), 2.68 (t, *J* = 8.0 Hz, 2H), 2.30 (s, 6H), 2.25 (s, 3H), 1.28 (s, 12H), 0.96 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 138.6, 135.8, 134.8, 128.9, 83.2, 25.0, 23.4, 20.9, 19.8. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.84.

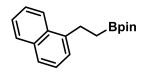
2-(4-Ethoxyphenethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3l): Colourless oil was obtained in 61% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.11 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.8 Hz, 2H), 3.99 (q, *J* = 6.8 Hz, 2H), 2.70 (t, *J* = 8.0 Hz, 2H), 1.39 (t, *J* = 6.8 Hz, 3H), 1.22 (s, 12H), 1.13 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 157.0, 136.5, 128.9, 114.3, 83.0, 63.4, 29.1, 24.9, 15.0. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.03. FT-IR (ATR): 3031, 2978, 2927, 2871, 1612, 1511, 1370, 1319, 1239, 1143, 1049, 967, 850, 804, 521. ESI-HRMS (*m/z*): cacld. for [**3l** + H]⁺: 276.2006; found: 276.2006.



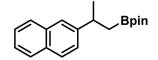
(2-([1,1'-Biphenyl]-4-yl)ethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3m)⁴: White solid was obtained in 57% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.58-7.60 (m, 2H), 7.51-7.54 (m, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.30-7.35 (m, 3H), 2.81 (t, J = 8.0 Hz, 2H), 1.25 (s, 12H), 1.20 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 143.7, 141.4, 138.6, 128.8, 128.6, 127.1, 127.1, 127.0, 83.3, 29.7, 25.0. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.01.

(1,2-Diphenylethyl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3n)⁵: Colorless oil was obtained in 65% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.12-7.25 (m, 10H), 3.12-3.18 (m, 1H), 2.94-2.99 (m, 1H), 2.66-2.70 (m, 1H), 1.11 (s, 6H), 1.10 (m, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.7, 141.9, 129.0, 128.5, 128.5, 128.2, 125.9, 125.5, 83.5, 39.0, 24.7, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.08.

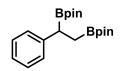

(2,3-Dihydro-1H-inden-2-yl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (30)³: Colorless oil was obtained in 65% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.21-7.23 (m, 2H), 7.11-7.13 (m, 2H), 2.95-3.11 (m, 4H), 1.84-1.94 (m, 1H), 1.27 (s, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.5, 126.0, 124.3, 83.4, 35.3, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.56.


4,4',5,5'-Tetramethyl-2-(1,2,3,4-tetrahydro-2-naphthalenyl)-1,3,2-dioxaborolane (3p)³: Colorless oil was obtained in 64% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.09 (s, 4H), 2.75-2.92 (m, 4H), 2.04-2.07 (m, 1H), 1.64-1.74 (m, 1H), 1.35-1.41 (m, 1H), 1.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 137.4, 136.9, 129.0, 128.9, 125.3, 83.0, 30.6, 29.7, 24.8, 24.7, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.08.

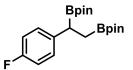
(1,2-Dihydroacenaphthylen-1-yl)-4,4',5,5'-tetramethyl-1,3,2-dioxaborolane (3q)⁷: Pale yellow oil was obtained in 84% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.56-7.60 (m, 2H), 7.42-7.46 (m, 2H), 7.34-7.35 (m, 1H), 7.28-7.30 (m, 1H), 3.55 (d, J = 6.4 Hz, 2H), 3.30 (t, J = 6.8 Hz, 1H), 1.27 (d, J = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.5, 146.5, 139.2, 131.9, 128.0, 127.8, 122.2, 121.8, 119.2, 119.0, 83.8, 33.2, 25.1, 24.7, 24.7. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.34.

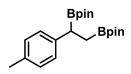


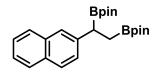
4,4',5,5'-Tetramethyl-2-(2-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane (3r)⁸: Colourless oil was obtained in 6% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.74-7.80 (m, 3H), 7.45-7.65 (m, 1H), 7.36-7.45 (m, 3H), 2.92 (t, J = 8 Hz, 2H), 1.24 (m, 2H), 1.22 (s, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.1, 133.8, 132.1, 127.8, 127.7, 127.6, 127.4, 125.9, 125.8, 125.0, 83.3, 30.4, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.79.

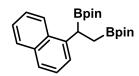


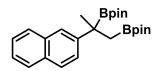
4,4',5,5'-Tetramethyl-2-(2-(naphthalen-1-yl)ethyl)-1,3,2-dioxaborolane (3s)³:


Colourless oil was obtained in 3% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.13 (d, *J* =8.4 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.56-7.73 (m, 1H), 7.42-7.48 (m, 2H), 3.27 (t, *J* = 8.0 Hz, 2H), 1.35 (t, *J* = 8.0 Hz, 2H), 1.28 (s, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 140.5, 133.9, 131.9, 128.8, 126.4, 125.7, 125.7, 125.4, 125.1, 124.1, 83.2, 27.1, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.08.

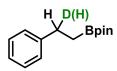

4,4',5,5'-Tetramethyl-2-(2-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane (3t)³: Colourless oil was obtained in 2% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.76-7.79 (m, 3H), 7.67 (s, 1H), 7.39-7.46 (m, 3H), 3.20-3.26 (m, 1H), 1.39 (d, J =6.8 Hz, 3H), 1.27-1.29 (m, 2H), 1.16 (s, 12H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.8, 133.7, 132.2, 127.9, 127.7, 127.7, 126.0, 125.8, 125.1, 124.5, 83.1, 36.0, 24.9, 24.9, 24.8. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.03.


2,2'-(1-Phenylethane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxaborolane) (7a)⁹: Colourless oil was obtained in 41% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.22 (d, J = 4.4 Hz, 4H), 7.07-7.11 (m, 1H), 2.51 (dd, J = 5.6, 10.8 Hz, 1H), 1.38 (dd, J = 11.2, 14.8 Hz, 1H), 1.20 (s, 12H), 1.19 (s, 6H), 1.17 (s, 6H), 1.13 (dd, J = 6.0, 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 145.5, 128.3, 128.0, 125.0, 83.3, 83.2, 25.1, 24.8, 24.8, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.03.

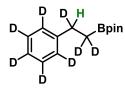

2,2'-(1-(4-Fluorophenyl)ethane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxaborol ane) (7b)¹⁰: Colourless oil was obtained in 43% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.15-7.18 (m, 2H), 6.88-6.92 (m, 1H), 2.50 (dd, J = 6.0, 10.4 Hz, 1H), 1.32 (dd, J = 10.8, 17.2 Hz, 1H), 1.19 (s, 12H), 1.18 (s, 6H), 1.17 (s, 6H), 1.07 (dd, J= 10.0, 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.1 (d, J =240.4 Hz), 141.1 (d, J = 3.0 Hz), 129.3 (d, J = 7.6 Hz), 115.0 (d, J = 20.8 Hz), 83.4, 83.2, 25.1, 24.8, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.70.


2,2'-(1-p-Tolylethane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxaborolane) (7g)⁹: White solid was obtained in 20% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.11 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 7.6 Hz, 2H), 2.47 (dd, J = 5.2, 10.8 Hz, 1H), 2.28 (s, 3H), 1.33-1.37 (m, 1H), 1.21 (s, 12H), 1.20 (s, 6H), 1.18 (s, 6H), 1.06-1.10 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.4, 134.2, 129.0, 127.9, 83.3, 83.1, 25.1, 24.8, 24.8, 24.6, 21.1. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.78.

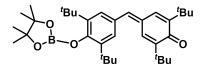
2,2'-(1-(naphthalen-2-yl)ethane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxaboro lane) (7r): White solid was obtained in 71% isolated yield, m.p. 145-146 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.70-7.77 (m, 3H), 7.65 (s, 1H), 7.34-7.42 (m, 3H), 2.69 (dd, *J* = 6.0, 11.2 Hz, 1H), 1.23-1.24 (m, 2H), 1.20 (s, 12H), 1.19 (s, 6H), 1.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.0, 133.8, 131.7, 128.0, 127.4, 127.2, 126.6, 125.6, 124.9, 123.9, 83.5, 83.2, 25.3, 24.9, 24.8, 24.7, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.04. FT-IR (ATR): 3052, 2977, 2930, 1469, 1369, 1389, 1271, 1139, 969, 845, 761, 675, 477. ESI-HRMS (*m/z*): cacld. for [**7r** + H]⁺: 407.2789; found: 407.2794.


2,2'-(1-(naphthalen-1-yl)ethane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxaboro lane) (7s): Colourless oil was obtained in 84% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.17-8.19 (m, 1H), 7.80-7.82 (m, 1H), 7.63-7.65 (m, 1H), 7.38-7.46 (m, 4H), 3.22 (dd, *J* = 6.0, 10.0 Hz, 1H), 1.24-1.25 (m, 2H), 1.21 (s, 6H), 1.20 (s, 12H), 1.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.2, 134.1, 132.1, 128.7, 125.9, 125.9, 125.3, 125.2, 125.0, 124.7, 83.5, 83.2, 25.1, 24.8, 24.8, 24.7. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.78. FT-IR (ATR): 3062, 2978, 2931, 1736, 1509, 1447, 1453, 1329, 1143, 981, 850, 779, 673. ESI-HRMS (*m/z*): cacld. for [**7s** + H]⁺: 407.2789; found: 407.2772.

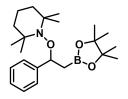
2,2'-(2-(naphthalen-2-yl)propane-1,2-diyl)bis(4,4',5,5'-tetramethyl-1,3,2-dioxabo rolane) (7t): White solid was obtained in 88% isolated yield, m.p. 84-85 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72-7.79 (m, 4H), 7.59-7.61 (m, 1H), 7.36-7.43 (m, 2H), 1.51 (s, 3H), 1.26-1.27 (m, 2H), 1.22 (s, 12H), 1.21 (s, 6H), 1.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.0, 133.8, 131.7, 128.0, 127.4, 127.2, 126.6, 125.6, 125.0, 124.0, 83.5, 83.2, 25.2, 24.9, 24.8, 24.7, 24.6. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 34.24. FT-IR (ATR): 3055, 2976, 2929, 1476, 1380, 1312, 1139, 1112, 970, 859, 747, 475. ESI-HRMS (*m/z*): cacld. for [**7t** + H]⁺: 421.2945; found: 421.2929.

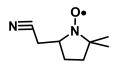

*d*₁-pinacolborane (DBPin)¹⁻²: DBpin was obtained of 1.36 M in THF. ¹H NMR (400 MHz, CDCl₃, ppm): δ 1.19 (s, 12H). ²D NMR (62 MHz, CDCl₃, ppm): δ 2.86-4.50 (br). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 83.1, 24.8. ¹¹B NMR (128 MHz, CDCl₃,

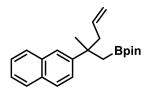
ppm): δ28.08.

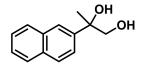


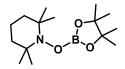
monodeuterium boronic ester d_1 -**3a**:**3a** = **84**:**16**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.24-7.25 (m, 2H), 7.20-7.21 (m, 2H), 7.13-7.15 (m, 1H), 2.71-2.76 (m, 1.16H), 1.21 (s, 12H), 1.13-1.14 (m, 2H). ²D NMR (62 MHz, CHCl₃, ppm): δ 2.74. ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.5, 128.3, 128.1, 125.6, 83.2, 29.8, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.71.

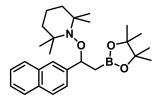

monodeuterium boronic ester *d*₁-3a:3a = 16:84: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.21-7.25 (m, 4H), 7.13-7.17 (m, 1H), 2.76 (t, *J* = 8.0 Hz, 1.84H), 1.22 (s, 12H), 1.15 (t, *J* = 8.0 Hz, 2H). ²D NMR (62 MHz, CDCl₃, ppm): δ 2.88 (d, *J* = 4.0 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.6, 128.3, 128.1, 125.6, 83.2, 30.0, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.91.


mono-proteo boronic ester *d*₈-3a: ¹H NMR (400 MHz, CDCl₃, ppm): δ 2.72 (s, 1H), 1.22 (s, 12H). ²D NMR (62 MHz, CHCl₃, ppm): δ 7.20-7.30 (m, 5D), 2.74 (s, 1D), 1.12 (s, 2D). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.3, 128.0, 127.8, 127.5, 125.1, 83.2, 29.5, 24.9. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.91.


8: ESI-HRMS (*m*/*z*): cacld. for [8 + H]⁺: 548.4146; found: 548.4141.


9: ESI-HRMS (*m*/*z*): cacld. for [**9** + H]⁺: 387.3054; found: 387.3053.

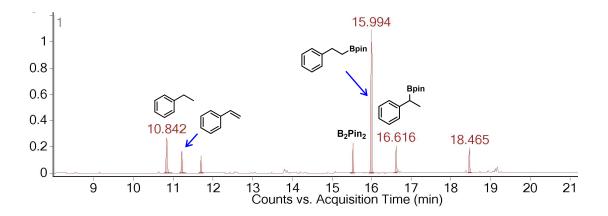

10: ESI-HRMS (m/z): cacld. for [**10** + 2H]⁺: 155.1179; found: 155.1182.


4,4',5,5'-tetramethyl-2-(2-methyl-2-(naphthalen-2-yl)pent-4-en-1-yl)-1,3,2-dioxab orolane (11): Colourless liquid was obtained in 45% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72-7.79 (m, 4H), 7.54-7.57 (m, 1H), 7.39-7.45 (m, 2H), 5.47-5.58 (m, 1H), 4.90-4.99 (m, 2H), 2.47-2.63 (m, 2H), 1.53 (s, 3H), 1.25-1.28 (m, 2H), 1.05 (s, 6H), 1.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.9, 135.8, 133.4, 131.8, 128.1, 127.5, 127.4, 125.7, 125.4, 125.2, 124.4, 117.1, 82.9, 49.5, 39.6, 27.1, 24.8, 24.7. ¹¹B NMR (128 MHz, CDCl₃, ppm): δ 33.17. FT-IR (ATR): 3058, 2976, 2925, 2855, 1734, 1355, 1325, 1143, 969, 848, 816, 746. ESI-HRMS (*m/z*): cacld. for [**11** + H]⁺: 336.2370; found: 336.2375.

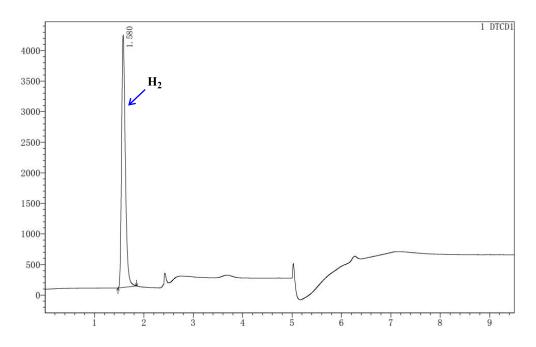
2-(naphthalen-2-yl)propane-1,2-diol (12)¹¹: White solid was obtained in 94% isolated yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.93 (s, 1H), 7.82-7.85 (m, 3H), 7.46-7.51 (m, 3H), 3.85-3.88 (m, 1H), 3.67-3.69 (m, 1H), 2.93 (br, 1H), 2.17 (br, 1H), 1.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 142.4, 133.3, 132.6, 128.3, 127.6, 126.4, 126.1, 124.1, 123.5, 75.1, 71.0, 26.1.

13: GC-MS (*m/z*): cacld. for [**13**]⁺: 282.2355; found: 282.2385.

14: ESI-HRMS (m/z): cacld. for [14 + H]⁺: 437.3210; found: 437.3218.


IV. References

- Labre, F.; Gimbert, Y.; Bannwarth, P.; Olivero, S.; Duñach, E.; Chavant, P. Y. Application of cooperative iron/copper catalysis to a palladium-free borylation of aryl bromides with pinacolborane. *Org. Lett.* 2014, *16*, 2366–2369.
- (2) Espinal-Viguri, M.; Neale, S. E; Coles, N. T.; Macgregor, S. A.; Webster, R. L. Room temperature iron-catalyzed transfer hydrogenation and regioselective deuteration of carbon-carbon double bonds. *J. Am. Chem. Soc.* 2019, 141, 572–582.
- (3) Liu, Y.; Zhou, Y.; Wang, H.; Qu, J. FeCl₂-catalyzed hydroboration of aryl alkenes with bis(pinacolato)diboron. *RSC Adv.* **2015**, *5*, 73705–73713.
- (4) Li, J.-F.; Wei, Z.-Z.; Wang, Y.-Q.; Ye, M. Base-free nickel-catalyzed hydroboration of simple alkenes with bis(pinacolato)diboron in an alcoholic solvent. *Green Chem.* 2017, *19*, 4498–4502.
- (5) Bismuto, A.; Cowley, M. J.; Thomas, S. P. Aluminum-catalyzed hydroboration of alkenes. ACS Catal. 2018, 8, 2001–2005.
- (6) Dudnik, A. S.; Fu, G. C. Nickel-catalyzed coupling reactions of alkyl electrophiles, including unactivated tertiary halides, to generate carbon-boron bonds. J. Am. Chem. Soc. 2012, 134, 10693–10697.
- (7) Ondrusek, B. A.; Opalka, S. M.; Hietsoi, O.; Shatruk, M.; McQuade, D. T.


Structure and reactivity of a Copper-(I)-fused *N*-heterocyclic carbene complex: reactivity toward styrenic and strained alkenes. *Synlett* **2013**, *24*, 1211–1214.

- (8) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. A. Cobalt-catalyzed alkene hydroboration with pinacolborane. *Angew. Chem., Int. Ed.* **2014**, *53*, 2696–2700.
- (9) Rzhevskiy, S. A. *et al.* New expanded-ring NHC platinum(0) complexes: synthesis, structure and highly efficient diboration of terminal alkenes. *J. Organometal. Chem.* 2020, *912*, 121140–121147..
- (10) Biosca, M.; Magre, M.; Pàmies, O.; Diéguez, M. Asymmetric hydrogenation of disubstituted, trisubstituted, and tetrasubstituted minimally functionalized olefins and cyclic β-enamides with easily accessible Ir–P,oxazoline catalysts. ACS Catal. 2018, 8, 10316–10320.
- (11) Witten, M. R.; Jacobsen, E. N. A simple primary amine catalyst for enantioselective α-hydroxylations and α-fluorinations of branched aldehydes. Org. Lett. 2015, 17, 2772–2775.

V. Gas Spectra

Figure S4. GC–MS spectrum of the hydroboration reaction between styrene and HBpin in the CH₃CN/THF mixture under the standard conditions.

Figure S5. GC spectrum of gases produced in the hydroboration reaction between styrene and HBpin in the CH₃CN/THF mixture under the standard conditions.

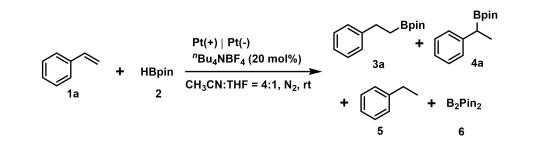
VI. Electrochemical Conditions Screening

la la	Pt(+) Pt(-), I = 15 ⁿ Bu ₄ NBF ₄ (20 mo + HBpin 2 2	l%)	$\begin{array}{c} \text{Bpin} \\ + \\ + \\ + \\ B_2 \text{Pin}_2 \\ 6 \end{array}$
Entry	Solvent	Yield of 3a (%) ^b	3a/4a/5/6 ^c
1	$CH_3CN:THF = 7:3$	49	59:8:21:12
2	CH ₃ CN:THF = 4:1	56	62:9:17:12
3	$CH_3CN:THF = 9:1$	43	57:9:24:10
4	$CH_{3}CN:THF = 9.5:0.5$	49	60:6:20:14
5	$CH_3CN:Et_2O = 4:1$	45	77:0:13:10
6	$CH_3CN:1,4$ -dioxane = 4:1	48	62:0:28:10

Table S1. Screening of solvent^a

^{*a*}Reaction conditions: **1a** (1.0 mmol), **2** (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=15 mA, solvent, the total volume of the solvent is 10 mL, N₂, rt, 3 h.

^bThe yields of **3a** were determined by gas chromatography (GC) analysis using naphthalene as internal standard.


Table S2. Screening of electrode and temperature^a

la 1a	+ HBpin 2 HBpin 2 HBpin 2 HBpin 2 H3CN:THF = 4:1, N ₂ , rt, 3 h	í VÝ V	$\begin{array}{c} \text{Bpin} \\ + \\ + \\ + \\ + \\ + \\ B_2 \text{Pin}_2 \\ 6 \end{array}$
Entry	Variation from the standard conditions	Yield of 3a(%) ^b	3a/4a/5/6 ^c
1	C(+) Pt(-), 40 °C	20	59:0:36:5
2	Pt(+) Ni(-), 40 °C	40	56:27:9:8
3	C(+) Pt(-)	31	63:0:30:7
4	Pt(+) Ni(-)	51	57:9:24:10
5	60 °C	38	59:6:27:8
6	40 °C	42	60:8:22:10
7	none	56	62:9:17:12
8	0 °C	53	61:10:17:12

^{*a*}Reaction conditions: **1a** (1.0 mmol), **2** (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=15 mA, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 10 mL, N₂, rt, 3 h.

^bThe yields of **3a** were determined by gas chromatography (GC) analysis using naphthalene as internal standard.

 Table S3. Screening of time, current and electrolyte^a

Entry	Variation from the standard conditions	Yield of $3a (\%)^b$	3a/4a/5/6°
1	2 h	39	59:9:23:9
2	4 h	55	68:7:10:15
3	10 mA	37	68:8:8:16
4	13 mA	49	65:9:14:12
5	none	56	67:7:15:11
6	20 mA	51	57:8:25:10
7	30 mA	53	55:14:27:4
8	0.5 eq. "Bu4NBF4	51	58:10:20:12

^{*a*}Reaction conditions: **1a** (1.0 mmol), **2** (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=15 mA, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 10 mL, N₂, rt, 3 h.

^bThe yields of **3a** were determined by gas chromatography (GC) analysis using naphthalene as internal standard.

Ta 1a	+ HBpin 2 + HBpin Pt(+) Pt(-) "Bu ₄ NBF ₄ Additives CH ₃ CN:TI N ₂ , rt	(20 mol%) HF = 4:1, 3a	Bpin +
Entry	Additives	Yield of $3a (\%)^b$	3a/4a/5/6 ^c
1^a	Et ₃ N (1.1 eq.)	44	65:10:23:2
2 ^{<i>c</i>}	Et ₃ N (1.1 eq.)	51	75:10:13:2
3 ^{<i>a</i>}	DIEA (1.1 eq.)	60	73:10:13:4
4 ^{<i>c</i>}	DIEA (1.1 eq.)	67	76:11:12:1
5 ^c	DIEA (0.9 eq.)	71	76:7:14:3
6 ^{<i>c</i>}	DIEA (0.8 eq.)	72	82:5:11:2
7 ^c	DIEA (0.65 eq.)	69	79:7:11:3
8 ^c	DIEA (0.55 eq.)	70	81:5:12:2
9 ^c	DIEA (0.4 eq.)	67	74:7:15:4
10 ^c	DIEA (0.25 eq.)	63	69:7:19:5

^{*a*}Reaction conditions: **1a** (1.0 mmol), **2** (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=15 mA, additives, CH₃CN (10 mL), N₂, rt, 3 h.

^bThe yields of **3a** were determined by gas chromatography (GC) analysis using naphthalene as internal standard.

^{*c*}Reaction conditions: **1a** (1.0 mmol), **2** (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=15 mA, additives, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 10 mL, N₂, rt, 3 h.

	Pt(+) Pt(-) ^{//} Bu ₄ NBF ₄ (20 mol%) DIEA (80 mol%)	Bpin
1a	 HBpin CH₃CN:THF = 4:1, N₂, rt, 12 h 	3a
Entry	Current	Yield of 3a (%) ^b
1	15 mA	31
2	30 mA	46
3	45 mA	61

Table S5. Screening of current in gram-scale experiments^a

^{*a*}Reaction conditions: **1a** (10 mmol), **2** (11 mmol), DIEA (80 mol%), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 100 mL, N₂, rt, 12 h.

^bIsolated yields are shown.

Table S6. Screening of the molar ratio of 2-vinylphthalene to HBpin to prepare diboronate ester $7r^a$

+ HBpin 1r 2	Pt(+) Pt(-), I = 20 mA ⁿ Bu ₄ NBF ₄ (20 mol%) DIEA (80 mol%) CH ₃ CN:THF = 4:1, N ₂ , rt, 4 h	Bpin 3r	Bpin Bpin Bpin 7r
Entry	1r:2 (mol:mo	ol)	3r:7r ^b
1	1:1.1		65:35
2	1:2.2		38:61
3	1:3.3		14:86
4	1:4.4		9:91

^{*a*}Reaction conditions: **1r** (1.0 mmol), **2**, DIEA (80 mol%), ^{*n*}Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=20 mA, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 10 mL, N₂, rt, 4 h.

^bThe yield ratios of $3\mathbf{r}$ to $7\mathbf{r}$ were determined by the peak area ratios of gas chromatography (GC).

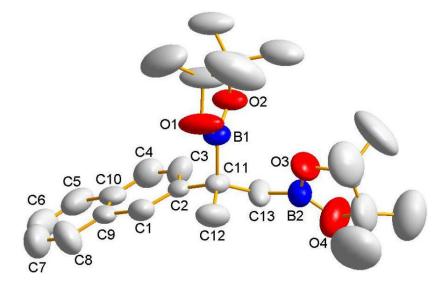

+ 1a	$\begin{array}{c} Pt(+) \mid Pt(-), \ I = 20 \ mA \\ {}^{n}Bu_{4}NBF_{4} \ (20 \ mol\%) \\ \hline \\ DIEA \ (80 \ mol\%) \\ \hline \\ CH_{3}CN:THF = 4:1, \\ 2 \\ N_{2}, \ rt, \ 4 \ h \end{array}$	Bpin Bpin + 7a
Entry	1a:2 (mol:mol)	3a:7a ^b
1	1:4.4	65:35
2	1:6.6	53:47
3	1:8.8	40:60
4	1:10.0	40:60

Table S7. Screening of the molar ratio of styrene to HBpin to prepare diboronate ester $7a^a$

*a*Reaction conditions: **1a** (1.0 mmol), **2**, DIEA (80 mol%), *ⁿ*Bu₄NBF₄ (20 mol%), Pt(+)|Pt(-), constant current (I)=20 mA, CH₃CN:THF=4:1 (ν/ν), the total volume of the solvent is 10 mL, N₂, rt, 4 h.

^bThe yield ratios of 3a to 7a were determined by the peak area ratios of gas chromatography (GC).

VII. Crystal Information

Figure S6. ORTEP diagram of compound **7t**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms on carbons are omitted for the sake of clarity.

Compound	7t
Formula	$C_{25}H_{36}B_2O_4$
Formula weight	422.16
Crystal dimensions (mm ³)	$0.26 \times 0.25 \times 0.25$
Crystal system	monoclinic
Space group	'P 21/n'
a (Å)	6.5462(6)
b (Å)	27.280(2)
c (Å)	14.4106(12)
α (°)	90.00
eta (°)	90.549(3)
γ (°)	90.00
Volume (Å ³)	2573.4(4)
Ζ	4
T (K)	293(2)
$D_{calcd} (g \ cm^{-3})$	1.090
$\mu ~(\mathrm{mm}^{-1})$	0.070
F (000)	912
No. of rflns. collected	21174
No. of indep. rflns. $/R_{int}$	3893 / 0.0551
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	2526
Data / restraints / parameters	3893 / 103 / 308
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.1499 / 0.3733
R_1 / wR_2 (all data)	0.1952 / 0.3965
GOF (on F^2)	1.001
Largest diff. peak and hole (e $Å^{-3}$)	0.974 / -0.359
CCDC No.	2022111

Table S8. Crystal data and structural refinement for compound 7t

Distances (Å)			
B1–O1	1.319(8)	B2–O3	1.355(9)
B1–O2	1.347(8)	B2–O4	1.320(9)
B1-C11	1.588(8)	B2-C13	1.585(11)
Angles (°)			
C2C11B1	107.1(5)	C12C11B1	109.4(5)
C13-C11-B1	111.0(5)	C11-C13-B2	111.3(6)

Table S9. Selected bond distances and angles for 7t

VIII. NMR Spectra

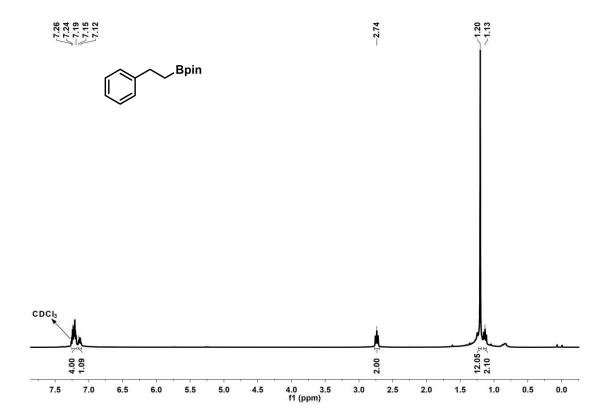


Figure S7. ¹H NMR spectrum of 3a in CDCl₃.

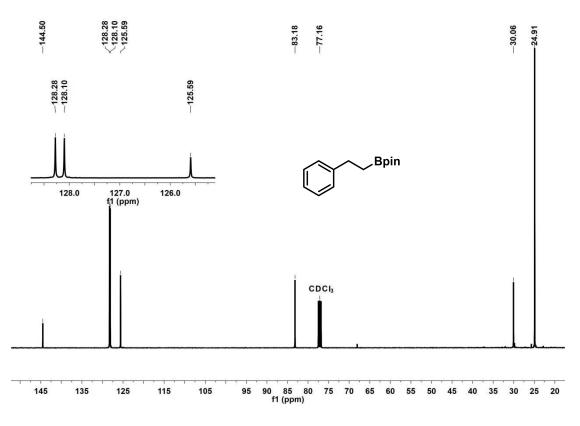


Figure S8. ¹³C NMR spectrum of 3a in CDCl₃.

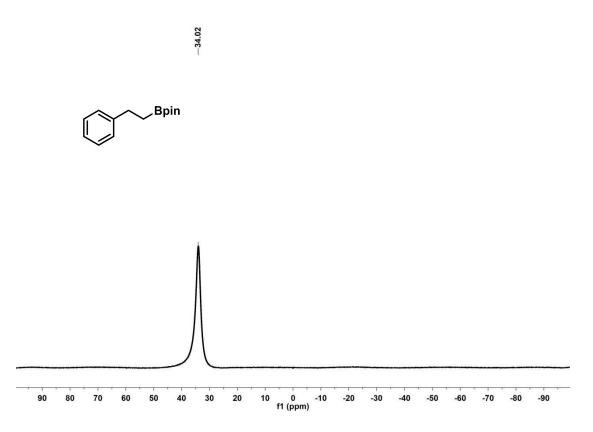


Figure S9. ¹¹B NMR spectrum of 3a in CDCl₃.

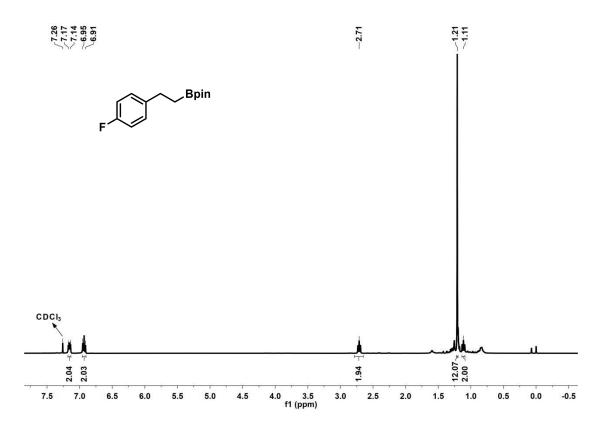


Figure S10. ¹H NMR spectrum of 3b in CDCl₃.

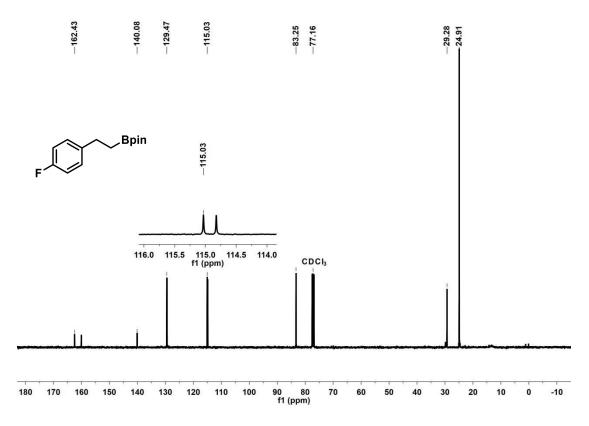


Figure S11. ¹³C NMR spectrum of **3b** in CDCl₃.

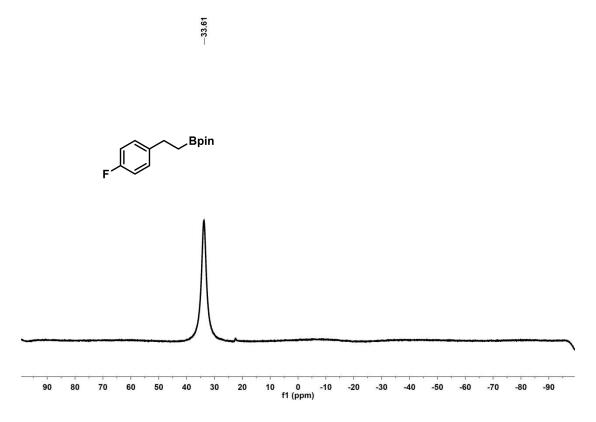


Figure S12. ¹¹B NMR spectrum of 3b in CDCl₃.

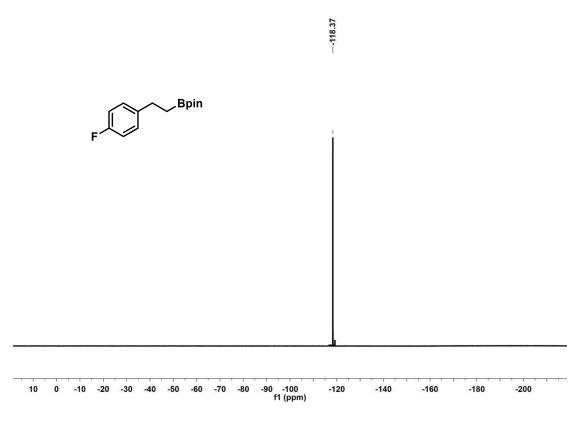


Figure S13. ¹⁹F NMR spectrum of 3b in CDCl₃.

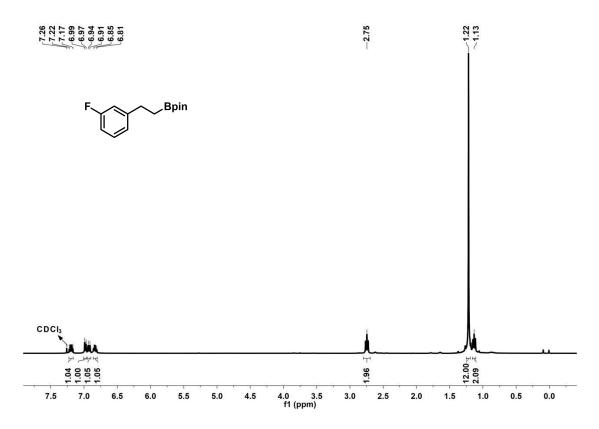


Figure S14. ¹H NMR spectrum of 3c in CDCl₃.

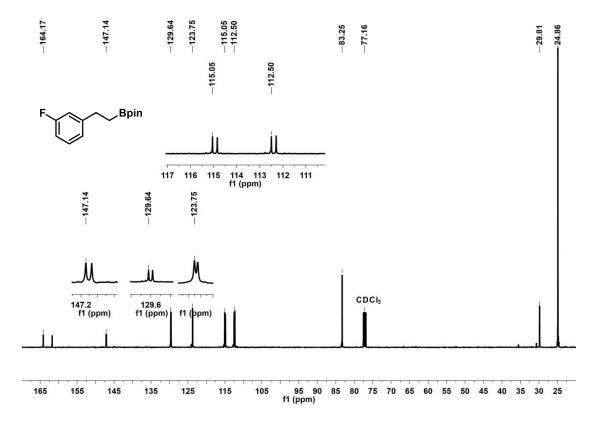


Figure S15. ¹³C NMR spectrum of 3c in CDCl₃.

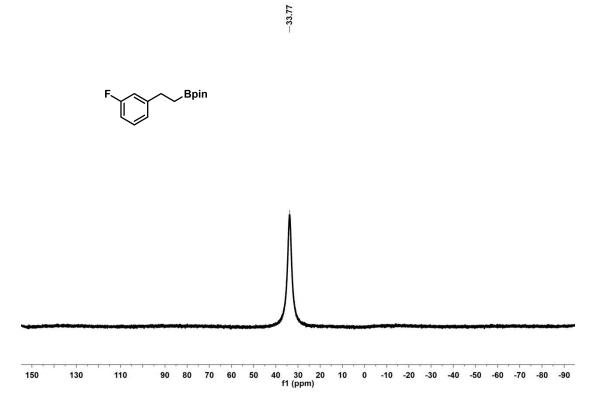


Figure S16. ¹¹B NMR spectrum of 3c in CDCl₃.

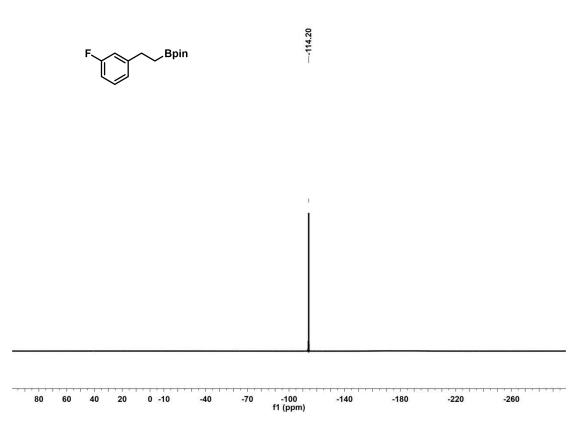


Figure S17. ¹⁹F NMR spectrum of 3c in CDCl₃.

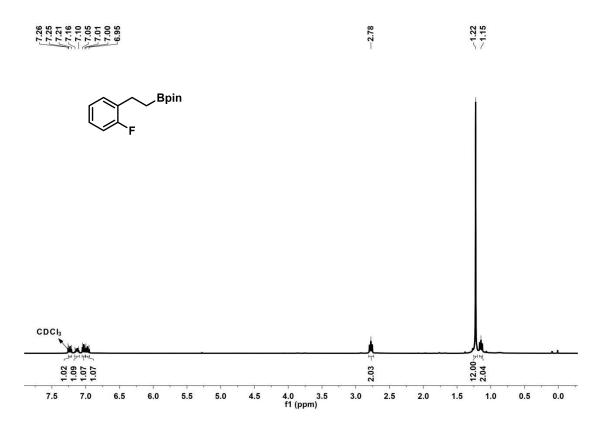


Figure S18. ¹H NMR spectrum of 3d in CDCl₃.

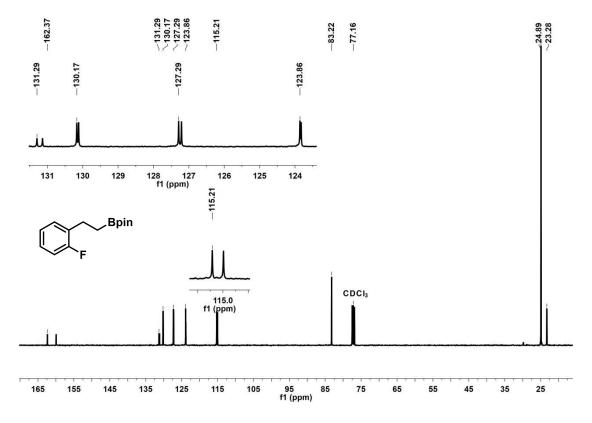


Figure S19. ¹³C NMR spectrum of 3d in CDCl₃.

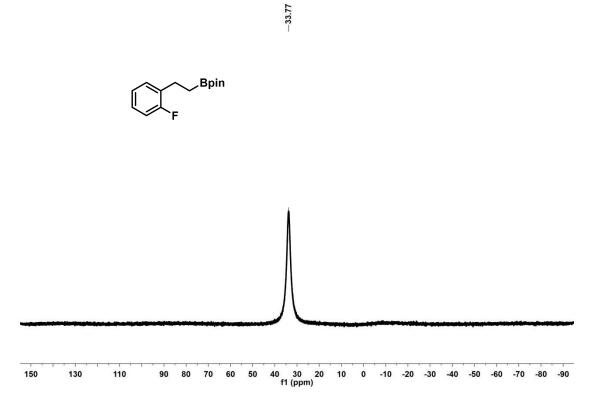


Figure S20. ¹¹B NMR spectrum of 3d in CDCl₃.

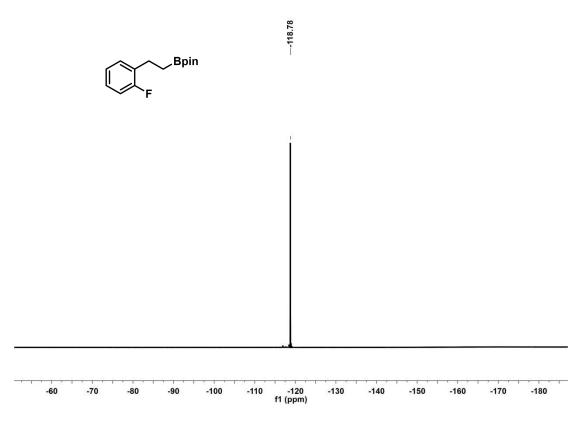


Figure S21. ¹⁹F NMR spectrum of 3d in CDCl₃.

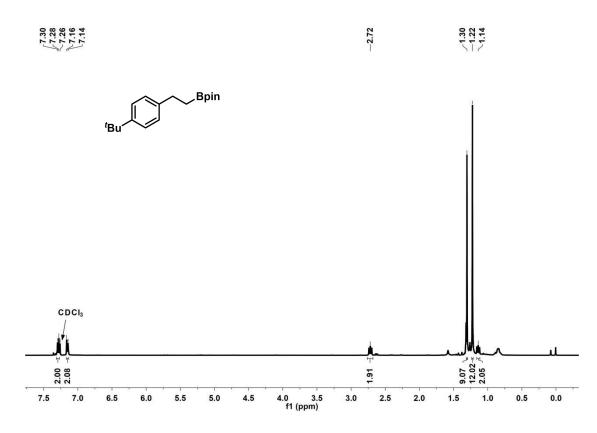


Figure S22. ¹H NMR spectrum of 3e in CDCl₃.

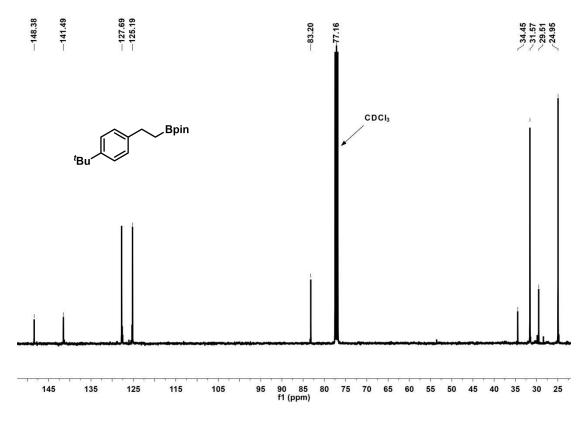


Figure S23. ¹³C NMR spectrum of 3e in CDCl₃.

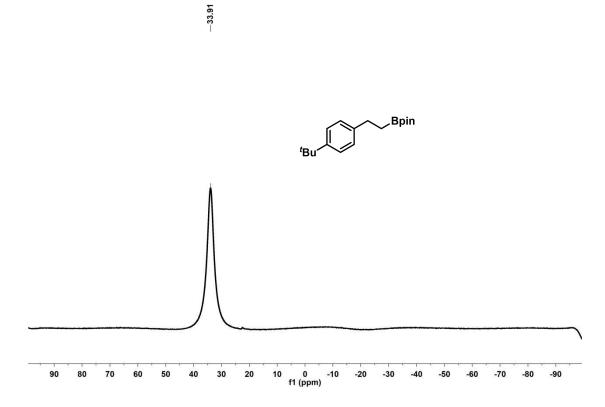


Figure S24. ¹¹B NMR spectrum of 3e in CDCl₃.

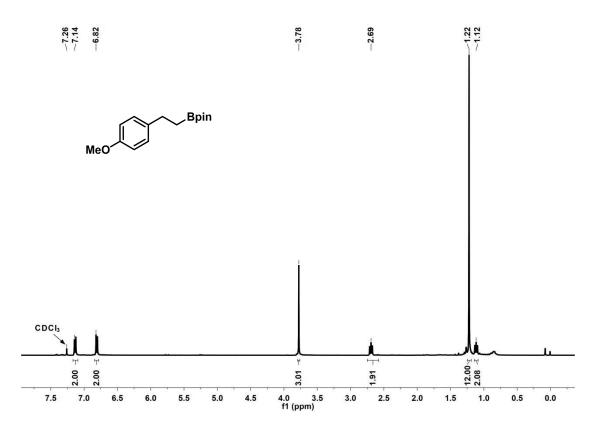


Figure S25. ¹H NMR spectrum of 3f in CDCl₃.

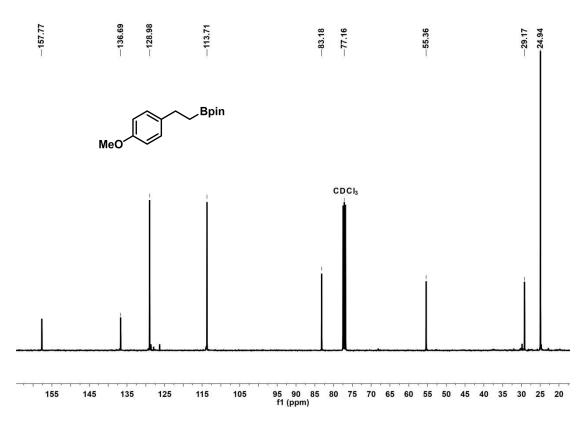


Figure S26. ¹³C NMR spectrum of 3f in CDCl₃.

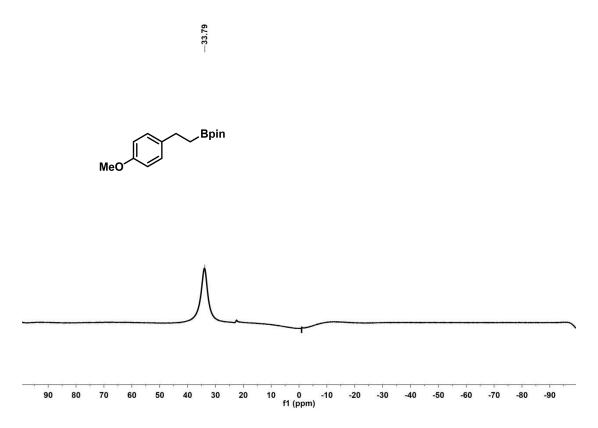


Figure S27. ¹¹B NMR spectrum of 3f in CDCl₃.

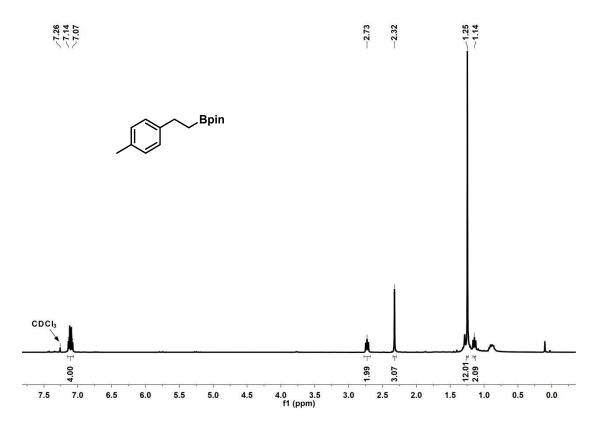


Figure S28. ¹H NMR spectrum of 3g in CDCl₃.

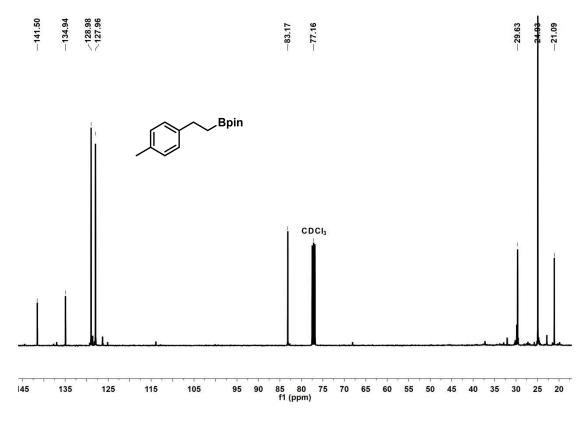


Figure S29. ¹³C NMR spectrum of 3g in CDCl₃.

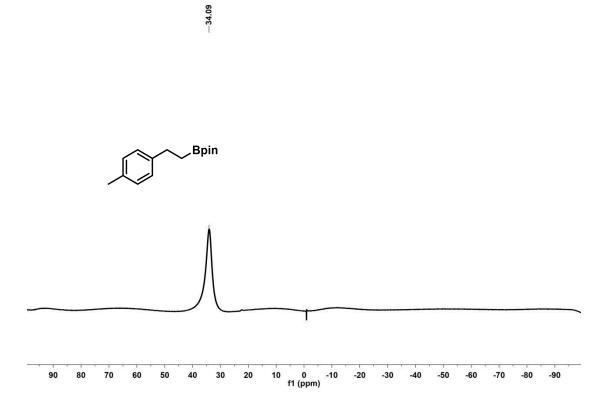


Figure S30. ¹¹B NMR spectrum of 3g in CDCl₃.

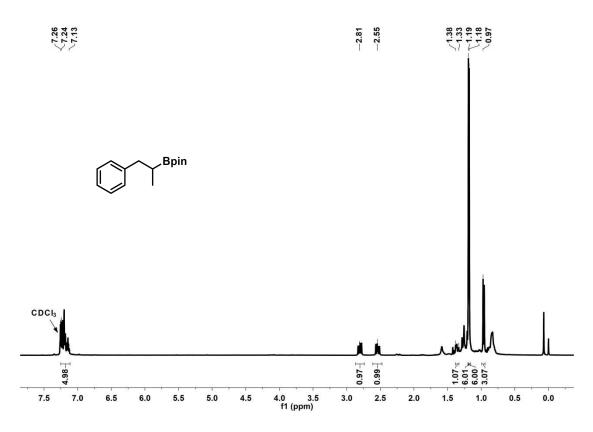


Figure S31. ¹H NMR spectrum of 3h in CDCl₃.

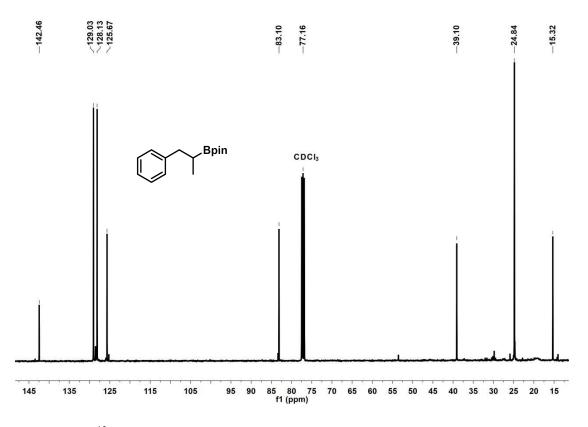


Figure S32. ¹³C NMR spectrum of 3h in CDCl₃.

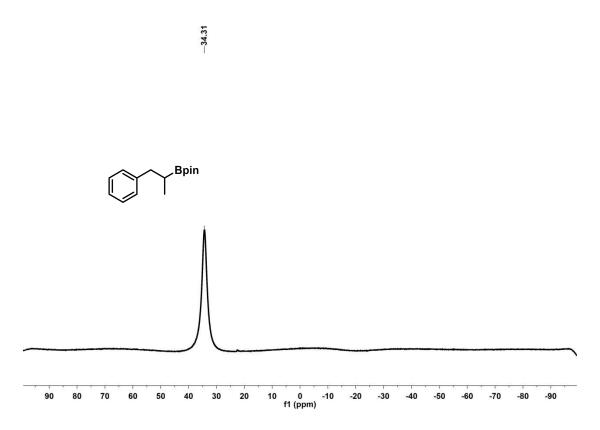


Figure S33. ¹¹B NMR spectrum of 3h in CDCl₃.

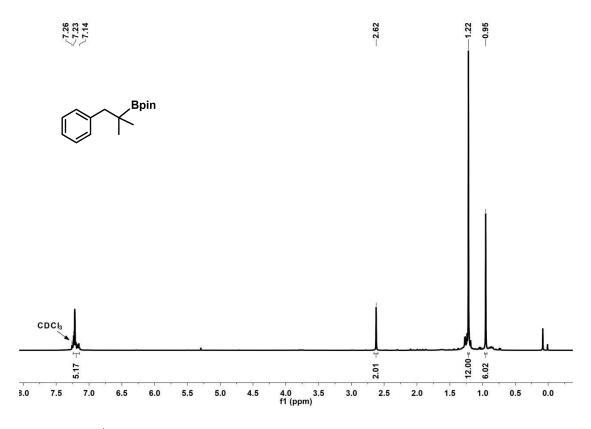


Figure S34. ¹H NMR spectrum of 3i in CDCl₃.

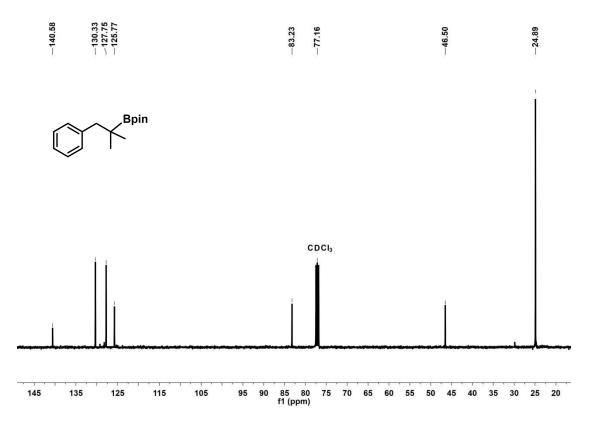
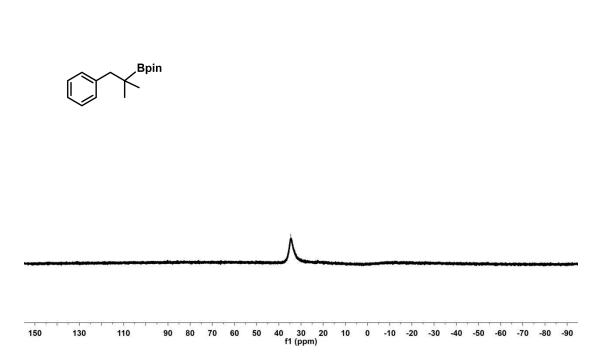



Figure S35. ¹³C NMR spectrum of 3i in CDCl₃.

-34.60

Figure S36. ¹¹B NMR spectrum of 3i in CDCl₃.

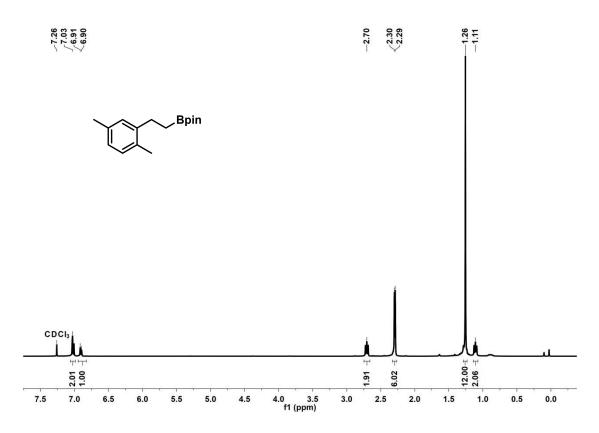


Figure S37. ¹H NMR spectrum of 3j in CDCl₃.

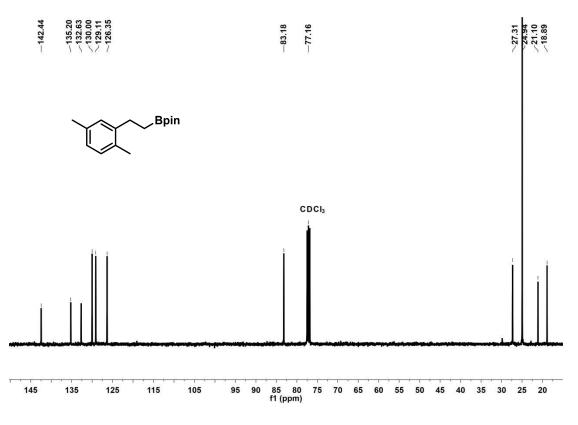


Figure S38. ¹³C NMR spectrum of 3j in CDCl₃.

Figure S39. ¹¹B NMR spectrum of 3j in CDCl₃.

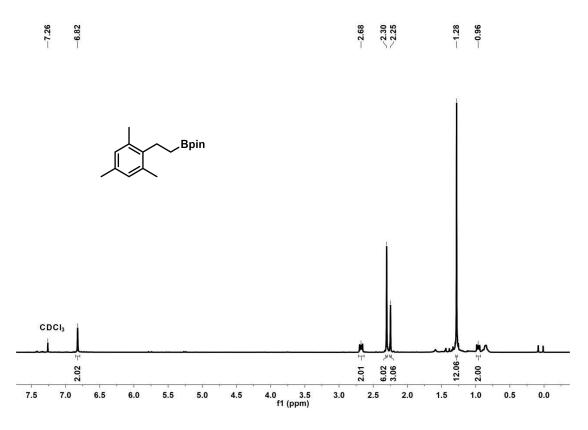


Figure S40. ¹H NMR spectrum of 3k in CDCl₃.

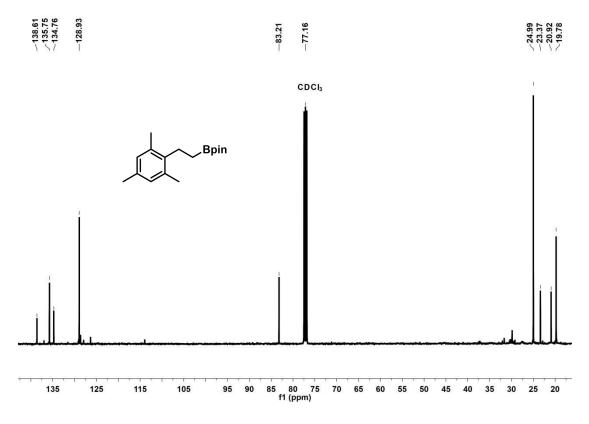


Figure S41. ¹³C NMR spectrum of 3k in CDCl₃.

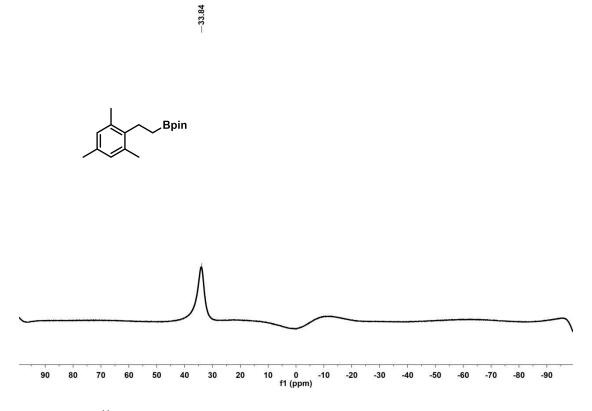


Figure S42. ¹¹B NMR spectrum of 3k in CDCl₃.

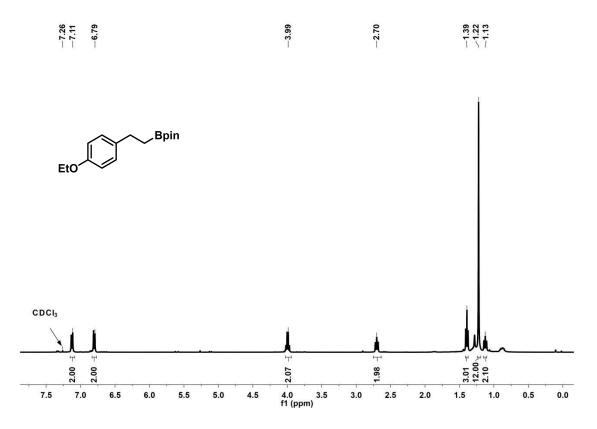


Figure S43. ¹H NMR spectrum of 31 in CDCl₃.

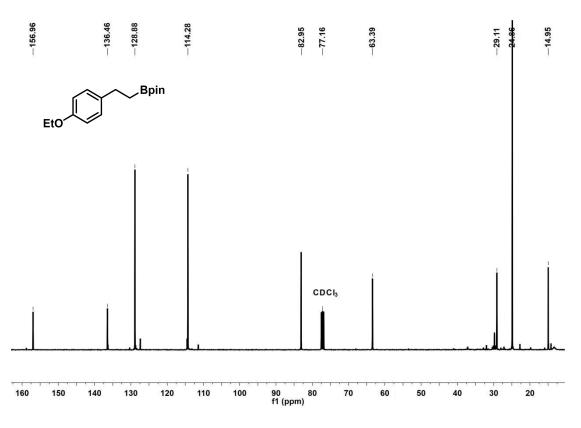


Figure S44. ¹³C NMR spectrum of 3l in CDCl₃.

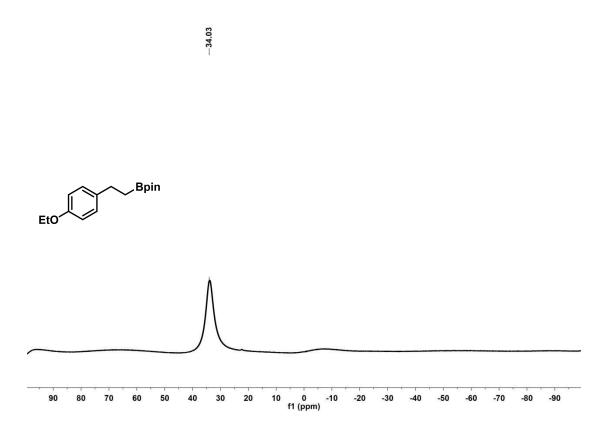


Figure S45. ¹¹B NMR spectrum of 3l in CDCl₃.

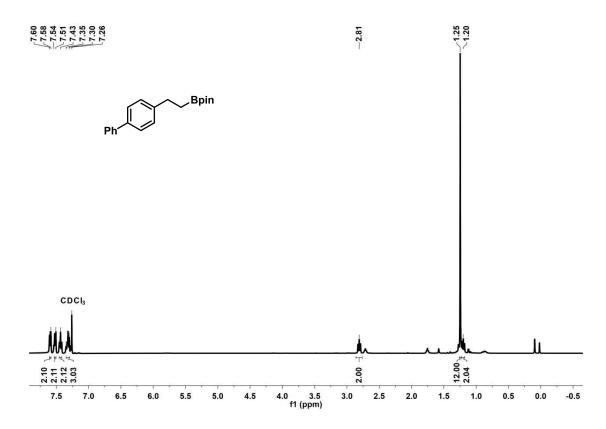


Figure S46. ¹H NMR spectrum of 3m in CDCl₃.

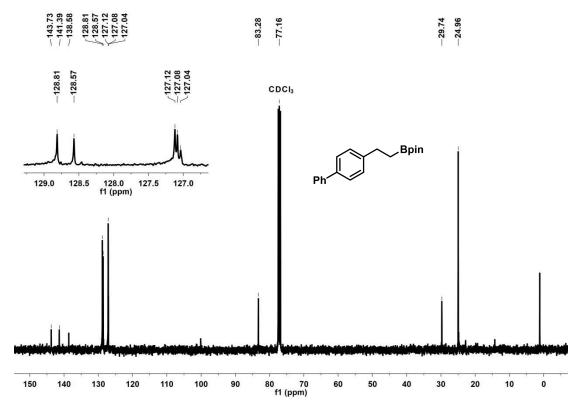


Figure S47. ¹³C NMR spectrum of **3m** in CDCl₃.

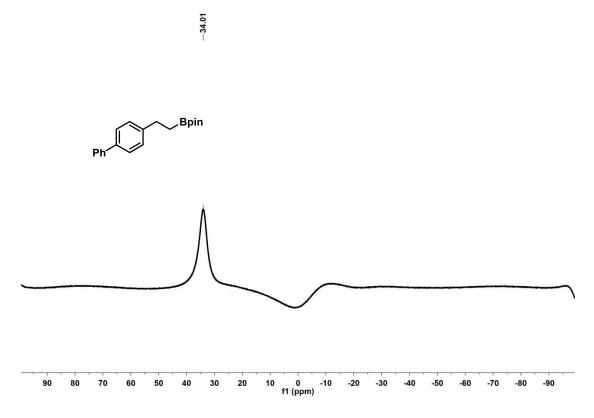


Figure S48. ¹¹B NMR spectrum of **3m** in CDCl₃.

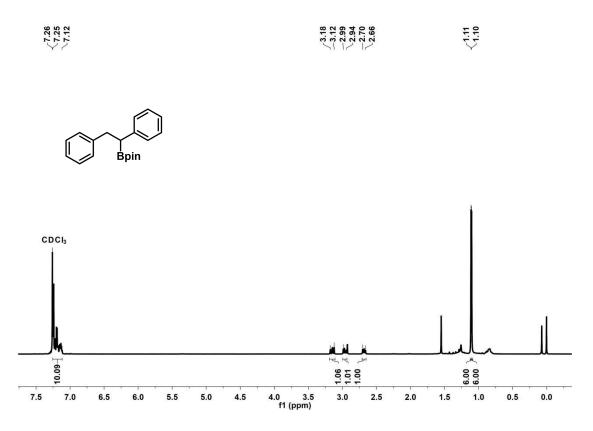


Figure S49. ¹H NMR spectrum of 3n in CDCl₃.

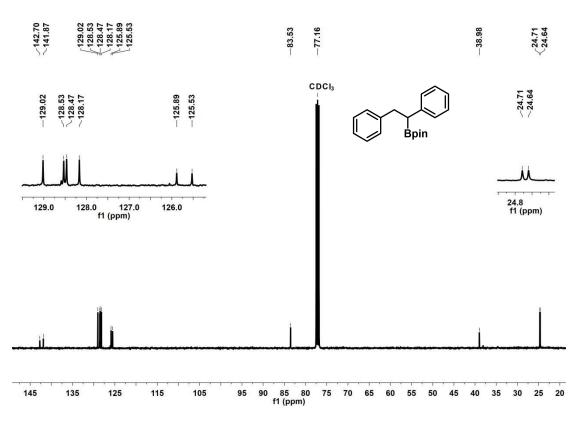


Figure S50. ¹³C NMR spectrum of **3n** in CDCl₃.

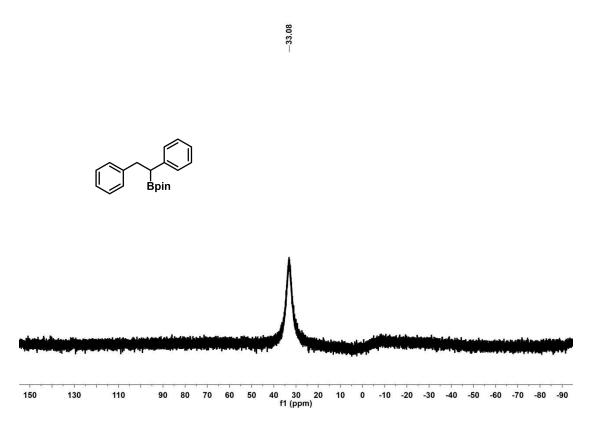


Figure S51. ¹¹B NMR spectrum of 3n in CDCl₃.

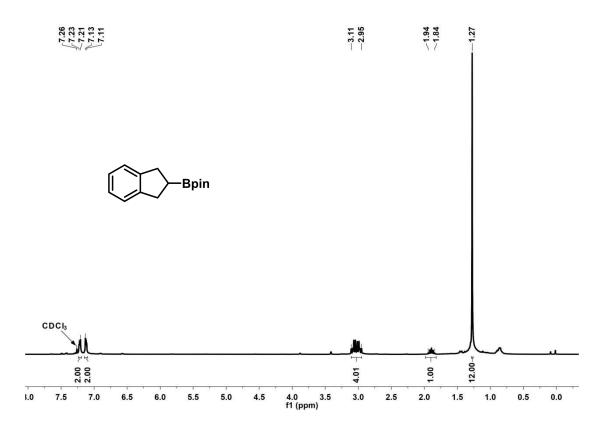


Figure S52. ¹H NMR spectrum of 30 in CDCl₃.

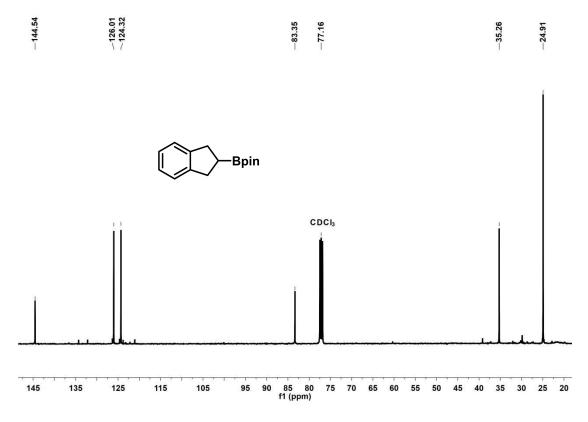


Figure S53. ¹³C NMR spectrum of **30** in CDCl₃.

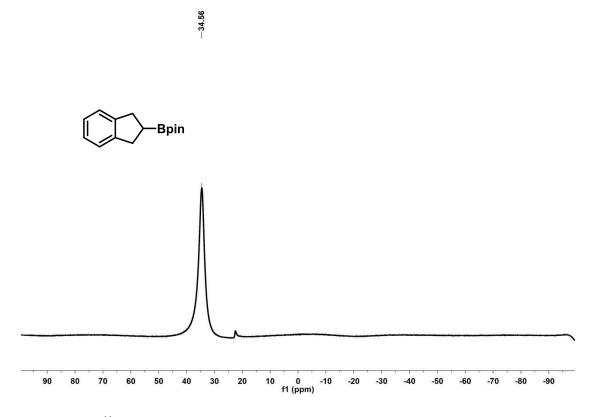


Figure S54. ¹¹B NMR spectrum of 30 in CDCl₃.

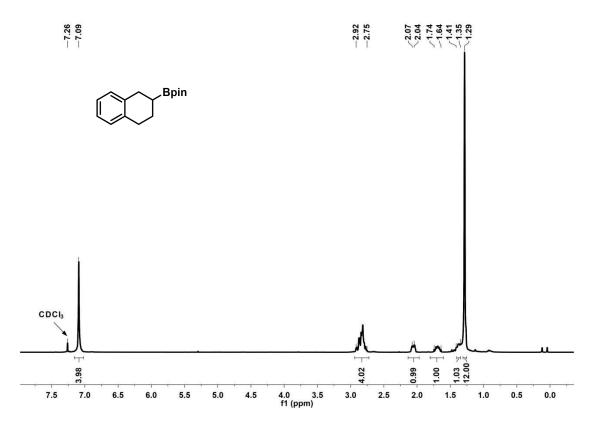


Figure S55. ¹H NMR spectrum of **3p** in CDCl₃.

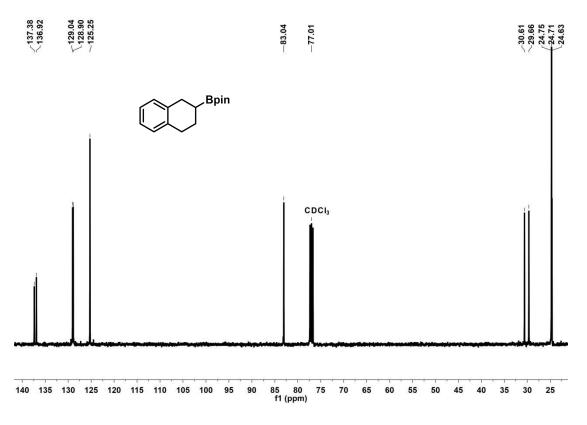


Figure S56. ¹³C NMR spectrum of **3p** in CDCl₃.

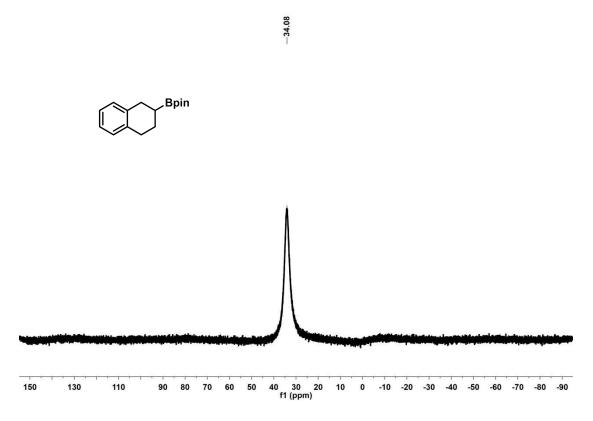


Figure S57. ¹¹B NMR spectrum of 3p in CDCl₃.

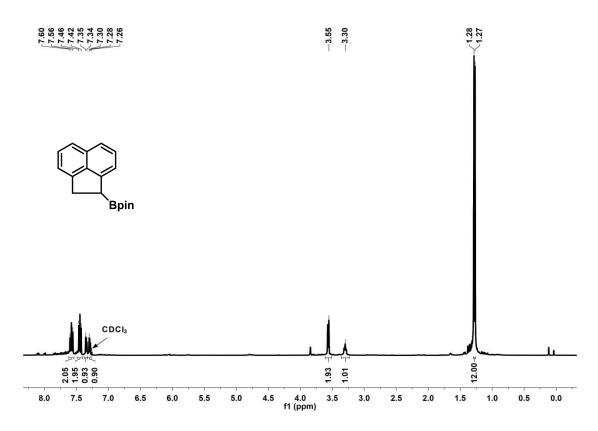


Figure S58. ¹H NMR spectrum of 3q in CDCl₃.

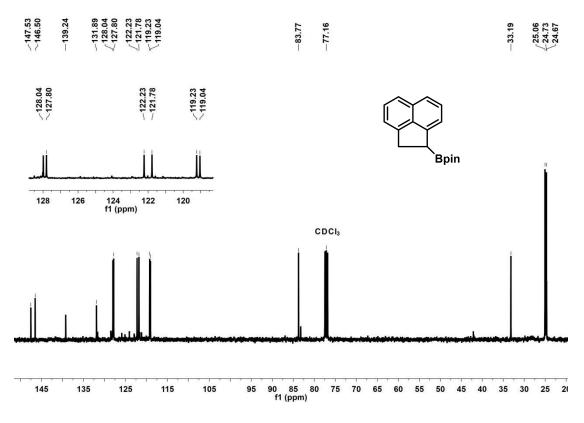
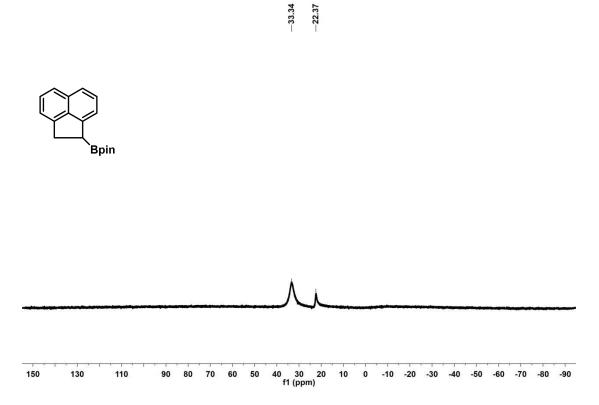



Figure S59. ¹³C NMR spectrum of 3q in CDCl₃.

-22.37

Figure S60. ¹¹B NMR spectrum of 3q in CDCl₃.

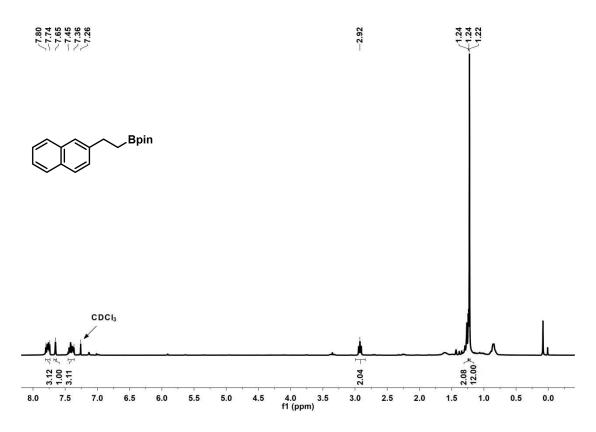


Figure S61. ¹H NMR spectrum of 3r in CDCl₃.

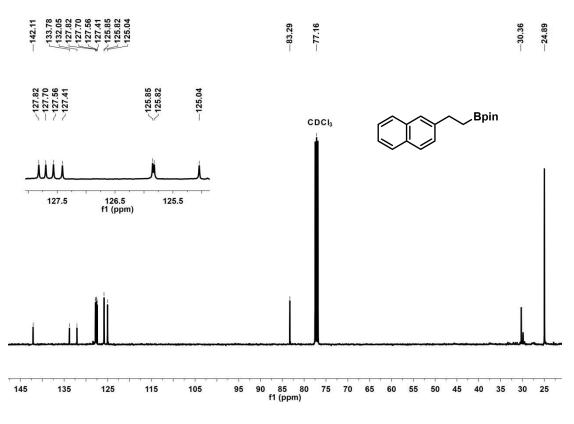


Figure S62. ¹³C NMR spectrum of 3r in CDCl₃.

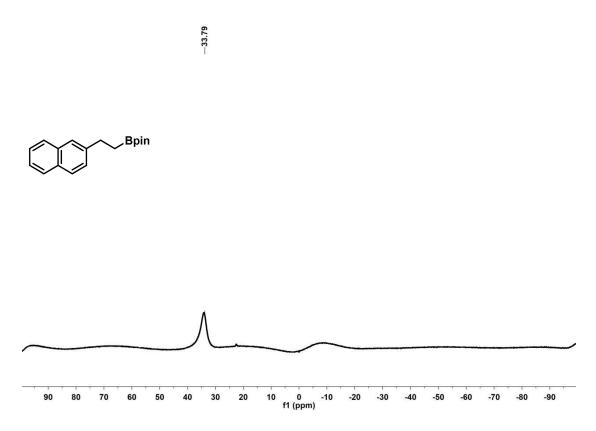


Figure S63. ¹¹B NMR spectrum of 3r in CDCl₃.

13	87	13	56	48	42	26
8	-	2	2	2	5	5

-3.27

71.35

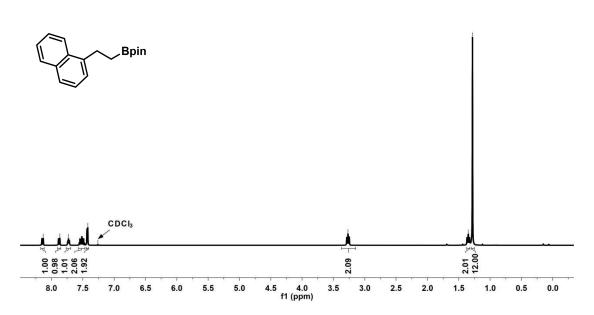


Figure S64. ¹H NMR spectrum of 3s in CDCl₃.

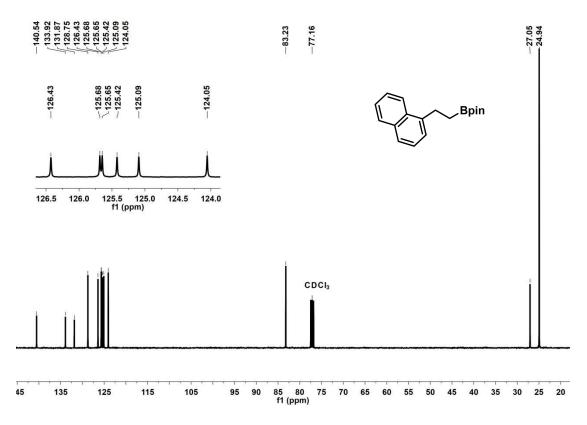
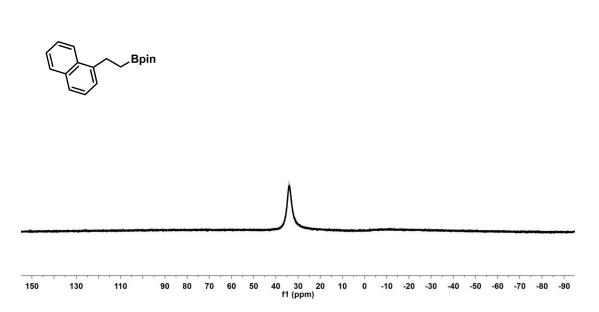



Figure S65. ¹³C NMR spectrum of 3s in CDCl₃.

-34.08

Figure S66. ¹¹B NMR spectrum of 3s in CDCl₃.

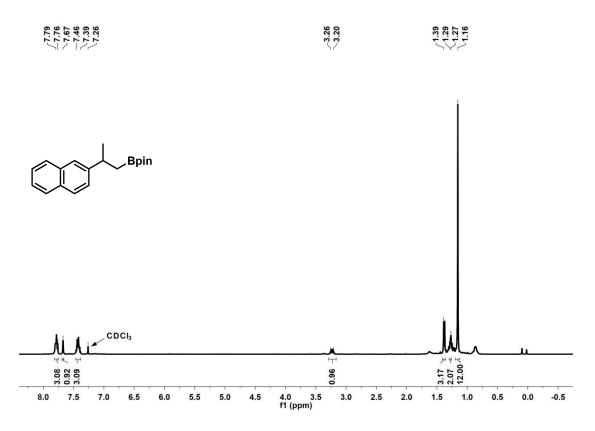


Figure S67. ¹H NMR spectrum of 3t in CDCl₃.

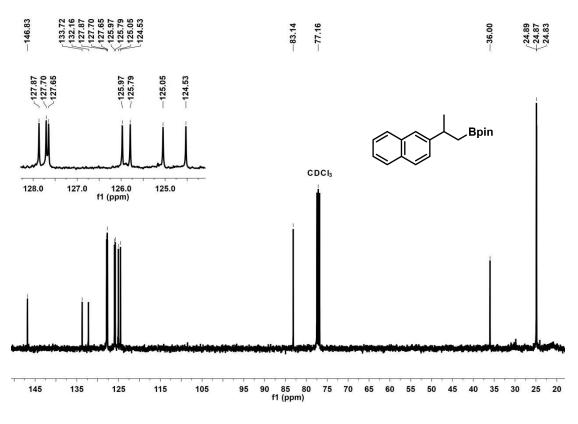


Figure S68. ¹³C NMR spectrum of 3t in CDCl₃.

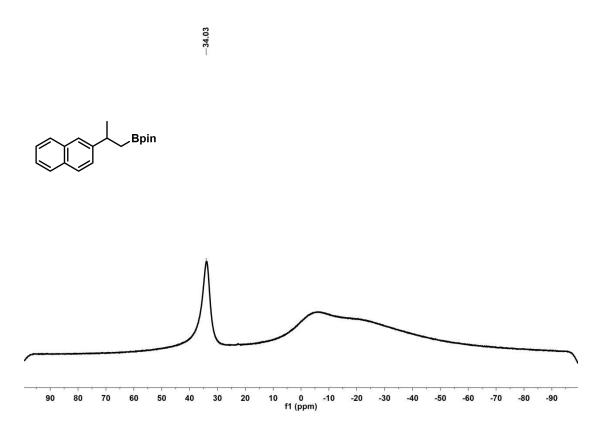


Figure S69. ¹¹B NMR spectrum of 3t in CDCl₃.

-2.51 1.20 1.17 1.17

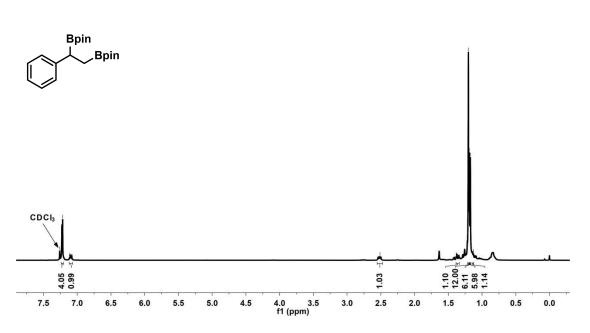


Figure S70. ¹H NMR spectrum of 7a in CDCl₃.

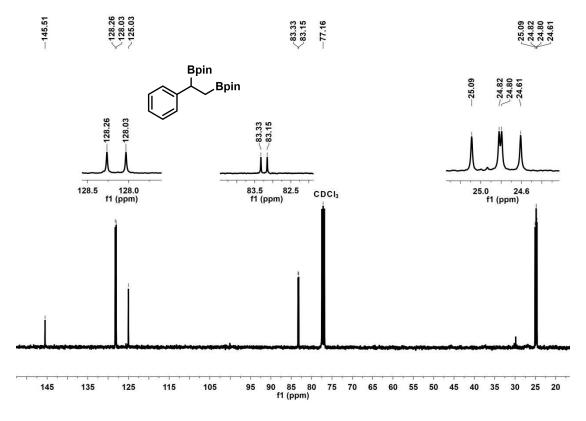


Figure S71. ¹³C NMR spectrum of 7a in CDCl₃.

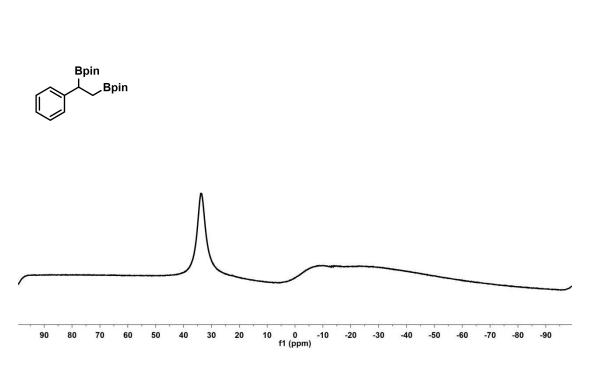


Figure S72. ¹¹B NMR spectrum of 7a in CDCl₃.

-34.03

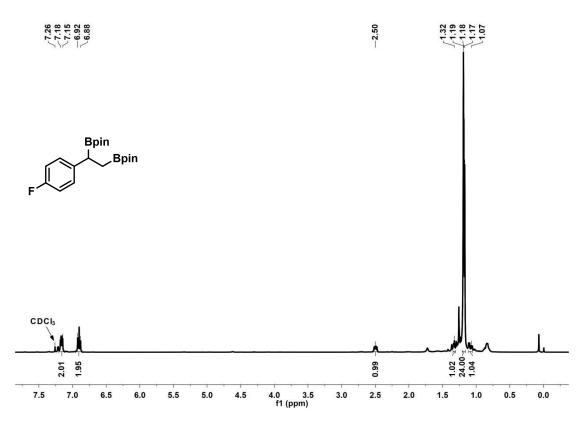


Figure S73. ¹H NMR spectrum of 7b in CDCl₃.

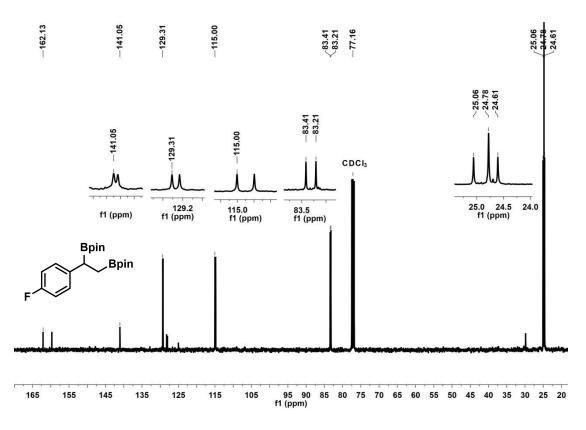


Figure S74. ¹³C NMR spectrum of 7b in CDCl₃.

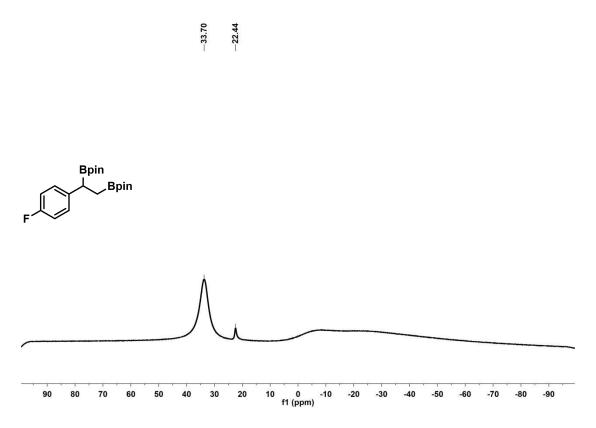


Figure S75. ¹¹B NMR spectrum of 7b in CDCl₃.

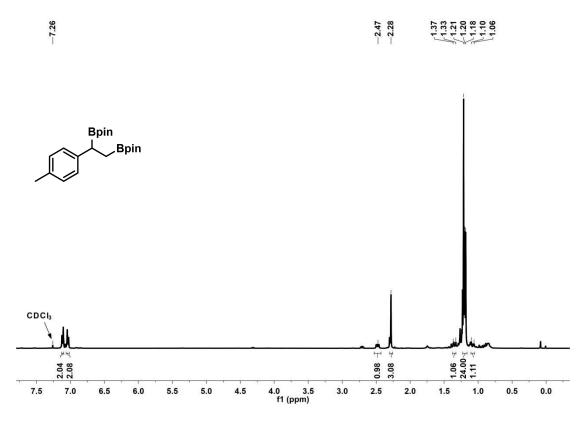


Figure S76. ¹H NMR spectrum of 7g in CDCl₃.

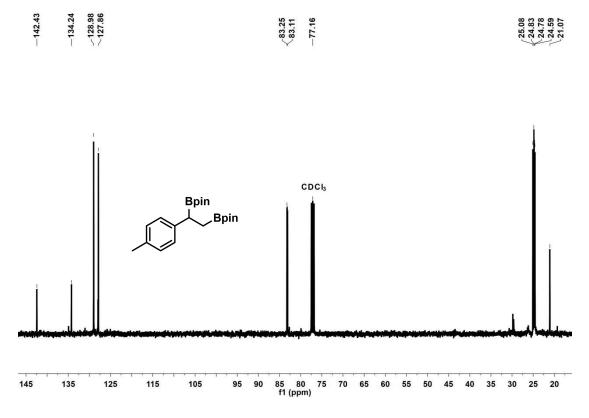


Figure S77. ¹³C NMR spectrum of 7g in CDCl₃.

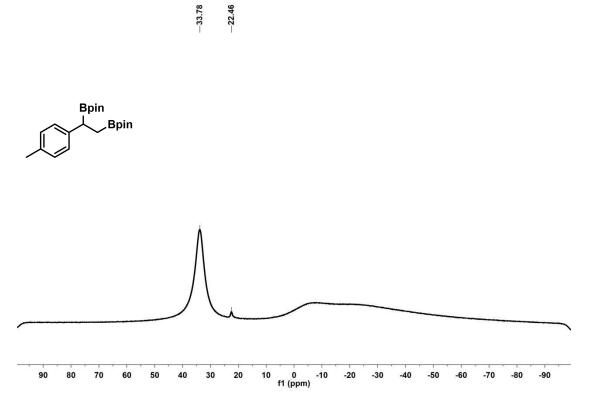


Figure S78. ¹¹B NMR spectrum of 7g in CDCl₃.

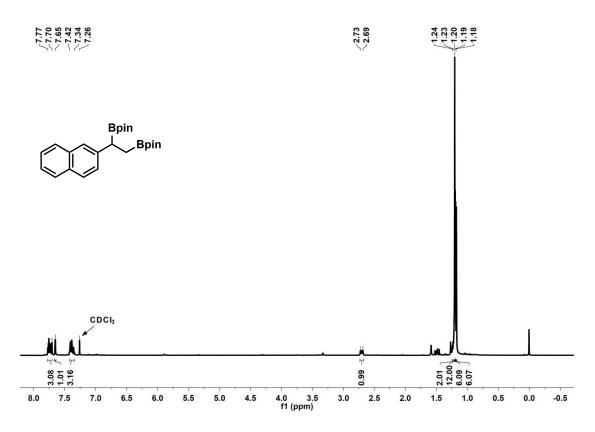


Figure S79. ¹H NMR spectrum of 7r in CDCl₃.

Figure S80. ¹³C NMR spectrum of 7r in CDCl₃.

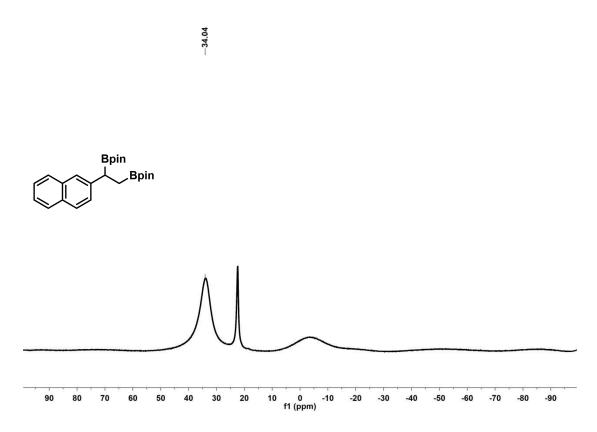


Figure S81. ¹¹B NMR spectrum of 7r in CDCl₃.

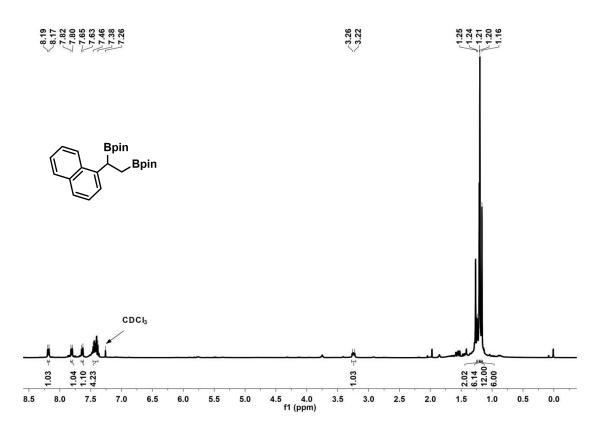


Figure S82. ¹H NMR spectrum of 7s in CDCl₃.

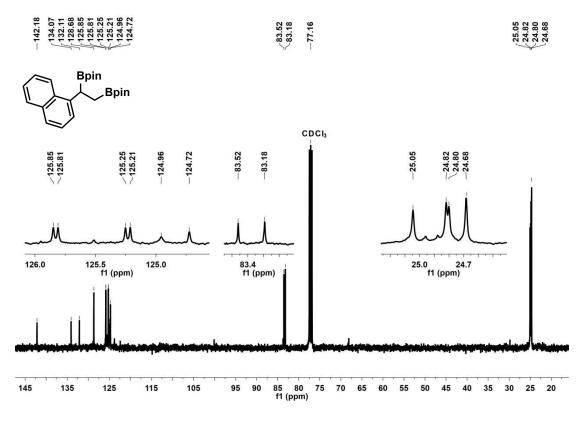



Figure S83. ¹³C NMR spectrum of 7s in CDCl₃.

-33.78 -22.26

Figure S84. ¹¹B NMR spectrum of 7s in CDCl₃.

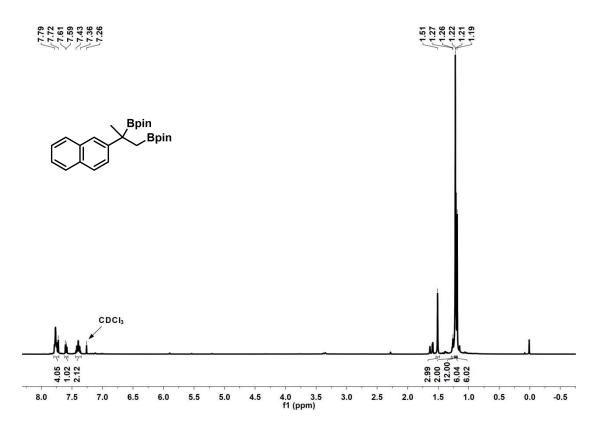


Figure S85. ¹H NMR spectrum of 7t in CDCl₃.

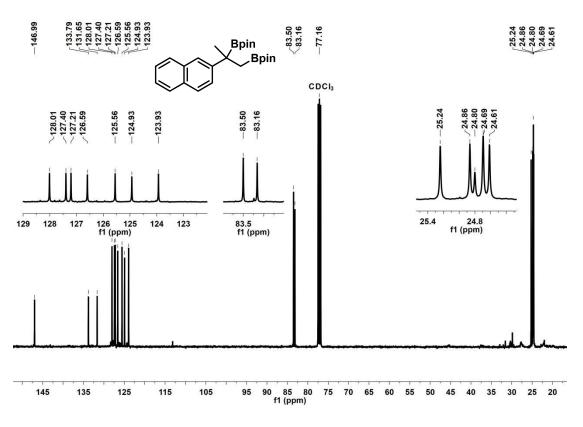


Figure S86. ¹³C NMR spectrum of 7t in CDCl₃.

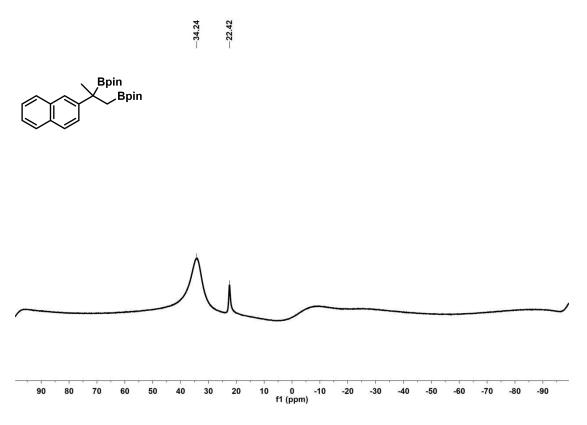


Figure S87. ¹¹B NMR spectrum of 7t in CDCl₃.

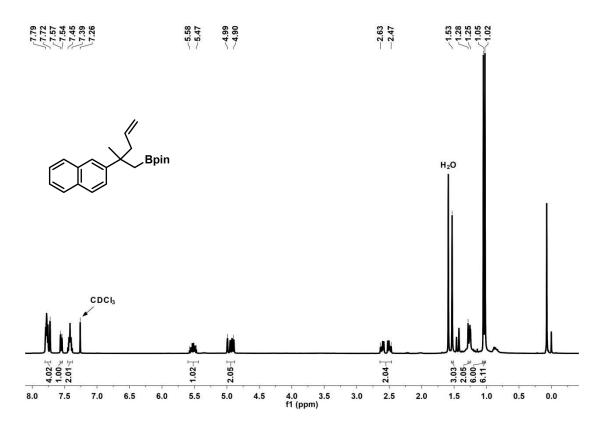


Figure S88. ¹H NMR spectrum of 11 in CDCl₃.

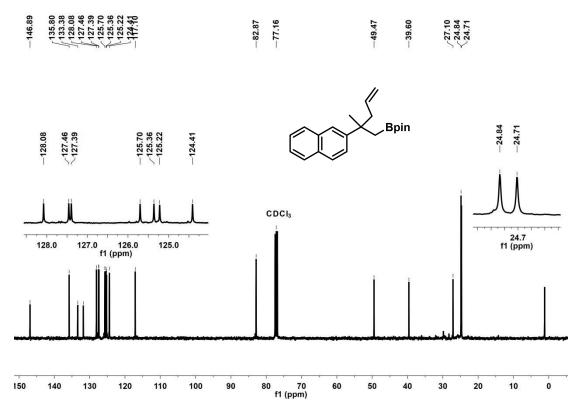
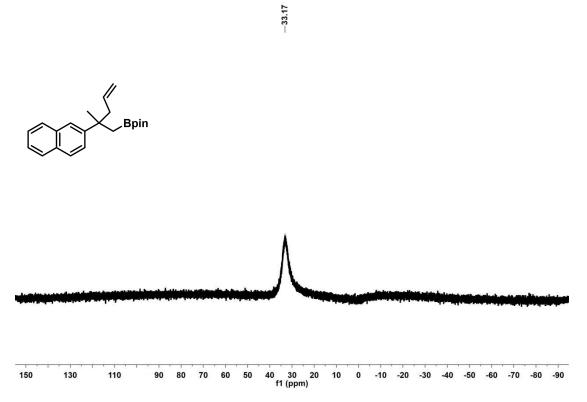



Figure S89. ¹³C NMR spectrum of 11 in CDCl₃.

SFigure S90. ¹¹B NMR spectrum of 11 in CDCl₃.

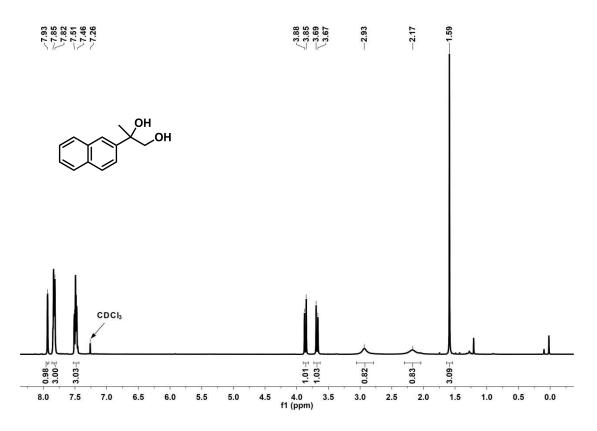


Figure S91. ¹H NMR spectrum of 12 in CDCl₃.

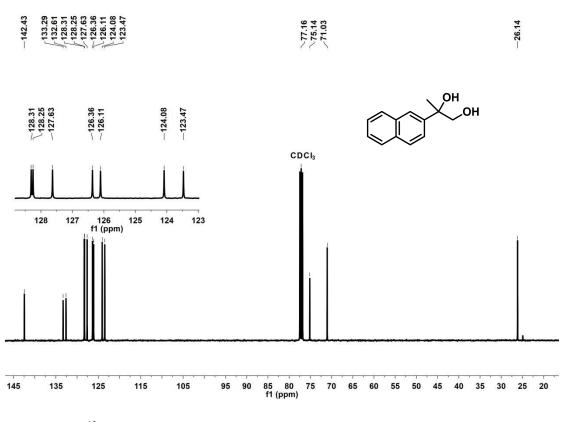
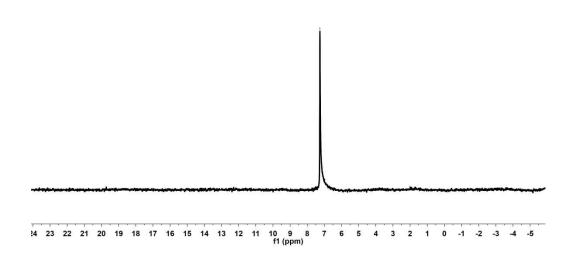
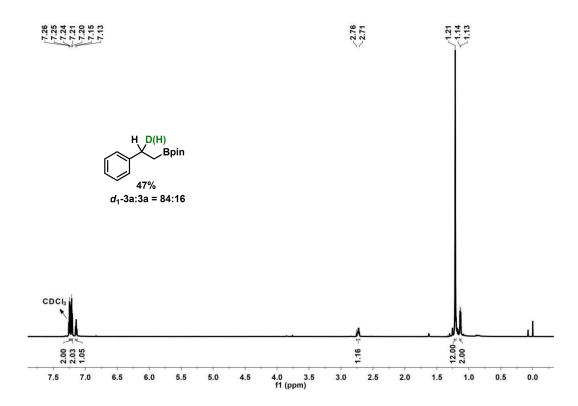




Figure S92. ¹³C NMR spectrum of 12 in CDCl₃.

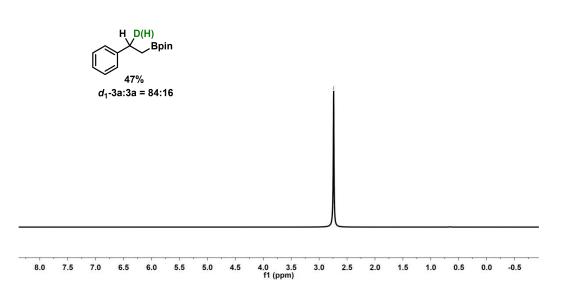


Figure S93. ²D NMR spectrum (CDCl₃) of deuterium-labelling experiment in THF- d_8 . No deuterium product was detected.

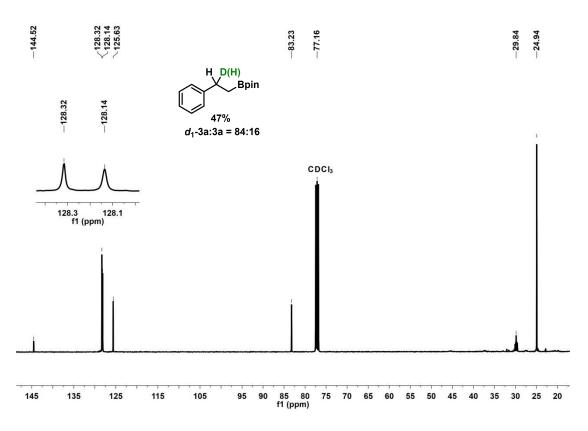


Figure S94. ¹H NMR spectrum of the mixture of d_1 -**3a** and **3a** in a ratio of 84:16 in CDCl₃. The deuterium-labelling experiment was conducted in CD₃CN solvent.

Figure S95. ²D NMR spectrum of the mixture of d_1 -**3a** and **3a** in a ratio of 84:16 in CHCl₃. The deuterium-labelling experiment was conducted in CD₃CN solvent.

Figure S96. ¹³C NMR spectrum of the mixture of d_1 -**3a** and **3a** in a ratio of 84:16 in CDCl₃. The deuterium-labelling experiment was conducted in CD₃CN solvent.

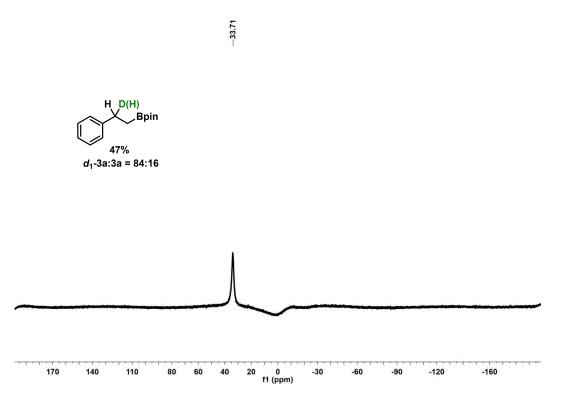


Figure S97. ¹¹B NMR spectrum of the mixture of d_1 -3a and 3a in a ratio of 84:16 in CDCl₃. The deuterium-labelling experiment was conducted in CD₃CN solvent.

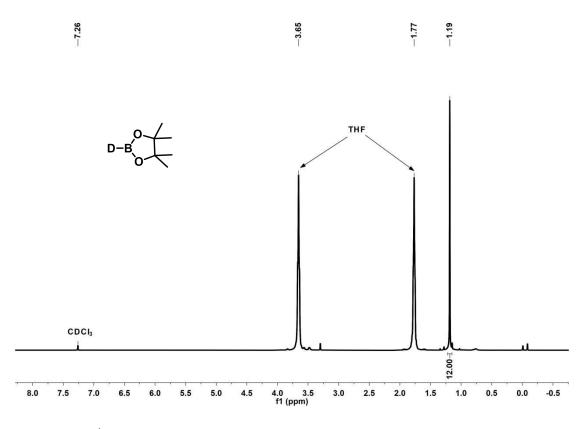


Figure S98. ¹H NMR spectrum of DBpin in CDCl₃.

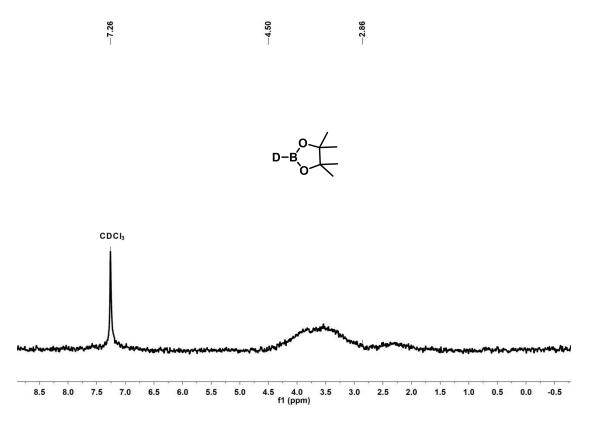


Figure S99. ²D NMR spectrum of DBpin in CDCl₃.

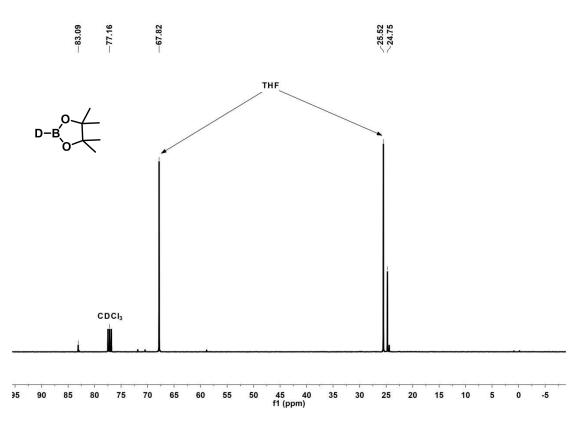
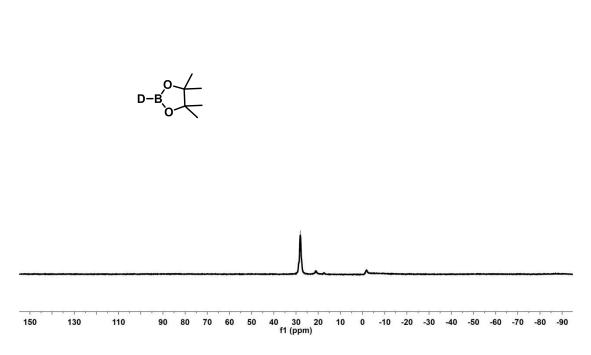



Figure S100. ¹³C NMR spectrum of DBpin in CDCl₃.

-28.08

Figure S101. ¹¹B NMR spectrum of DBpin in CDCl₃.

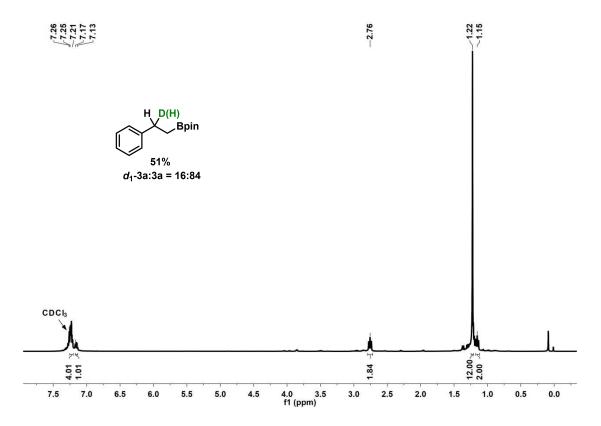


Figure S102. ¹H NMR spectrum of the mixture of d_1 -3a and 3a in a ratio of 16:84 in CDCl₃. The deuterium-labelling experiment was conducted with DBpin as substrate.

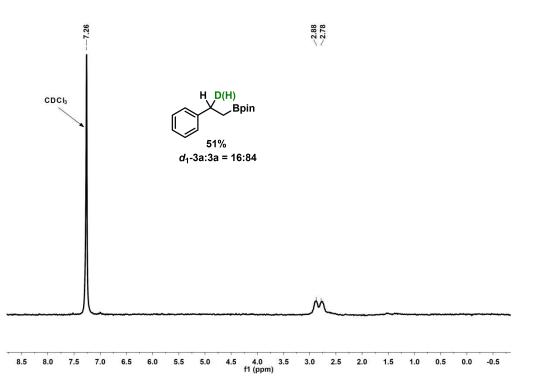
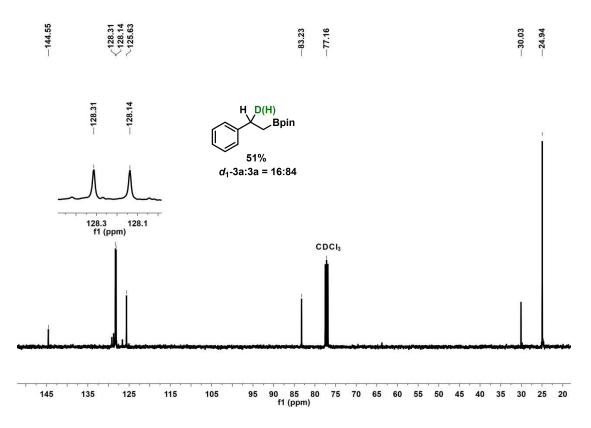
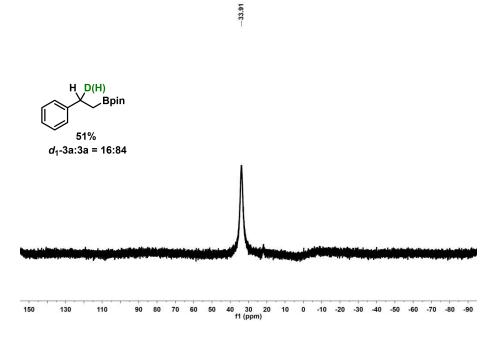




Figure S103. ²D NMR spectrum of the mixture of d_1 -3a and 3a in a ratio of 16:84 in CDCl₃. The deuterium-labelling experiment was conducted with DBpin as substrate.

Figure S104. ¹³C NMR spectrum of the mixture of d_1 -**3a** and **3a** in a ratio of 16:84 in CDCl₃. The deuterium-labelling experiment was conducted with DBpin as substrate.

Figure S105. ¹¹B NMR spectrum of the mixture of d_1 -**3a** and **3a** in a ratio of 16:84 in CDCl₃. The deuterium-labelling experiment was conducted with DBpin as substrate.

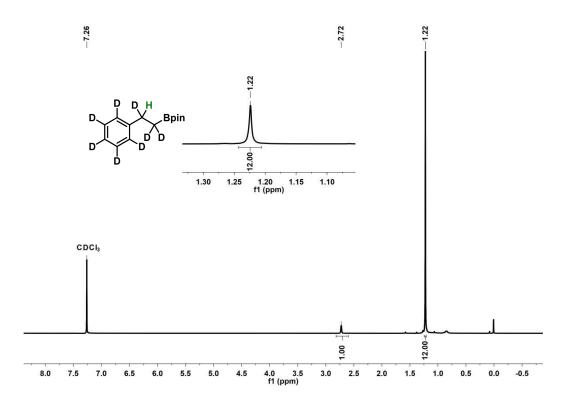


Figure S106. ¹H NMR spectrum of d_8 -3a in CDCl₃. The deuterium-labelling experiment was conducted with d_8 -styrene as substrate.

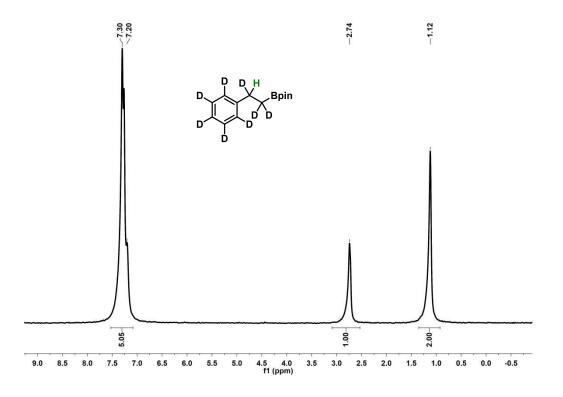


Figure S107. ²D NMR spectrum of d_8 -3a in CHCl₃. The deuterium-labelling experiment was conducted with d_8 -styrene as substrate.

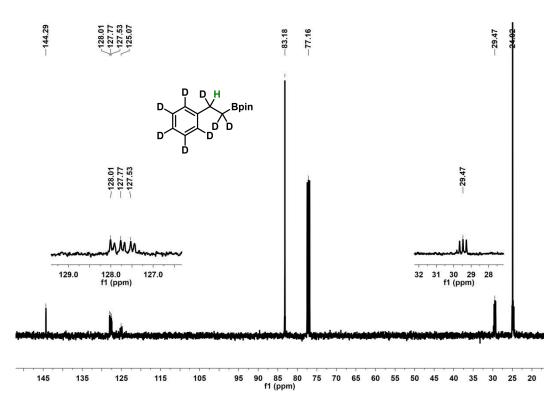


Figure S108. ¹³C NMR spectrum of d_8 -3a in CDCl₃. The deuterium-labelling experiment was conducted with d_8 -styrene as substrate.

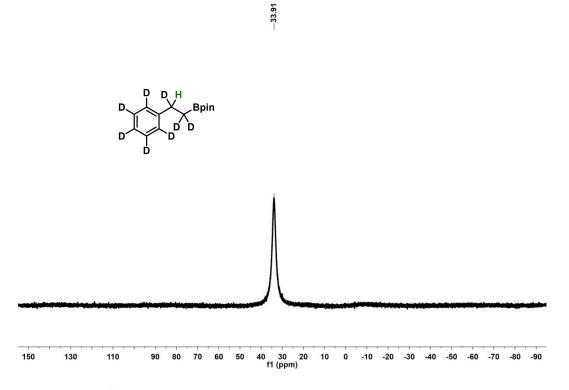
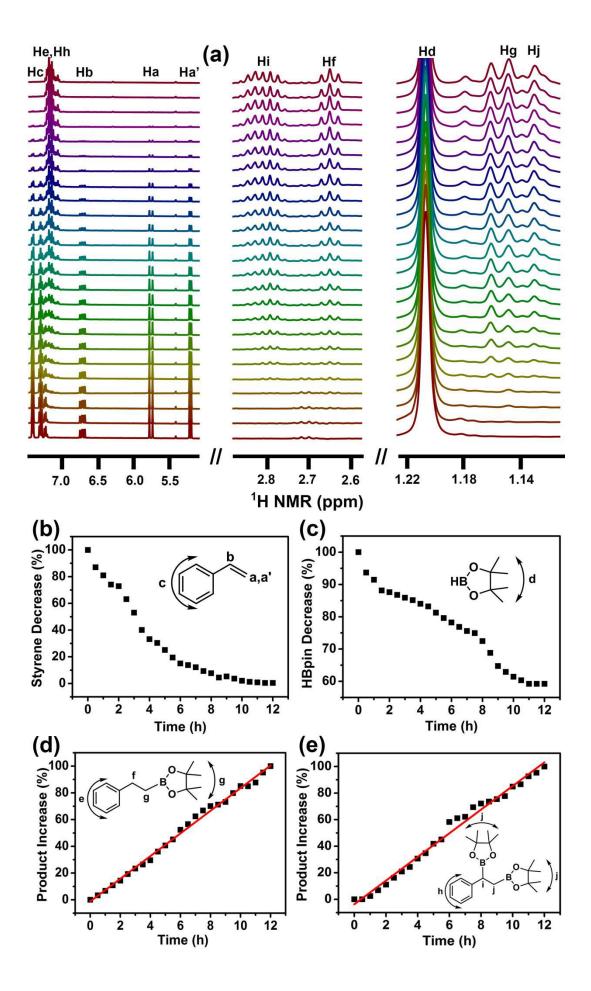
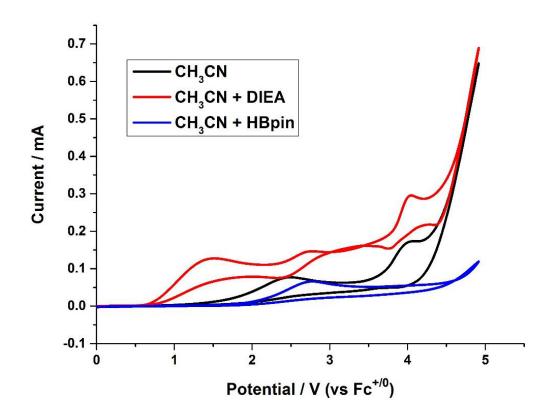
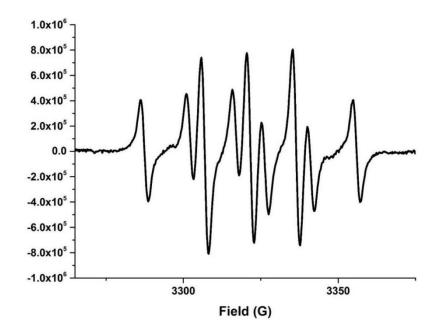




Figure S109. ¹¹B NMR spectrum of d_8 -3a in CDCl₃. The deuterium-labelling experiment was conducted with d_8 -styrene as substrate.

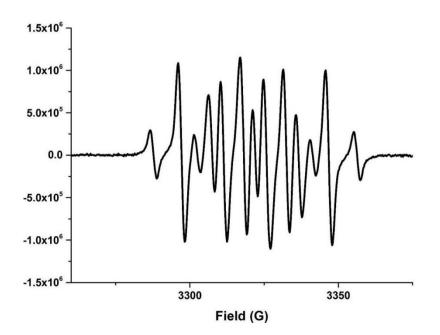
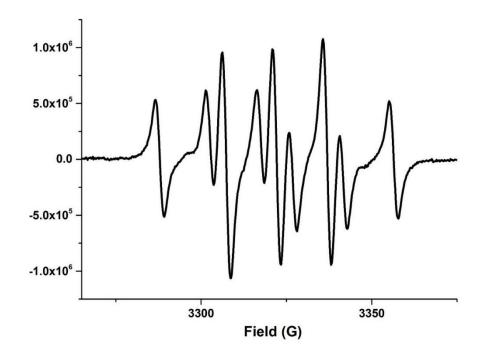
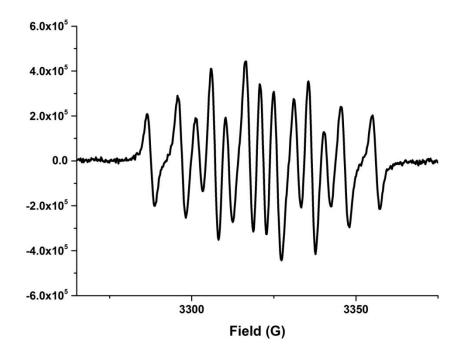

Figure S110. *In situ* ¹H NMR data of electrochemical hydroboration of styrene (10 mmol) with HBpin (88 mmol). **a** ¹H NMR spectra were collected every 0.5 h. The test samples were made up of 0.3 mL original samples and 0.2 mL CD₃CN. Total volume of the reaction solution was 100 mL. **b** Decreased trend of styrene under electrolysis, determined by the *in situ* ¹H NMR data. Initial peak area of CH group at the benzyl site of styrene was defined as 100%. **c** Decreased trend of HBpin under electrolysis, determined by the *in situ* ¹H NMR data. Initial peak area of CH₃ group of HBpin was defined as 100%. **d** Increased trend of product **3a** under electrolysis, determined by the *in situ* ¹H NMR data. Final peak area of CH₂ at the benzyl site of **3a** was defined as 100%. **e** Increased trend of product **7a** under electrolysis, determined by the *in situ* ¹H NMR data. Final peak area of CH₂ at the benzyl site of **3a** was defined as 100%. **e** Increased trend of product **7a** under electrolysis, determined by the *in situ* ¹H NMR data. Final peak area of CH₂ at the benzyl site of **3a** was defined as 100%. **e** Increased trend of product **7a** under electrolysis, determined by the *in situ* ¹H NMR data. Final peak area of CH₂ at the benzyl site of **3a** was defined as 100%.

IX. Cyclic Voltammogram

Figure S111. Cyclic voltammogram of DIEA (10 mM) and HBpin (10 mM) in ^{*n*}Bu₄NBF₄/CH₃CN at room temperature.

X. EPR Spectra

Figure S112. EPR spectrum under the standard conditions. Standard conditions: styrene (1.0 mmol), HBpin (1.1 mmol), ^{*n*}Bu₄NBF₄ (20 mol%), DIEA (0.8 mmol), DMPO (1.0 mmol), Pt(+)|Pt(-), constant current (I) = 15 mA, CH₃CN:THF = 4:1 (v/v), the total volume of the solvent is 10 mL, N₂, rt, 0.5 h. One type of radical had been trapped by DMPO: DMPO–H.

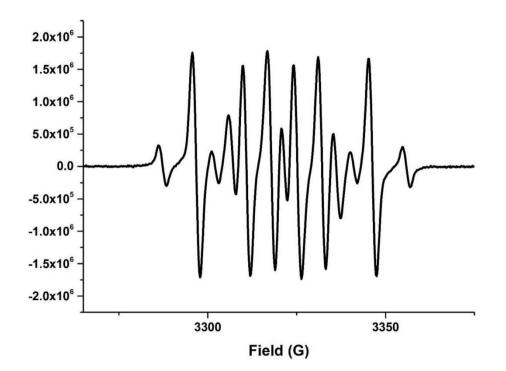

Figure S113. EPR spectrum to monitor the electrochemical reaction in the absence of HBPin. Two type of radicals had been trapped by DMPO: DMPO-H and DMPO- CH_2CN (10).

Figure S114. EPR spectrum to monitor the electrochemical reaction in the absence of styrene. One type of radical had been trapped by DMPO: DMPO–H.

Figure S115. EPR spectrum to monitor the electrochemical reaction in the absence of styrene and HBpin. Two type of radicals had been trapped by DMPO: DMPO–H and DMPO–CH₂CN (**10**).

Figure S116. EPR spectrum to monitor the electrochemical reaction in the absence of styrene, HBpin and DIEA. Two type of radicals had been trapped by DMPO: DMPO–H and DMPO–CH₂CN (**10**).

XI. Mass Spectra

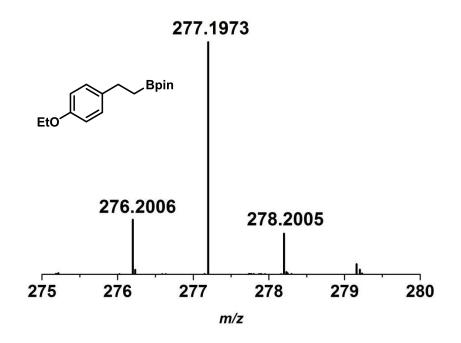


Figure S117. ESI-HRMS spectrum of 31 in CH₃CN.

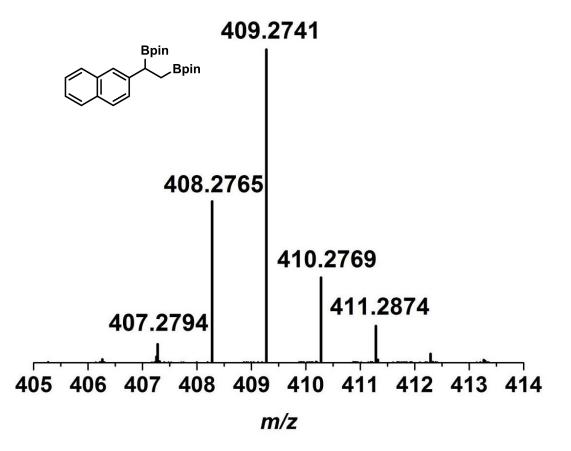


Figure S118. ESI-HRMS spectrum of 7r in CH₃CN.

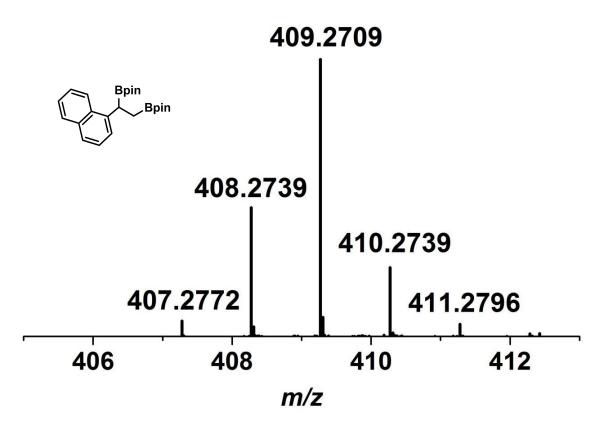


Figure S119. ESI-HRMS spectrum of 7s in CH₃CN.

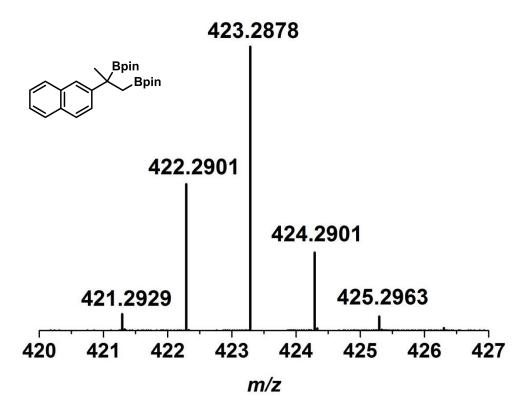
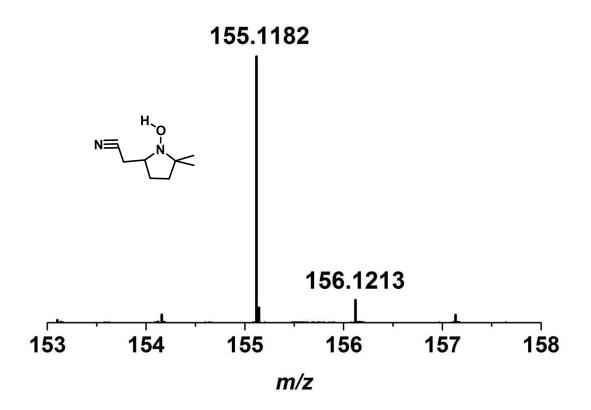



Figure S120. ESI-HRMS spectrum of 7t in CH₃CN.

Figure S121. ESI-HRMS spectrum of reduction state of the corresponding adduct DMPO–CH₂CN (**10**) in CH₃CN/THF mixture.

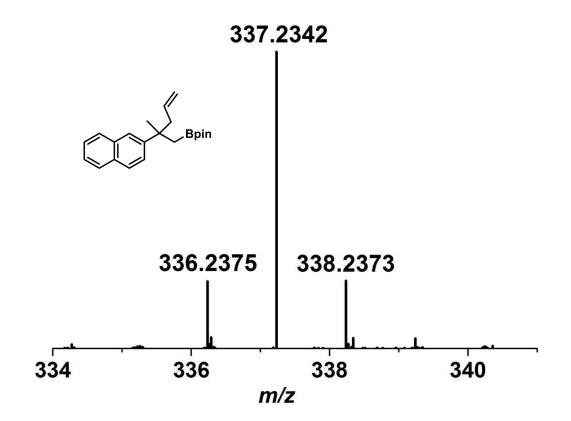


Figure S122. ESI-HRMS spectrum of 11 in CH₃CN.

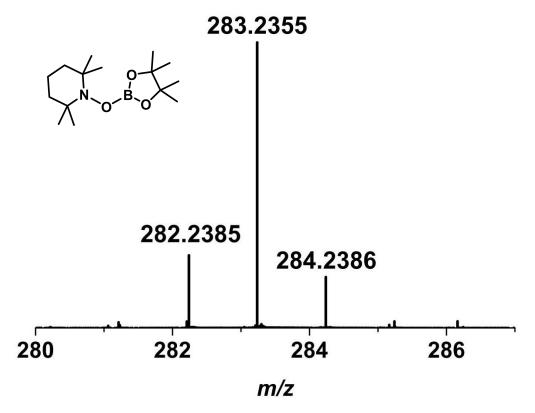


Figure S123. GC-MS spectrum of 13 in CH₃CN.

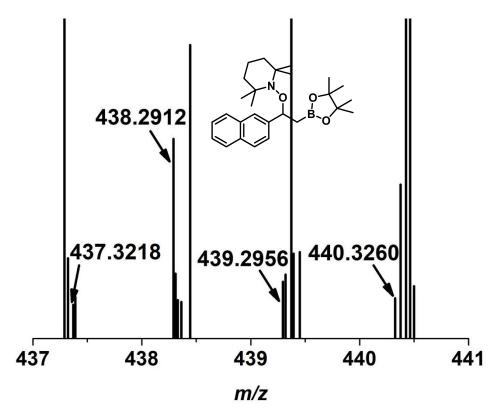


Figure S124. ESI-HRMS spectrum of 14 in CH₃CN.

XII. FT-IR (ATR) Spectra

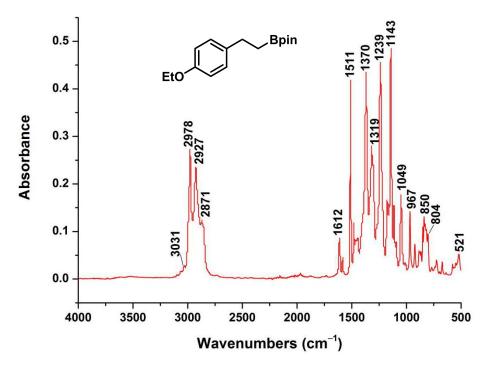


Figure S125. FT-IR (ATR) spectrum of 3l.

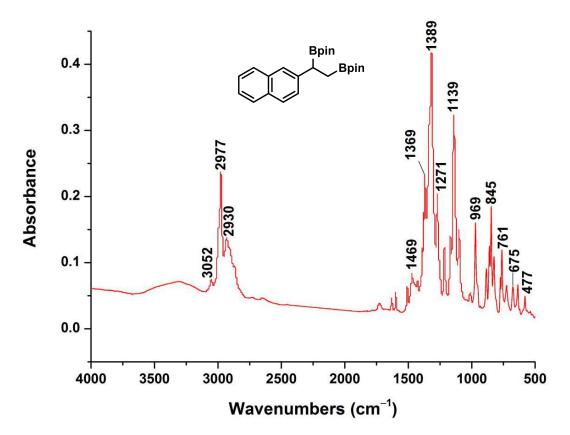


Figure S126. FT-IR (ATR) spectrum of 7r.

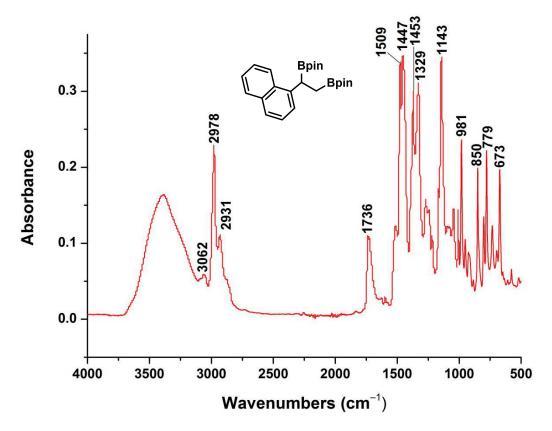


Figure S127. FT-IR (ATR) spectrum of 7s.

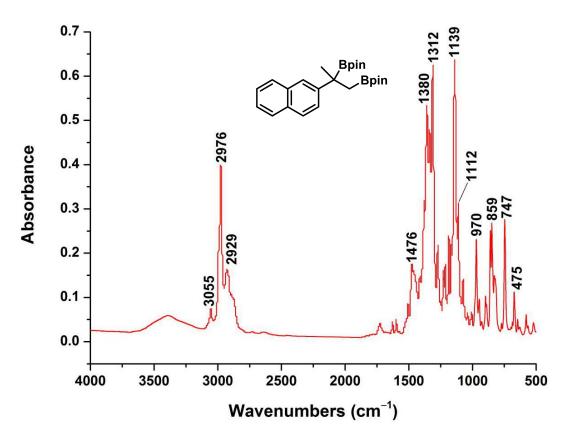
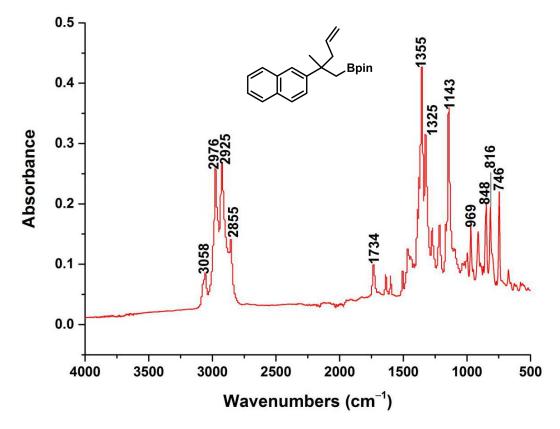
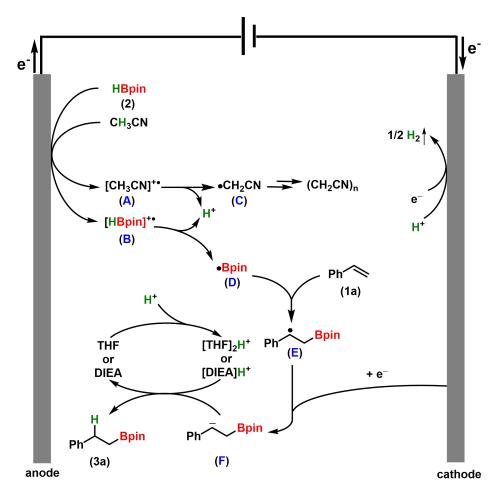
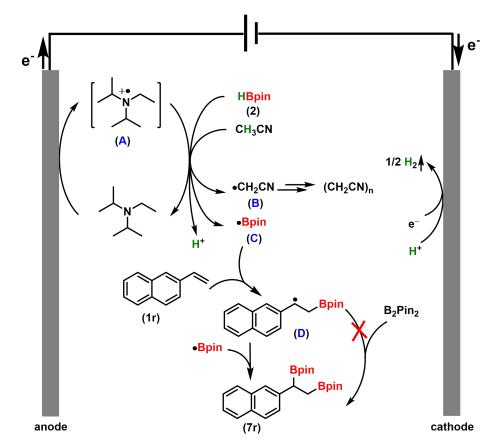


Figure S128. FT-IR (ATR) spectrum of 7t.


Figure S129. FT-IR (ATR) spectrum of 11.

XIII. Proposed Electrochemical Cycle in the Absence of DIEA

Figure S130. A possible mechanism of electrochemical hydroboration with styrene as substrate in the absence of DIEA.

XIV. Proposed Electrochemical Cycle for Diboration

Figure S131. A possible mechanism of electrochemical hydroboration with 2-vinylphthalene as substrate.

Using ^{*n*}Bu₄NBF₄ (20 mol%) as the supporting electrolyte and CH₃CN:THF (*v:v* = 4:1) as the mixed solvent, with the addition of 0.8 equivalent of DIEA, and 15 mA constant current at room temperature for 3 h under inert atmosphere, both hydroboration product (**3r**) and diboronate ester (**7r**) were detected with 1.0 equivalent of 2-vinylphthalene and 1.1 equivalents of HBpin as substrates (Scheme 1 in manuscript). The yield of product **7r** did not increase when additional 3.3 equivalents of B₂Pin₂ were added to this system. In addition, no diboronate esters **7r** was observed when B₂Pin₂ as the only source of boron. These results indicated that the formation of diboronate ester was not associated with B₂Pin₂ and hydroboration product could not transfer to diboronate ester in the presence of HBpin or B₂Pin₂.