Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes

Dhanaji V. Jawale, Valérie Geertsen, Frédéric Miserque, Patrick Berthault, Edmond Gravel

and Eric Doris

Table of contents

1.	Spectroscopic data	S1
2.	Copies of NMR spectra	S8
3.	Supplementary Figures (XPS, KIE)	S42
4.	Supplementary Table (Recycling)	S45

General

Chemicals were purchased from Sigma-Aldrich and used as received. Electron microscopy observations were carried out on a Philips CM12 microscope operated at 100 kV. NMR spectra were recorded on a Bruker Avance spectrometer at 400 MHz (¹H), 100 MHz (¹³C), and 61 MHz (²H). Chemical shifts are given in ppm relative to the NMR solvent residual peak. ²⁹Si NMR experiments were performed at 298 K on a 500 MHz Avance II Bruker spectrometer equipped with an inverse broadband 5 mm probe head (²⁹Si NMR frequency: 99.362 MHz). Spectra were acquired with 64 scans and an interscan delay of 60 sec. Chemical shifts are calibrated considering the signal of triethylsilane at 0 ppm. XPS spectra were acquired on a VG ESCALAB 210 spectrometer. HRMS were recorded on a Waters Xevo G2-XS QTof spectrometer.

1. Spectroscopic data

¹H-NMR (400 MHz, CDCl₃) δ 0.57 (t, 2H),0.81 (t, 3H), 1.12–1.38 (m, 17H), 3.72–3.81 (m, 6H) ppm.¹

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 10.5, 14.3, 18.4, 22.7, 22.9, 31.6, 33.0, 58.4 ppm.

²⁹Si-NMR (99.3 MHz, CDCl₃) δ 7.04 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.41 (s, 6H), 0.91 (t, 2H), 1.02 (t, 3H), 1.42–1.47 (m, 8H), 7.48 (m, 3H, ArH), 7.65 (m, 2H, ArH) ppm.²

¹³C-NMR (100 MHz, CDCl₃) δ –2.9, 14.3, 16.0, 22.8, 24.0, 31.7, 33.5, 127.8, 128.9, 133.7, 139.8 ppm.

²⁹Si-NMR (99.3 MHz, CDCl₃) δ –3.23 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.00 (s, 6H), 0.54, (t, 2H), 0.93 (t, 3H), 1.32 (m, 8H), 2.12 (s, 2H), 7.11 (m, 3H,ArH), 7.24 (dd, 2H,ArH) ppm.³

¹³C-NMR (100 MHz, CDCl₃) δ –3.5, 14.3, 15.0, 22.7, 23.8, 25.7, 31.7, 33.4, 123.9, 128.1, 128.2, 140.6 ppm.

¹H-NMR (400 MHz, CDCl₃): δ 0.40 (s, 6H), 0.80 (t, 2H), 0.91 (t, 3H), 1.24–1.45 (m, 8H) ppm.⁴

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃, ppm) δ 1.8, 14.3, 19.2, 22.7, 23.1, 31.6, 32.8 ppm.

3ad /

¹H-NMR (400 MHz, CDCl₃) δ 0.47–0.53 (m, 8H), 0.87–0.98 (m, 12H), 1.23–1.34 (m, 8H) ppm.⁵

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 3.5, 7.6, 11.5, 14.3, 22.8, 24.0, 32.0, 33.8 ppm.

¹H-NMR (400 MHz, CDCl₃, ppm) δ 0.41 (s, 6H), 0.88, (t, 2H), 0.92 (t, 3H), 1.23–1.46 (m, 32H) ppm.

¹³C-NMR (100 MHz, CDCl₃, ppm) δ 1.8, 14.3, 19.2, 22.9, 23.2, 29.5, 29.6, 29.8, 29.9, 30.0, 32.2, 33.2 ppm.

HO 3cb ¹H-NMR (400 MHz, CDCl₃) δ 0.37 (s, 6H), 0.87, (t, 2H), 1.0 (t, 3H), 1.39– 1.55 (m, 32H), 7.44 (m, 3H, ArH), 7.61 (m, 2H, ArH) ppm.⁶

¹³C-NMR (100 MHz, CDCl₃) δ –2.9, 14.3, 15.9, 22.9, 24.0, 27.1, 29.5, 29.6, 28.8, 29.9, 32.1, 33.8, 128.0, 128.8, 133.6, 139.8 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.27 (s, 6H), 0.76, (t, 2H), 1.28–1.38 (m, 6H), 1.61 (m, 2H), 2.34 (t, 2H), 7.36 (m, 3H, ArH), 7.52 (m, 2H, ArH) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ –3.0, 15.7, 23.7, 24.6, 28.7, 33.2, 34.1, 127.7, 128.8, 133.6, 139.6, 180.4 ppm.

HRESMS m/z 263.1465 (calcd for C₁₅H₂₃O₂Si, 263.1467 [M – H]⁻).

¹H-NMR (400 MHz, CDCl₃) δ 0.26 (s, 6H), 0.76 (t, 2H), 1.24–1.37 (m, 4H), 1.51–1.62 (m, 2H), 3.60 (t, 2H), 7.35 (m, 3H, ArH), 7.50 (m, 2H, ArH) ppm.⁷

¹³C-NMR (100 MHz, CDCl₃) δ –3.3, 15.7, 23.7, 29.6, 32.5, 63.0, 127.7, 128.8, 133.6, 139.6 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.15 (s, 6H), 0.64, (t, 2H), 1.21 (m, 2H), 1.47 (m, 2H), 1.95 (s, 3H), 2.25 (t, 3H), 7.22 (m, 3H, ArH), 7.38 (m, 2H, ArH) ppm.⁸

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ –3.1, 15.5, 23.5, 27.5, 29.7, 43.3, 127.7, 128.7, 133.4, 139.2 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.36 (s, 6H), 0.86, (t, 2H), 1.43–1.57 (m, 6H), 2.47 (q, 1H), 2.76 (t, 1H), 2.92 (q, 1H), 7.42 (m, 3H, ArH), 7.52 (dd, 2H, ArH) ppm.⁹

¹³C-NMR (100 MHz, CDCl₃) δ –3.1, 15.63, 23.7, 29.7, 32.0, 46.9, 52.1, 127.7, 128.7, 133.4, 139.3 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.66 (t, 2H), 1.21–1.29 (m, 15H), 1.47 (m, 2H), 1.94 (q, 2H), 3.36 (t, 1H), 3.83 (m, 6H), 4.19 (q, 4H) ppm.¹⁰

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 10.1, 14.1, 18.3, 20.8, 32.0, 51.8, 58.4, 61.3, 169.5 ppm.

HRESMS *m*/z 387.1789 (calcd for C₁₆H₃₂NaO₇Si, 387.1815 [M + Na]⁺).

¹H-NMR (400 MHz, CDCl₃) δ 0.26 (s, 3H), 0.28 (s, 3H), 0.85 (m, 1H), 1.09–1.12 (m, 2H), 1.21–1.29 (m, 2H), 1.40-1.59 (m, 4H), 2.25 (m, 2H),

¹³C-NMR (100 MHz, CDCl₃) δ –4.1, –4.0, 28.6, 28.9, 32.8, 34.4, 37.0,

7.36–7.38 (m, 3H, ArH), 7.53–7.56 (m, 2H, ArH) ppm.¹¹

37.8, 38.0, 127.7, 128.7, 134.0, 139.4 ppm.

²⁹Si-NMR (99.3 MHz, CDCl₃) δ –3.38 ppm.

Si

3ib

3jd

¹H-NMR (400 MHz, CDCl₃) δ 0.36 (s, 6H), 0.80, (t, 3H), 1.21–1.30 (m, 4H), 2.05 (m, 2H), 5.61 (d, 1H), 6.16 (m, 1H) ppm.¹²

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 2.1, 14.1, 22.4, 33.6, 36.2, 126.1, 151.3 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.34 (s, 6H), 0.74 (t, 4H), 0.84–1.23–1.35 (m, 2H), 1.49–1.71 (m, 10H), 6.03 (d, 1H), 6.24 (d, 1H), 7.33–7.36 (m, 3H, ArH), 7.50–7.52 (m, 2H, ArH) ppm.¹³

¹³C-NMR (100 MHz, CDCl₃) *δ* −2.3, 22.1, 25.7, 37.5, 72.8, 123.3, 127.9, 129.1, 134.0, 139.0, 155.4 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.50 (s, 6H), 1.34 (m, 2H), 2.85 (m, 2H), 7.38 (m, 3H, ArH), 7.47 (m, 2H, ArH), 7.56 (m, 3H, ArH), 7.75 (m, 2H, ArH) ppm.¹⁴

¹³C-NMR (100 MHz, CDCl₃) δ –2.9, 17.8, 30.1, 125.7, 127.9, 127.9, 128.4, 129.1, 133.7, 139.1, 145.1 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.50 (s, 6H), 1.28 (m, 2H), 2.79 (m, 2H), 7.24 (d, 2H, ArH), 7.41 (d, 2H, ArH), 7.56 (m, 3H, ArH), 7.74 (m, 2H, ArH) ppm.¹⁵

¹³C-NMR (100 MHz, CDCl₃) δ -3.0, 17.8, 29.5, 128.0, 128.4, 129.1, 129.4, 131.3, 133.7, 138.8, 143.4 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.35 (s, 6H), 1.16 (m, 2H), 2.65 (m, 2H), 3.83 (s, 3H) 6.87 (d, 2H, ArH), 7.14 (m, 2H, ArH), 7.41 (m, 3H, ArH), 7.58 (m, 2H, ArH) ppm.¹⁶

¹³C-NMR (100 MHz, CDCl₃) δ –3.0, 18.0, 29.1, 55.3, 113.7, 127.9, 128.7, 129.0, 133.7, 137.1, 139.2, 157.6 ppm.

5cb

¹H-NMR (400 MHz, CDCl₃) δ 0.45 (s, 6H), 1.29 (m, 2H), 2.82 (m, 2H), 7.39 (d, 2H, ArH), 7.51 (m, 2H, ArH), 7.68 (m, 2H, ArH), 8.24 (m, 2H, ArH) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ –2.9, 17.6, 30.5, 127.6, 128.0, 129.1, 133.7, 135.9, 139.0, 150.0 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.41 (s, 6H), 1.30 (m, 2H), 2.88 (m, 2H), 7.39 (d, 1H, ArH), 7.44–7.53 (m, 5H, ArH), 7.63–7.67 (m, 3H, ArH), 7.81–7.87 (m, 3H, ArH) ppm.¹⁷

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ –2.9, 17.7, 30.2, 125.1, 125.5, 125.9, 127.1, 127.5, 127.7, 127.9, 129.0, 132.0, 133.7, 133.8, 139.1, 142.6 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.66 (s, 6H), 6.51 (d, 1H), 7.13 (d, 1H), 7.42 (m, 3H, ArH), 7.53 (dd, 2H, ArH) ppm.¹⁸

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ 2.2, 124.7, 127.0, 128.8, 129.0, 137.3, 146.7 ppm.

¹H-NMR (400 MHz, CDCl₃, ppm): δ 0.39 (s, 6H), 6.82 (s, 1H), 6.88-6.96 (m, 4H, ArH), 7.05-7.10 (m, 3H, ArH), 7.14-7.25 (m, 3H, ArH), 7.33-7.38 (m, 3H, ArH), 7.52-7.58 (m, 2H, ArH). ¹⁹

¹³C NMR (100 MHz, CDCl₃) δ –3.0, 125.7, 127.2, 127.7, 127.8, 127.9, 128.6, 129.1, 129.6, 134.3, 137.2, 137.7, 139.2, 142.3, 145.0 ppm.

3af

¹H-NMR (400 MHz, CDCl₃) δ –0.24 (s, 12H), 0.74 (t, 4H), 0.84–0.88 (m, 6H), 1.24–1.32 (m, 16H), 7.49–7.51 (s, 4H) ppm.²⁰

 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) δ –3.0, 14.1, 15.6, 22.6, 23.8, 31.5, 33.3, 132.8, 140.2 ppm.

²⁹Si-NMR (99.3 MHz, CDCl₃) δ –3.40 ppm.

¹H-NMR (400 MHz, CDCl₃) δ 0.20 (s, 6H), 0.64 (t, 2H), 1.21-1.27 (m, 2H), 1.40–1.45 (m, 2H), 1.64–1.80 (m, 3H), 2.35 (d, 1H), 2.63 (d, 2H), 3.02– 3.13 (m, 2H), 3.32–3.35 (m, 1H), 3.90 (s, 3H), 5.50 (d, 2H), 7.25–7.37 (m, 5H, ArH), 7.42 (d, 1H, ArH), 7.44 (d, 2H, ArH), 7.50 (d, 2H, ArH), 8.03 (d, 2H, ArH), 8.73 (d, 2H, ArH) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ –3.2, 13.5, 21.8, 25.3, 28.3, 28.7, 38.8, 43.3, 55.7, 58.7, 59.8, 72.3, 101.3, 118.4, 121.6, 126.7, 127.7, 128.9, 131.8, 133.4, 139.2, 144.4, 147.2, 147.7, 157.8 ppm.

HRESMS m/z 461.2630 (calcd for C₂₈H₃₇N₂O₂Si, 461.2624 for [M + H]⁺).

¹H-NMR (400 MHz, CDCl₃) δ 0.30 (s, 6H), 0.61 (m, 1H), 0.86 (t, 3H), 0.93 (m, 1H), 1.62 (m, 1H), 1.75 (s, 3H), 1.79–2.47 (m, 5H), 6.69 (m, 1H), 7.34–7.36 (m, 3H, ArH), 7.48–7.51 (m, 2H, ArH) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ –2.2, 15.8, 19.2, 20.5, 29.0, 29.7, 33.3, 33.4, 41.2, 42.0, 43.3, 43.3, 127.9, 129.0, 133.5, 135.2, 139.5, 145.4, 200.8 ppm.

²⁹Si-NMR (99.3 MHz, CDCl₃) δ –3.50 ppm.

HRESMS *m*/*z* 309.1658 (calcd for C₁₈H₂₆NaOSi, 309.1651[M + Na]⁺).

¹H-NMR (400 MHz, CDCl₃) δ 0.36 (s, 6H), 0.82 (m, 1H), 0.96 (s, 3H), 1.01–1.17 (m, 2H), 0.96 (s, 3H), 1.19 (s, 3H), 1.24 (m, 2H), 1.35–1.56 (m, 4H), 1.59 (m, 2H), 1.65–1.69 (m, 3H), 1.81–1.88 (m, 2H), 1.95–2.0 (m, 2H), 2.05 (s, 1H), 2.25–2.44 (m, 3H), 5.73 (s, 1H), 5. 86 (d, 1H), 6.24 (d, 1H), 7.31–7.37 (m, 3H, ArH), 7.49–7.52 (m, 2H, ArH) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ –2.3, 14.4, 17.5, 20.8, 23.9, 31.8, 32.3, 34.1, 35.9, 36.2, 36.4, 38.8, 46.7, 49.8, 53.9, 85.0, 124.0, 124.6, 127.9, 129.2, 133.9, 138.9, 152.3, 171.3, 199.7 ppm.

HRESMS m/z 447.2714 (calcd for C₂₉H₃₉O₂Si, 447.2719 [M – H]⁻).

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃) δ 0.38 (s, 6H), 7.37–7.44 (m, 3H, ArH), 7.59–7.61 (m, 2H, ArH) ppm.^{21}

¹H-NMR (400 MHz, CDCl₃) δ 0.27 (s, 6H), 0.76 (d, 2H), 0.90 (m, 3H), 1.24–1.31 (m, 7H), 7.35–7.38 (m, 3H, ArH), 7.52 (m, 2H, ArH) ppm.

 $^{13}{\rm C}$ NMR (100 MHz, CDCl₃) δ –3.0, 14.1, 15.6, 22.6, 23.3 (t), 31.5, 33.2, 127.7, 128.7, 133.6, 139.8 ppm.

²H-NMR (61 MHz, CHCl₃) δ 1.27 ppm.

2. Copies of NMR spectra

²⁹Si-NMR

¹³C-NMR

S10

¹³C-NMR

S13

²⁹Si-NMR

²⁹Si-NMR

²H-NMR of the crude reaction mixture after 7 days (bottom).

3. Supplementary Figures

Figure S1. XPS spectrum obtained from fresh PtCNT catalyst highlighting Pt⁰, Pt²⁺ and Pt⁴⁺ contributions (Pt-4*f* region).

Figure S2. XPS spectrum obtained from recycled PtCNT catalyst highlighting Pt⁰, Pt²⁺ and Pt⁴⁺ contributions (Pt-4*f* region).

Figure S3. Determination of the kinetic isotopic effect based on the rates (*k*) of the reaction of hex-1-ene with $HSi(Me)_2Ph(\textcircled{\bullet})$ or $DSi(Me)_2Ph(\textcircled{\bullet})$.

4. Supplementary Table

	C_4H_9 + H_Si CI H_0 C_4H_9 Si CI H_9 Si CI													
		1a	2d						3	ad				
entry	catalyst	<i>t</i> (h)	yield (%) ^b			100	1							
1	Fresh	24	97	-	()	75	+				-			
2	1 st reuse	24	98		%) pi	50	_							
3	2 nd reuse	24	97		yie	25								
4	3 rd reuse	24	96			25								
5	4 th reuse	24	97			0	T	1	2	3	4	5	6	
6	5 th reuse	24	96						- exp	perir	men	t #		

Table S1. Recycling experiment.^{*a*}

^{*a*} **1a** (1 mmol), **2d** (1.2 mmol), neat, PtCNT (0.04 mol%), room temperature. ^{*b*} Yield of isolated product.

- ⁴ M. Pérez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. **2013**, 135, 18308.
- ⁵ K. Jakobsson, T. Chu, G. I. Nikonov, ACS Cat. **2016**, *6*, 7350.
- ⁶ D. Khobragade, E. S. Stensrud, M. Mucha, J. R. Smith, R. Pohl, I. Stibor, J. Michl, *Langmuir*, **2010**, *26*, 8483.

⁸ Rong Zhou, Yi Yiing Goh, Haiwang Liu, Hairong Tao, Lihua Li, Jie Wu, Angew. Chem., **2017**, 56, 16621.

⁹ A. D. Ibrahim, S. W. Entsminger, L. Zhu, A. R. Fout, ACS Catal. **2016**, *6*, 3589.

- ¹⁰ A. Taglietti, P. Grisoli, G. Dacarro, A. Gattesco, C. Mangano, Pallavicini, New J. Chem. **2018**, 42, 7595.
- ¹¹ a) W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. **2018**, 57, 12141; b) C. K. Chu, Y. Liang, G. C. Fu, J. Am. Chem. Soc. **2016**, 138, 6404.

¹³ X. Caifeng, H. Bin, Y. Tao, C. Mingzhong, *Green Chem.*, **2018**, *20*, 391.

¹⁵ H. Go, U. Yasuhiro, *Chem. Lett.*, **2016**, *45*, 1244.

- ¹⁷ S. Mallick, E.-U. Wuerthwein, A. Studer, Org. Lett., **2020**, 22, 6568.
- ¹⁸ M. A. Brook, C. Henry, *Tetrahedron* **1996**, *52*, 861.

²⁰ I. Toru, W. Hee, G. Walzer, T. Don, *Chem. Mater.*, **1993**, *5*, 1487.

¹ J. Li, J. Peng, G. Zhang, Y. Bai, G. Lai, X. Li, New J. Chem **2010**, 34, 1330.

² C. Walter, P. Paul, Organometallics **1988**, 7, 1373.

³ H. Arii, Y. Yano, K. Nakabayashi, S. Yamaguchi, M. Yamamura, K. Mochida, T. Kawashima, *J. Org. Chem.* **2016**, *81*, 6314.

⁷ M. Takato, F. Shu, S. Min, Y. Jun, K. Keita, Y. Tomoko, M. Zen, M. Tomoo, J. Koichiro, K. Kiyotomi, *Green Chem.* **2019**, *21*, 4566.

¹² O. Iwao, C. Nuria, D. Robert J, I. Patrizia, Organometallics, **1990**, *9*, 3127.

¹⁴ A. D. Ibrahim, S. W. Entsminger, L. Zhu, A. R. Fout, ACS Catal., **2016**, *6*, 3589.

¹⁶ Y.Sunada, D. Noda, H. Soejima, H. Tsutsumi, H. Nagashima, Organometallics, **2015**, 34, 2896.

¹⁹ D. Yanan, J. Guijie, Z. Shaochun, C. Xiufang, Y. Yong, *Catal. Sci. Technol.*, **2018**, *8*, 1039.

²¹ N. Gandhamsetty, S. Park, S. Chang, J. Am. Chem. Soc., **2015**, 137, 15176.