Supporting Information

High-performance bio-based epoxies from ferulic acid and furfuryl alcohol:

Synthesis and properties

Jiale Ye1,2, Songqi Ma* 2, Binbo Wang2, Qingming Chen1, Kaifeng Huang2, Xiwei Xu2, Qiong Li2, Sheng Wang2, Na Lu2, and Jin Zhu2

1College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;

2 Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China;

*Corresponding author: (Songqi Ma) E-mail masongqi@nimte.ac.cn, Tel 86-574-87619806.
Contents

Fig. S1 a) 1H NMR, b) 13C NMR and c) GC-MS spectra of GEFA. ...3

Fig. S2 Curing of FAE and DDS. ..3

Fig. S3 1H NMR spectra of a) P-FAE and b) after the reaction between P-FAE and GEFA. 4

Fig. S4 1H NMR spectra of the Diels-Alder adducts at 140 °C for 6 h and at 200 °C for 2 h. 5

Fig. S5 FTIR spectra of the FAE,GEFA$_0$ system before and after curing.6

Fig. S6 Storage modulus as a function of temperature for the cured epoxy resins by DMA. 6
Fig. S1 a) 1H NMR, b) 13C NMR and c) GC-MS spectra of GEFA.

Fig. S2 Curing of FAE and DDS.
Fig. S3 1H NMR spectra of a) P-FAE and b) after the reaction between P-FAE and GEFA.
Fig. S4 1H NMR spectra of Diels-Alder adducts at 140 °C for 6 h and at 200 °C for 2 h.
Fig. S5 FTIR spectra of the FAE$_1$GEFA$_0$ system before and after curing.

Fig. S6 Storage modulus as a function of temperature for the cured epoxy resins by DMA.