Electrooxidative C-H Alkylation of Quinoxalin-

2(1H)-ones with Organoboron Compounds

Kaikai Niu,^a Yanke Hao,^a Lingyun Song,^a Yuxiu Liu^a and Qingmin Wang^{*a,b}

^aState Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China ^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China

Supporting Information

Table of Contents	S1
General Information	S2
Preparation of Quinoxalin-2(1 <i>H</i>)-one	S2
General procedure for the electrolysis	S2
Optimization Studies	S3
Details of Unsuccessful Substrates	S3
Gram-scale Reaction	S4
Use of 3-V battery as power source	S4
Click reaction	
Mechanistic Studies	S5
Characterization Data for Electrolysis Products	S7
X-ray Crystallography	S15
Spectra of prepared compounds	S21
References	S47

1. General Information

Unless otherwise noted, Reagents were purchased from commercial sources and were used as received. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh).

2. Preparation of quinoxalin-2(1H)-one

Quinoxalin-2(1*H***)-one** was prepared from 1,2-phenylenediamines following the procedure of Cui and co-workers ^[1] on 5 mmol scale. To a solution of 1,2-phenylenediamines (5 mmol, 1.0 equiv.) in ethanol (40 mL) was added ethyl glyoxalate (6 mmol, 1.2 equiv.). The resultant reaction mixture was stirred at reflux until the raw material disappears. Then, the mixture was filtered and washed by ethanol. The solid was dried *in vacuo*. For alkylation, the corresponding halogenoalkane (1.6 equiv.) was added to a suspension of quinoxalinone (1.0 equiv.) and potassium carbonate (1.2 equiv.) in DMF (16 mL). The mixture was stirred at room temperature overnight. After complete reaction, brine was added, and then extracted three times with EtOAc. The combined organic layers were washed with a saturated solution of NH₄Cl then brine, dried over anhydrous Na₂SO₄, filtered and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the desired product.

3. General procedure for the electrolysis

An oven-dried 10 mL undivided bottle was equipped with two graphite sheet electrodes (10 mm × 10 mm × 3 mm). The corresponding quinoxalin-2(1*H*)-one (80.0 mg, 0.5 mmol, 1.0 equiv.), the cyclohexylboronic acid (192.0 mg, 1.5 mmol, 3.0 equiv.), the trifluoroacetic acid (150 μ L, 2.0 mmol, 4.0 equiv.) and "Bu₄NPF₆ (387.4 mg, 1.0 mmol, 2.0 equiv.) was added into the undivided cell. And then DMF (5 mL) was added. The reaction mixture was stirred and electrolyzed at a constant current of 10.0 mA under 80 °C for 8 h. The reaction was quenched with saturated sodium carbonate (50 mL) and extracted with EtOAc (3 × 20 mL). Then the combined organic layers were filtered, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The pure product was obtained by flash column chromatography on silica gel (petroleum ether/ethyl acetate).

4. Optimization Studies

Optimization of reaction conditions^a

	+ (OH) ₂ 2	+C/-C <u>"Bu₄NPF₆,TFA</u> DMF, 80 °C 10 mA/cm ² , 8 h 3	N CO
Entry	Equivalent of 2	Solvent	Yield ^b
1	2.0	MeCN	62
2	2.0	H ₂ O	39
3	2.0	MeCN-H ₂ O/10:1	43
4	2.0	EtOH	36
5	2.0	THF	45
6	2.0	1,4-dioxane	19
7	2.0	DMF	80
8	3.0	DMF	87
9	4.0	DMF	88
10	5.0	DMF	87

^{*a*}Reaction conditions: quinoxalin-2(1*H*)-one (0.5 mmol), **2** (1.5 mmol), ^{*n*}Bu₄NPF₆ (2.0 equiv), TFA (4.0 equiv), DMF (5 mL), undivided cell with two graphite electrodes (each 1.0×1.0 cm²), 80 °C, 10 mA/cm², 8 h. ^{*b*}Yield determined by ¹H-NMR analysis using dibromomethane as the internal standard.

5. Details of Unsuccessful Substrates

Reaction conditions: heteroarene (0.5 mmol), **2** (1.5 mmol), ${}^{n}Bu_{4}NPF_{6}$ (2.0 equiv), TFA (4.0 equiv), DMF (5 mL), undivided cell with two graphite electrodes (each 1.0 × 1.0 cm²), 80 °C, 10 mA/cm², 8 h. Isolated yield.

6. Gram-scale Reaction

A 200 mL bottle with a stir bar was charged with quinoxalin-2(1*H*)-one (0.80 g, 5.0 mmol, 1.0 equiv.), cyclohexylboronic acid (1.92 g, 15 mmol, 3.0 equiv.) trifluoroacetic acid (1.5 mL, 20 mmol, 4.0 equiv.), $^{n}Bu_{4}NPF_{6}$ (3.87 g, 10 mmol, 2.0 equiv.) and DMF (100 mL). Two graphite sheet electrodes (300 mm × 500 mm × 3 mm) were inserted into the mixture. The reaction mixture was electrolyzed under a constant current of 60 mA under rome temperature for 36 h. After the reaction, the electrodes were removed and rinsed with EtOAc. Saturated sodium carbonate was then added and the resulting mixture was

extracted with EtOAc. The combined organic layer was dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude material was purified by column chromatography (petroleum ether/ethyl acetate = 10:1) to furnish the desired product in 79% yield as a white solid.

7. Use of 3-V battery as power source

3 V battery

An oven-dried 10 mL undivided bottle was charged with quinoxalin-2(1*H*)-one (80.0 mg, 0.5 mmol, 1.0 equiv.), cyclohexylboronic acid (192.0 mg, 1.5 mmol, 3.0 equiv.), trifluoroacetic acid (150 μ L, 2.0 mmol, 4.0 equiv.), "Bu₄NPF₆ (387.4 mg, 1.0 mmol, 2.0 equiv.) and DMF (5 mL). Two

graphite sheet electrodes (10 mm \times 10 mm \times 3 mm) were inserted into the mixture. Two 1.5 v NanFu batteries were connected by copper wires in series and were used as the power source. The reaction mixture was electrolyzed under a constant current of 10 mA under rome temperature for 24 h. After the reaction, the resulting mixture was was quenched with saturated sodium carbonate and extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude material was purified by column chromatography (petroleum ether/ethyl acetate = 10:1) to furnish the desired product in 63% yield.

8. Click reaction

A solution of **14** (53.3 mg, 0.2 mmol) in toluene was added CuTc (1.6 mg, 0.008 mmol), then the mixture was stirred for 3 min at room temperature, followed by addition of TsN_3 (47.3 mg, 0.24 mmol) in one pot via syringe. The reaction mixture was stirred for 7 h at room temperature. The residue was purified by column chromatography (petroleum ether/EtOAc = 10/1) to afford **25** as white solid in 97% yield.

9. Mechanistic Studies

To a 10 mL oven-dried undivided bottle was added quinoxalin-2(1*H*)-one (80.0 mg, 0.5 mmol, 1.0 equiv.), cyclohexylboronic acid (192.0 mg, 1.5 mmol, 3.0 equiv.), BHT (220.4 mg, 1.0 mmol, 2.0 equiv.), trifluoroacetic acid (150 μ L, 2.0 mmol, 4.0 equiv.), *n*Bu₄NPF₆ (387.4 mg, 1.0 mmol, 2.0 equiv.) and DMF (5 mL). The reaction mixture was stirred and electrolyzed at a constant current of 10.0 mA under 80 °C for 8 h. The reaction was completely suppressed.

To a 10 mL oven-dried undivided bottle was added N-methyl-N-phenyl methacrylamide (87.6 mg, 0.5 mmol, 1.0 equiv.), cyclohexylboronic acid (192.0 mg, 1.5 mmol, 3.0 equiv.), trifluoroacetic acid (150 μ L, 2.0 mmol, 4.0 equiv.), "Bu₄NPF₆ (387.4 mg, 1.0 mmol, 2.0 equiv.) and DMF (5 mL). The reaction mixture was stirred and electrolyzed at a constant current of 10.0 mA under 80 °C for 8 h. The product **27** can be observed by HR-MS (positive mode ESI). After the reaction, the resulting mixture was was quenched with saturated sodium carbonate and extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give **3** as a colorless oil (9.8 mg, 8% yield). **R***f* = 0.6 (Petroleum ether /EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 1H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 3.22 (s, 3H), 1.93 (dd, *J* = 14.0, 6.9 Hz, 1H), 1.72 (dd, *J* = 14.0, 5.2 Hz, 1H), 1.52 – 1.41 (m, 3H), 1.34 – 1.30 (m, 3H), 1.25 – 1.18 (m, 2H), 1.01 – 0.78 (m, 6H). The spectral data obtained were identical with those reported in literature.^[2]

¹H NMR spectrum of compound **29**

10. Characterization Data for Electrolysis Products

3-cyclohexyl-1-methylquinoxalin-2(1H)-one 3

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give **3** as a white solid (For boronic acid: 101.3 mg, 84% yield; For trifluoroborate: 68.6 mg, 60% yield; For boronic ester: 56.7 mg, 51% yield).

Rf = 0.7 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 – 7.26 (m, 2H), 3.69 (s, 3H), 3.34 (t, J = 11. 2 Hz, 1H), 1.96 (d, J = 11.6 Hz, 2H), 1.87 (d, J = 12.4 Hz, 2H), 1.77 (d, J = 12.4 Hz, 1H), 1.64 – 1.39 (m, 5H), 1.36 – 1.25 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 164.3, 154.6, 132.9, 132.9, 129.8, 129.4, 123.4, 113.5, 40.8, 30.5, 29.1, 26.3, 26.2.

The spectral data obtained were identical with those reported in literature.^[3]

7-chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one 4

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (115.0 mg, 83% yield).

Rf = 0.8 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.74 (d, J = 9.1 Hz, 1H), 7.27 (d, J = 5.9 Hz, 2H), 3.65 (s, 3H), 3.31 (t, J = 11.2 Hz, 1H), 1.94 (d, J = 12.2 Hz, 2H), 1.86 (d, J = 12.4 Hz, 2H), 1.76 (d, J = 12.6 Hz, 1H), 1.60 –

1.40 (m, 5H), 1.36 – 1.26 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 164.4, 154.3, 135.2, 133.8, 131.4, 130.8, 123.7, 113.5,40.8, 30.5, 29.2, 26.3, 26.1.

The spectral data obtained were identical with those reported in literature.^[3]

6-chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one 5

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (113.1 mg, 82% yield).

Rf = 0.8 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (d, J = 2.3 Hz, 1H), 7.44 (dd, J = 8.9, 2.4 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 3.67 (s, 3H), 3.32 (tt, J = 11.3, 3.1 Hz, 1H), 1.94 (d, J = 12.1 Hz, 3H), 1.86 (d, J = 12.5 Hz, 3H), 1.76 (d, J = 12.8 Hz, 1H), 1.60 – 1.39 (m, 5H), 1.36 – 1.26 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 165.7, 154.2, 133.4, 131.6, 129.3, 129.2, 128.7, 114.6, 40.9, 30.5, 29.2, 26.2, 26.1.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-6-fluoro-1-methylquinoxalin-2(1H)-one 6

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (70.8 mg, 54% yield).

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 5.4 Hz, 2H), 3.69 (s, 3H), 3.33 (t, J = 10.9 Hz, 1H), 1.94 (d, J = 11.8 Hz, 2H), 1.86 (d, J = 12.3 Hz, 2H), 1.76 (d, J = 12.6 Hz, 1H), 1.65 – 1.38 (m, 5H), 1.35 – 1.25 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 165.8, 159.8, 157.4, 154.2, 133.5 (d, *J* = 11.4 Hz), 129.5, 117.1, 116.8, 115.3, 115.1, 114.5 (d, *J* = 8.8 Hz), 40.9, 30.5, 29.3, 26.1.

¹⁹F NMR (377 MHz, CDCl₃): δ -119.5.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-methyl-6-(trifluoromethyl)quinoxalin-2(1H)-one 7

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (113.3mg, 73% yield).

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.13 (s, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 3.72 (s, 3H), 3.36 (d, J = 11.0 Hz, 1H), 1.97 (s, 2H), 1.88 (d, J = 11.7 Hz, 2H), 1.78 (d, J = 11.9 Hz, 1H), 1.62 – 1.39 (m, 5H), 1.32 – 1.26 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 166.1, 154.4, 135.3, 132.3, 127.7 – 126.9 (m), 125.9 – 125.4 (m), 114.1, 40.9, 30.5, 29.4, 26.3, 26.1

¹⁹F NMR (377 MHz, CDCl₃): δ -61.9.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-methyl-2-oxo-1,2-dihydroquinoxaline-6-carbonitrile 8

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a yellow solid (86.7 mg, 65% yield).

Rf = 0.2 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.50 (d, J = 8.6 Hz, 1H), 7.22 (d, J = 5.8 Hz, 2H), 3.68 (s, 3H), 3.32 (s, 1H), 1.93 (d, J = 12.0 Hz, 3H), 1.85 (d, J = 12.2 Hz, 2H), 1.75 (d, J = 12.6 Hz, 1H), 1.61 – 1.40 (m, 5H), 1.33 – 1.25 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 154.0, 135.1, 133.3, 130.7, 126.4, 118.3, 117.7, 112.4, 41.1, 30.4, 29.3, 26.1, 26.0.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-6-methoxy-1-methylquinoxalin-2(1H)-one 9

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (111.3 mg, 82% yield).

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.74 (d, J = 8.8 Hz, 1H), 6.96 – 6.84 (m, 1H), 6.70 (d, J = 2.3 Hz, 1H), 3.92 (s, 3H), 3.66 (s, 3H), 3.33 – 3.22 (m, 1H), 1.93 (d, J = 11.4 Hz, 2H), 1.86 (d, J = 12.5 Hz, 2H), 1.76 (d, J = 12.5 Hz, 1H), 1.62 – 1.40 (m, 5H), 1.31 (s, 1H), 1.30 – 1.27 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 160.8, 160.6, 155.0, 134.3, 131.0, 127.8, 110.2, 97.9, 55.8, 40.6, 30.6, 29.1, 26.4, 26.2.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1,6,7-trimethylquinoxalin-2(1H)-one 10

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (114.2 mg, 84% yield).

Rf = 0.6 (Petroleum ether /EtOAc = 5:1);

¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.03 (s, 1H), 3.66 (s, 3H), 3.37 – 3.26 (m, 1H), 2.40 (s, 3H), 2.33 (s, 3H), 1.94 (d, *J* = 12.6 Hz, 2H), 1.86 (d, *J* = 12.5 Hz, 2H), 1.76 (d, *J* = 12.6 Hz, 1H), 1.62 – 1.39 (m, 5H), 1.33 – 1.27 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 163.0, 154.6, 138.9, 132.2, 131.3, 130.8, 129.9, 114.1, 77.4, 77.0, 76.7, 40.6, 30.6, 28.9, 26.4, 26.2, 20.5, 19.1.

The spectral data obtained were identical with those reported in literature.^[3]

6,7-dichloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one 11

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (155.6 mg, 58% yield).

Rf = 0.7 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.88 (s, 1H), 7.34 (s, 1H), 3.64 (s, 3H), 3.29 (t, J = 10.2 Hz, 1H), 1.93 (d, J = 10.8 Hz, 2H), 1.86 (d, J = 10.7 Hz, 2H), 1.77 (d, J = 12.5 Hz, 1H), 1.58 – 1.37 (m, 5H), 1.35 – 1.26 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 165.8, 153.9, 133.2, 132.3, 131.9, 130.6, 127.0, 114.9, 40.9, 30.4, 29.3, 26.2, 26.1.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-6,7-difluoro-1-methylquinoxalin-2(1H)-one 12

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (71.7 mg, 52% yield).

Rf = 0.6 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.70 – 7.58 (m, 1H), 7.15 – 7.02 (m, 1H), 3.67 (s, 1H), 3.30 (d, J = 9.4 Hz, 1H), 2.00 – 1.82 (m, 4H), 1.77 (s, 1H), 1.60 – 1.39 (m, 4H), 1.35 – 1.26 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 164.8, 154.1, 152.1 (d, J = 16.4 Hz), 149.6 (d, J = 16.1 Hz), 147.7 (d, J = 13.7 Hz), 145.3 (d, J = 12.4 Hz), 130.0 (d, J = 9.1 Hz), 129.1, 117.4 (d, J = 18.0 Hz), 102.2, 101.9, 40.8, 30.4, 29.5, 26.2, 26.1.

¹⁹F NMR (377 MHz, CDCl₃): δ -132.0 - -132.5 (m), -142.5 - -143.0 (m).

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-propylquinoxalin-2(1H)-one 13

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (51.3 mg, 38% yield).

Rf = 0.8 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.84 (d, J = 7.8 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.33 – 7.24 (m, 2H), 4.28 – 4.15 (m, 2H), 3.41 – 3.28 (m, 1H), 1.96 (d, J = 12.1 Hz, 2H), 1.86 (d, J = 12.9 Hz, 2H), 1.83 – 1.73 (m, 3H), 1.67 – 1.37 (m, 5H), 1.37 – 1.26 (m, 1H), 1.09 – 1.01 (m, 3H).

¹³C NMR (101 MHz, CDCl₃):δ 164.3, 154.3, 133.2, 132.0, 130.0, 129.3, 123.2, 113.5, 43.8, 40.7, 30.5, 26.4, 26.2, 20.7, 11.4.

The spectral data obtained were identical with those reported in literature.^[3]

1-allyl-3-cyclohexylquinoxalin-2(1H)-one 14

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (70.0 mg, 52% yield).

Rf = 0.3 (Petroleum ether /EtOAc = 20:1);

¹H NMR (400 MHz, CDCl₃): δ 7.87 – 7.81 (m, 1H), 7.50 – 7.43 (m, 1H), 7.33 – 7.23 (m, 3H), 6.00 – 5.87 (m, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 5.17 (d, *J* = 17.3 Hz, 1H), 4.90 (d, *J* = 5.1 Hz, 2H), 3.35 (ddd, *J* = 11.5, 7.4, 3.2 Hz, 1H), 1.97 (d, *J* = 11.4 Hz, 2H), 1.92 – 1.83 (m, 3H), 1.76 (d, *J* = 12.6 Hz, 2H), 1.59 – 1.41 (m, 5H), 1.34 – 1.28 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 164.3, 154.1, 133.1, 132.1, 130.8, 129.9, 129.3, 123.4, 118.0, 114.0, 44.5, 40.8, 30.6, 26.3, 26.2.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one 15

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (55.6 mg, 42% yield).

Rf = 0.3 (Petroleum ether /EtOAc = 20:1);

¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 5.05 (s, 2H), 3.33 (t, J = 11.4 Hz, 1H), 2.28 (s, 1H), 1.96 (d, J = 12.1 Hz, 2H), 1.87 (d, J = 12.6 Hz, 2H), 1.77 (d, J = 12.7 Hz, 1H), 1.59 – 1.43 (m, 4H), 1.33 – 1.27 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 164.2, 153.5, 133.1, 131.4, 129.9, 129.5, 123.8, 113.9, 73.0, 40.8, 31.5, 30.5, 26.3, 26.1.

The spectral data obtained were identical with those reported in literature.^[3]

1-benzyl-3-cyclohexylquinoxalin-2(1*H*)-one 16

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (80.3mg, 51% yield).

Rf = 0.3 (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 – 7.82 (m, 1H), 7.41 – 7.28 (m, 4H), 7.25 – 7.21 (m, 3H), 5.49 (s, 2H), 3.45 – 3.35 (m, 1H), 2.01 (d, *J* = 11.5 Hz, 2H), 1.89 (d, *J* = 12.8 Hz, 2H), 1.78 (d, *J* = 12.8 Hz, 1H), 1.61 – 1.48 (m, 4H), 1.37 – 1.30 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 164.4, 154.6, 135.5, 133.2, 132.2, 129.9, 129.4, 128.9, 127.6, 126.9, 123.5, 114.3, 45.9, 40.8, 30.6, 26.4, 26.2.

The spectral data obtained were identical with those reported in literature.^[3]

2-(3-cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetonitrile 17

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (66.7 mg, 50% yield).

Rf = 0.2 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.92 – 7.87 (m, 1H), 7.62 – 7.54 (m, 1H), 7.44 – 7.38 (m, 1H), 7.31 – 7.24 (m, 2H), 5.19 (s, 2H), 3.30 (tt, *J* = 11.5, 3.2 Hz, 1H), 1.96 (d, *J* = 11.3 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.79 – 1.73 (m, 1H), 1.60 – 1.43 (m, 4H), 1.33 – 1.28 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 163.8, 153.2, 133.0, 130.6, 130.5, 130.1, 124.7, 113.8, 112.8, 41.0, 30.5, 29.3, 26.2, 26.1.

The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one 18

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (87.6 mg, 51% yield).

M. p. = $42 - 43 \,^{\circ}\text{C};$

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.08 (d, J = 7.7 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 5.72 (s, 2H), 3.33 (t, J = 11.6 Hz, 1H), 1.99 (d, J = 12.3 Hz, 2H), 1.87 (d, J = 12.6 Hz, 2H), 1.76 (d, J = 12.2 Hz, 1H), 1.66 – 1.56 (m, 2H), 1.50 – 1.38 (m, 2H), 1.38 – 1.27 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 191.4, 163.9, 154.3, 134.7, 134.3, 133.1, 132.3, 130.1, 129.4, 129.0, 128.2, 123.6, 113.3, 48.5, 40.9, 30.5, 26.3, 26.2.

HRMS (ESI): calc'd for C₂₂H₂₂N₂O₂ ([M+H]⁺) 347.1759, found 347.1754.

ethyl 2-(3-cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetate 19

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (62.8 mg, 40% yield).

Rf = 0.6 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H), 5.01 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 3.32 (tt, J = 11.5, 3.2 Hz, 1H), 1.97 (d, J = 11.8 Hz, 2H), 1.87 (d, J = 12.7 Hz, 2H), 1.73 (d, J = 15.5 Hz, 1H), 1.64 – 1.52 (m, 2H), 1.52 – 1.42 (m, 2H), 1.37 – 1.29 (m, 1H), 1.26 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.3, 164.1, 154.1, 133.0, 132.0, 130.1, 129.5, 123.7, 112.9, 62.0, 43.6, 40.8, 30.5, 26.3, 26.2, 14.1.

The spectral data obtained were identical with those reported in literature.^[3]

1-methyl-3-pentylquinoxalin-2(1H)-one 20

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (45.4 mg, 42% yield).

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (d, J = 8.0 Hz, 1H), 7.52 (s, 1H), 7.36 – 7.27 (m, 2H), 3.70 (s, 3H), 2.94 (t, J = 8.0 Hz, 2H), 1.85 – 1.73 (m, 2H), 1.46 – 1.36 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 161.4, 154.9, 133.1, 132.8, 129.6, 129.5, 123.5, 113.6, 34.4, 31.8, 29.0, 26.6, 22.6, 14.1.

The spectral data obtained were identical with those reported in literature.^[3]

3-isopropyl-1-methylquinoxalin-2(1*H*)-one 21

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (For boronic acid 63.7 mg, 63% yield; For trifluoroborate 78.3 mg, 78% yield).

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.36 – 7.27 (m, 2H), 3.70 (s, 3H), 3.63 (dt, J = 13.6, 6.8 Hz, 1H), 1.33 (s, 3H), 1.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.0, 154.5, 133.0, 132.8, 129.8, 129.4, 123.4, 113.5, 31.2, 29.0, 20.2. The spectral data obtained were identical with those reported in literature.^[3]

3-(*sec*-butyl)-1-methylquinoxalin-2(1*H*)-one 22

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (81.8 mg, 76% yield).

M. p. =132 – 133 °C;

Rf = 0.5 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.82 (d, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 3.76 – 3.65 (m, 4H), 2.13 – 2.00 (m, 2H), 1.99 – 1.88 (m, 2H), 1.87 – 1.77 (m, 2H),

¹³C NMR (101 MHz, CDCl₃): δ 164.5, 154.7, 132.9, 132.8, 129.8, 129.4, 123.4, 113.5, 37.8, 29.1, 27.5, 17.9, 12.0.

HRMS (EI): calc'd for $C_{13}H_{16}N_2O$ ([M+H]⁺) 217.1341, found 217.1331.

3-cyclopentyl-1-methylquinoxalin-2(1H)-one 23

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (For boronic acid 43.8 mg, 38% yield; For trifluoroborate 52.5 mg, 46% yield).

Rf = 0.6 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.82 (d, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 3.76 – 3.65 (m, 4H), 2.13 – 2.00 (m, 2H), 1.99 – 1.88 (m, 2H), 1.87 – 1.77 (m, 2H), 1.74 – 1.67 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 163.7, 155.0, 133.0, 132.7, 129.8, 129.3, 123.4, 113.4, 42.7, 30.8, 29.0, 25.9.

The spectral data obtained were identical with those reported in literature.^[3]

3-(tert-butyl)-1-methylquinoxalin-2(1H)-one 24

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (For boronic acid: 45.3 mg, 42% yield; For trifluoroborate: 56.3 mg, 52% yield; For boronic ester: 70.1 mg, 65% yield).

Rf = 0.6 (Petroleum ether /EtOAc = 5:1);

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.50 (s, 1H), 7.34 – 7.25 (m, 2H), 3.67 (s, 3H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 165.3, 153.8, 133.4, 132.2, 130.1, 129.5, 123.2, 113.2, 39.5, 28.7, 27.9. The spectral data obtained were identical with those reported in literature.^[3]

3-cyclohexyl-1-((1-tosyl-1H-1,2,3-triazol-4-yl)methyl)quinoxalin-2(1H)-one 25

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a white solid (92.6 mg, 97% yield).

M. p. =141 − 142 °C;

Rf = 0.5 (Petroleum ether /EtOAc = 10:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.19 (d, J = 2.8 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.81 (d, J = 6.2 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.49 (d, J = 6.9 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.36 (d, J = 6.0 Hz, 2H), 7.33 – 7.28 (m, 1H), 5.50 (s, 1H), 3.32 (dd, J = 11.2, 8.4 Hz, 1H), 2.42 (s, 3H), 1.95 (d, J = 11.9 Hz, 2H), 1.88 (d, J = 10.5 Hz, 2H), 1.78 (d, J = 11.6 Hz, 1H), 1.59 – 1.43 (m, 4H), 1.36 – 1.30 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 163.9, 154.2, 147.5, 142.3, 133.1, 132.7, 131.7, 130.5, 129.9, 129.8, 128.9, 123.9, 123.5, 114.2, 40.8, 37.6, 30.6, 26.3, 26.1, 21.8.

HRMS (ESI): calc'd for C₂₄H₂₅N₅O₃S ([M+H]⁺) 464.1756, found 464.1746.

3-cyclohexyl-1-methylbenzo[g]quinoxalin-2(1H)-one 26

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a yellow solid (78.6 mg, 49% yield).

M. p. = $127 - 128 \,^{\circ}\text{C}$;

Rf = 0.2 (Petroleum ether /EtOAc = 10:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.34 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.57 (s, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.50 – 7.42 (m, 1H), 3.76 (d, J = 0.6 Hz, 3H), 3.38 (ddd, J = 11.5, 7.4, 3.0 Hz, 1H), 2.00 (d, J = 12.0 Hz, 2H), 1.89 (d, J = 12.7 Hz, 2H), 1.79 (d, J = 12.4 Hz, 1H), 1.64 – 1.49 (m, 4H), 1.39 – 1.30 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 164.8, 154.4, 133.3, 132.3, 131.7, 128.6, 128.4, 127.5, 127.1, 125.1, 109.7, 40.9, 30.7, 29.1, 26.4, 26.2.

HRMS (ESI): calc'd for C₁₉H₂₀N₂O ([M+H]⁺) 293.1654, found 293.1644.

6-cyclohexylphenanthridine 27

Electrolysis was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to give as a colorless oil (84.9 mg, 65% yield).

Rf = 0.8 (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃):** δ 8.62 (d, J = 8.2 Hz, 1H), 8.51 (d, J = 8.1 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.72 – 7.63 (m, 2H), 7.63 – 7.54 (m, 1H), 3.71 – 3.53 (m, 1H), 2.07 (d, J = 11.1 Hz, 2H), 2.02 – 1.90 (m, 4H), 1.84 (d, J = 12.0 Hz, 1H), 1.63 – 1.51 (m, 2H), 1.51 – 1.38 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 165.3, 143.9, 133.0, 130.0, 128.4, 127.1, 126.1, 125.6, 124.8, 123.4, 122.6, 121.8, 77.4, 77.1, 76.8, 42.0, 32.3, 26.9, 26.4.

The spectral data obtained were identical with those reported in literature.^[4]

11. X-ray Crystallography

Table 1 Crystal data and structure refinement for p20200606a.

Identification code	p20200606a
Empirical formula	$C_{15}H_{16}F_2N_2O$
Formula weight	278.30
Temperature/K	294.15
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.85240(10)
b/Å	12.04300(10)
c/Å	12.43970(10)

α/\circ	90
β/°	112.9820(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1358.85(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.360
μ/mm^{-1}	0.885
F(000)	584.0
Crystal size/mm ³	$0.18 \times 0.16 \times 0.14$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ ^c	⁹ 9.752 to 158.746
Index ranges	$-12 \le h \le 12, -13 \le k \le 15, -15 \le l \le 15$
Reflections collected	14345
Independent reflections	2879 [$R_{int} = 0.0201, R_{sigma} = 0.0171$]
Data/restraints/parameters	2879/0/183
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0379, wR_2 = 0.1144$
Final R indexes [all data]	$R_1 = 0.0403, WR_2 = 0.1169$
Largest diff. peak/hole / e Å-3	0.15/-0.17

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for p20200606a. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	У	z	U(eq)
F1	2143.9(11)	1948.1(7)	5542.7(9)	83.6(3)
F2	3767.4(11)	1248.2(7)	4379.4(9)	82.7(3)
01	4325.3(10)	6775.7(7)	2726.3(8)	58.8(2)
N1	4112.8(10)	4962.9(8)	3150.1(8)	46.3(2)
N2	2381.6(10)	5659.0(8)	4349.3(8)	48.4(2)
C1	5063.8(16)	4621.2(11)	2551.2(12)	60.1(3)
C2	3605.8(12)	4178.5(9)	3727.1(9)	45.1(3)
C3	3937.7(13)	3049.4(10)	3728.3(11)	53.8(3)
C4	3432.3(15)	2335.5(10)	4344.5(12)	58.5(3)
C5	2595.9(15)	2695.5(11)	4947.1(12)	59.6(3)
C6	2255.2(14)	3791.2(11)	4948.0(11)	55.6(3)
C7	2756.2(12)	4554.0(9)	4332.1(10)	46.7(3)
C8	2853.9(12)	6374.8(9)	3803.6(9)	44.0(2)
C9	3815.0(12)	6074.4(9)	3177.2(9)	45.5(2)
C10	2469.4(12)	7583.0(9)	3801.6(9)	45.4(3)
C11	1388.7(14)	7974.6(11)	2595.3(10)	55.7(3)
		16		

C12	1126.6(15)	9218.9(11)	2609.8(12)	59.3(3)
C13	548.4(16)	9526.5(12)	3532.4(14)	67.2(4)
C14	1567.2(18)	9110.2(12)	4728.0(12)	67.5(4)
C15	1867.2(16)	7872.6(11)	4723.3(11)	57.1(3)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for p20200606a. The Anisotropic displacement factor exponent takes the form: - $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	Uu	Um j	U22	Um	U12	U
F1	99 6(7)	60 5(5)	1105(7)	22 0(5)	62 5(6)	-2.6(4)
F2	103.0(7)	42.3(4)	116.8(7)	3.2(4)	58.1(6)	1.9(4)
01	71.4(6)	50.6(5)	72.0(5)	5.7(4)	47.1(5)	1.9(4)
N1	49.5(5)	45.7(5)	50.8(5)	-2.9(4)	27.2(4)	1.2(4)
N2	51.7(5)	48.1(5)	52.0(5)	0.6(4)	27.4(4)	2.8(4)
C1	71.5(8)	55.9(7)	70.6(7)	-3.9(6)	47.0(6)	4.0(6)
C2	43.4(5)	45.6(6)	46.3(5)	-2.7(4)	17.7(4)	-1.6(4)
C3	55.2(6)	46.8(6)	62.4(7)	-5.8(5)	26.3(5)	-0.2(5)
C4	61.4(7)	41.8(6)	71.5(8)	-0.4(5)	25.2(6)	-1.5(5)
C5	60.9(7)	52.0(7)	69.0(7)	9.9(6)	28.9(6)	-5.1(5)
C6	57.0(7)	55.4(7)	61.8(7)	4.2(5)	31.3(5)	-0.4(5)
C7	45.9(5)	46.5(6)	50.3(6)	1.0(4)	21.6(4)	0.1(4)
C8	45.1(5)	46.1(6)	44.0(5)	-1.2(4)	20.8(4)	1.2(4)
C9	47.6(5)	46.0(6)	47.2(5)	-0.8(4)	23.0(4)	0.5(4)
C10	48.8(5)	45.7(6)	46.2(5)	-1.3(4)	23.6(4)	2.5(4)
C11	58.8(7)	60.0(7)	48.5(6)	-0.3(5)	21.3(5)	8.1(5)
C12	57.8(7)	60.2(7)	61.7(7)	10.5(6)	25.1(6)	11.6(5)
C13	69.0(8)	57.9(7)	86.3(9)	7.0(6)	42.9(7)	17.1(6)
C14	91.7(10)	57.6(7)	68.3(8)	-4.4(6)	47.7(7)	13.2(7)
C15	73.6(8)	54.7(7)	55.6(6)	2.4(5)	38.7(6)	9.4(6)

Table 4 Bond Lengths for p20200606a.

Ator	n Atom	Length/Å	Ato	m Atom	Length/Å
F1	C5	1.3472(15)	C4	C5	1.382(2)
F2	C4	1.3470(14)	C5	C6	1.3618(19)
01	C9	1.2250(14)	C6	C7	1.4035(16)
N1	C1	1.4654(15)	C8	C9	1.4869(15)

N1	C2	1.3918(15) C8	C10	1.5034(15)
N1	C9	1.3735(14) C1	0 C11	1.5363(16)
N2	C7	1.3834(14) C1	0 C15	1.5230(15)
N2	C8	1.2912(15) C1	1 C12	1.5219(18)
C2	C3	1.3985(16) C1	2 C13	1.5132(19)
C2	C7	1.4012(16) C1	3 C14	1.518(2)
C3	C4	1.3685(18) C1	4 C15	1.5199(18)

Table 5 Bond Angles for p20200606a.

Atom	n Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	N1	C1	120.07(10)	N2	C7	C6	117.93(11)
C9	N1	C1	118.12(10)	C2	C7	C6	119.55(11)
C9	N1	C2	121.72(9)	N2	C8	C9	123.17(10)
C8	N2	C7	118.75(10)	N2	C8	C10	120.31(10)
N1	C2	C3	121.99(10)	C9	C8	C10	116.50(9)
N1	C2	C7	117.90(10)	01	C9	N1	122.06(10)
C3	C2	C7	120.11(11)	01	C9	C8	122.10(10)
C4	C3	C2	118.38(12)	N1	C9	C8	115.83(10)
F2	C4	C3	119.38(12)	C8	C10	C11	112.13(9)
F2	C4	C5	118.54(12)	C8	C10	C15	113.11(9)
C3	C4	C5	122.08(12)	C15	C10	C11	109.87(10)
F1	C5	C4	118.93(12)	C12	C11	C10	110.29(10)
F1	C5	C6	120.82(13)	C13	C12	C11	111.47(11)
C6	C5	C4	120.24(12)	C12	C13	C14	111.19(11)
C5	C6	C7	119.63(12)	C13	C14	C15	112.03(12)
N2	C7	C2	122.52(10)	C14	C15	C10	111.16(10)

Table 6 Torsion Angles for p20200606a.

A B	С	D	Angle/°	A	B	С	D	Angle/°
F1 C5	C6	C7	179.20(11)	C4	C5	C6	C7	0.1(2)
F2 C4	C5	F1	-0.20(19)	C5	C6	C7	N2	179.71(11)
F2 C4	C5	C6	178.93(12)	C5	C6	C7	C2	-0.23(18)
N1 C2	C3	C4	178.15(10)	C7	N2	C8	C9	-1.50(16)
N1 C2	C7	N2	1.60(16)	C7	N2	C8	C10	179.96(9)
N1 C2	C7	C6	-178.47(10)	C7	C2	C3	C4	-0.95(17)
N2 C8	C9	01	-175.39(10)	C8	N2	C7	C2	-1.21(16)

N2C8C9N1	3.70(16) C8 N2 C7 C6	178.85(10)
N2C8C10C11	-110.02(12) C8 C10C11C12	-175.51(10)
N2C8C10C15	14.91(15) C8 C10C15C14	177.16(11)
C1 N1 C2 C3	-2.02(16) C9 N1 C2 C3	-178.29(10)
C1 N1 C2 C7	177.10(10) C9 N1 C2 C7	0.83(15)
C1 N1 C9 O1	-0.47(17) C9 C8 C10C11	71.35(12)
C1 N1 C9 C8	-179.56(10) C9 C8 C10C15	-163.72(10)
C2 N1 C9 O1	175.87(10) C10C8 C9 O1	3.19(16)
C2 N1 C9 C8	-3.23(15) C10C8 C9 N1	-177.71(9)
C2 C3 C4 F2	-178.50(11) C10C11C12C13	-57.42(14)
C2 C3 C4 C5	0.82(19) C11 C10 C15 C14	-56.70(15)
C3 C2 C7 N2	-179.27(10) C11 C12 C13 C14	55.13(16)
C3 C2 C7 C6	0.67(16) C12C13C14C15	-53.84(17)
C3 C4 C5 F1	-179.52(12) C13 C14 C15 C10	55.12(16)
C3 C4 C5 C6	-0.4(2) C15C10C11C12	57.80(14)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for p20200606a.

Atom	x	У	z	U(eq)
H1A	5285.99	5253.92	2179.44	90
H1B	4565.66	4070.76	1973.26	90
H1C	5962.62	4314.91	3108.63	90
H3	4488.55	2789.91	3320.27	65
H6	1693.62	4032.77	5354.44	67
H10	3383.4	8005.55	3988.49	54
H11A	1788.18	7805.71	2014.2	67
H11B	460.12	7582.99	2384.69	67
H12A	2043.9	9610.04	2762.02	71
H12B	422	9449.92	1849.69	71
H13A	-424.27	9207.39	3329.7	81
H13B	458.45	10327.36	3555.87	81
H14A	1124.66	9261.18	5285.84	81
H14B	2493.59	9510.87	4977.66	81
H15A	960.93	7464.74	4567.33	69
H15B	2573.69	7651.13	5486.45	69

Experimental

Single crystals of $C_{15}H_{16}F_2N_2O$ [p20200606a] were []. A suitable crystal was selected and [] on a Rigaku Xtalab P200 diffractometer. The crystal was kept at 294.15 K during data collection. Using

Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [p20200606a]

Crystal Data for C₁₅H₁₆F₂N₂O (M=278.30 g/mol): monoclinic, space group P2₁/c (no. 14), a = 9.85240(10) Å, b = 12.04300(10) Å, c = 12.43970(10) Å, $\beta = 112.9820(10)^\circ$, V = 1358.85(2) Å³, Z = 4, T = 294.15 K, μ (CuK α) = 0.885 mm⁻¹, *Dcalc* = 1.360 g/cm³, 14345 reflections measured (9.752° $\leq 2\Theta \leq 158.746^\circ$), 2879 unique ($R_{int} = 0.0201$, $R_{sigma} = 0.0171$) which were used in all calculations. The final R_1 was 0.0379 (I > 2 σ (I)) and wR_2 was 0.1169 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Ternary CH refined with riding coordinates:

C10(H10)

2.b Secondary CH2 refined with riding coordinates:

```
C11(H11A,H11B), C12(H12A,H12B), C13(H13A,H13B), C14(H14A,H14B), C15(H15A,H15B)
```

2.c Aromatic/amide H refined with riding coordinates:

C3(H3), C6(H6)

2.d Idealised Me refined as rotating group:

C1(H1A,H1B,H1C)

12. Spectra of prepared compounds

¹³C NMR spectrum of compound 4

¹³C NMR spectrum of compound **5**

¹³C NMR spectrum of compound **6**

¹H NMR spectrum of compound 7

¹⁹F NMR spectrum of compound 7

¹³C NMR spectrum of compound 8

¹³C NMR spectrum of compound **9**

¹³C NMR spectrum of compound **10**

¹³C NMR spectrum of compound **11**

¹³C NMR spectrum of compound **12**

¹H NMR spectrum of compound 13

¹H NMR spectrum of compound 14

¹H NMR spectrum of compound **15**

¹H NMR spectrum of compound 16

¹H NMR spectrum of compound 18

37

¹H NMR spectrum of compound **19**

¹H NMR spectrum of compound **20**

¹H NMR spectrum of compound **21**

¹H NMR spectrum of compound **22**

¹H NMR spectrum of compound 23

¹H NMR spectrum of compound **24**

¹H NMR spectrum of compound **25**

¹H NMR spectrum of compound **27**

13. References

- [1] M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, Chem. Commun. 2016, 52, 2846-2849.
- [2] Z. Li, Y. Zhang, L. Zhang, Z. Liu, Org. Lett. 2014, 16, 382-385.
- [3] K. Niu, L. Song, Y. Hao, Y. Liu, Q. Wang, Chem. Commun. 2020, 56, 11673-11676.
- [4] J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem. Sci. 2019, 10, 976-982.