Supporting Information

In-situ self-organization of uniformly dispersed Co-N-C centers at moderate temperature without sacrificial subsidiary metal

OmeshwariYadorao Bisena, Ravi Nandana, Ashok Kumar Yadavb, Pavithra Bellarea and Karuna Kar Nanda*a

^a Material Research Centre, Indian Institute of Science, Bangalore-560012, India. E-mail: nanda@iisc.ac.in; Fax: +91 8023607316; Tel: +91 8022932996

^b-Atomic and Molecular physics division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, INDIA

Experimental section

Preparation of Co-N-C@T (380, 600, 750, 900)

Co-N-C catalyst were prepared by the pyrolysis of the mixture of 200 mg dicyandiamide (DCDA) as a nitrogen and carbon source and macrocyclic compound cobalt phthalocyanine (CoPc) as a cobalt source at different temperature (T: 380, 600, 750, 900°C) and denoted as Co-N-C@T (T=380, 600, 750, 900), where T is the pyrolysis temperature. The mixture of DCDA and CoPc was ground using mortar and pestle until it get homogeneously mixed and loaded in quartz tube (diameter= 11mm and length=60cm with one end closed) which introduced at the middle of furnace (Lenton LTF 14/-/180). The temperature of furnace raised for respective samples at the rate of 10°C per minute and maintained for 3 hours followed by cooling to room temperature by natural convection. The present work elucidates the role of pyrolysis temperature during synthesis on the ORR performance.

Characterizations

High Angle Annular Dark Field-Scanning Transmission Electron Microscopy (HAADF STEM) imaging and X-ray Energy Dispersive Spectroscopy (EDS) were performed on a Cs aberration corrected FEI Titan® Themis 60-300 kV and TEM-TITAN operated at an accelerating voltage of 300 kV. The TEM sample was prepared by dispersing the as synthesized catalyst in ethanol solution, followed by 30 minutes ultrasonication and drop-casted on carbon coated copper grid and then dried at room temperature. XRD analysis was performed by PANalytical X'Pert Pro equipped with Cu Kα radiation of wavelength

1.5406 Å at the scan rate of 0.05 s⁻¹ and 20 range applied was 5-90°. Raman spectroscopy of assynthesized samples were carried out using a WITec Alpha 300 (Nd:YAG laser source, excitation wavelength 532 nm). The chemical composition and elemental oxidation state of the samples were investigated by XPS spectroscopy (XPS, AXIS ULTRA DLD from kratos monochromatic Al K α 1486.6 eV excitation source). The XAS measurements have been carried out at the Energy-Scanning EXAFS beamline (BL-9) at the Indus-2 Synchrotron Source (2.5 GeV, 100 mA) at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India. X-ray Absorption Spectroscopy (XAS) measurements, comprising of both X-ray Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques, have been carried out on at Co K edge to understand the local structure around the Co atoms.The sample has been prepared and measured in transmission mode at room temperature. The oscillations in the absorption spectra $\mu(E)$ has been converted to absorption function $\chi(E)$ defined as follows :¹

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E_0)}$$

Where, E_0 is absorption edge energy, $\mu_0(E_0)$ is the bare atom background and $\Delta \mu_0(E_0)$ is the step in $\mu(E)$ value at the absorption edge. The energy dependent absorption coefficient $\chi(E)$ has been converted to the wave number dependent absorption coefficient $\chi(k)$ using the relation,

$$K = \sqrt{\frac{2m(E - E_0)}{\hbar^2}}$$

where, m is the electron mass. $\chi(k)$ is weighted by k^2 to amplify the oscillation at high k and the $\chi(k)k^2$ functions are fourier transformed in R space to generate the $\chi(R)$ versus R spectra in terms of the real distances from the center of the absorbing atom. The Demeter software package have been used for EXAFS data analysis.[4]With the help of ATHENA softwarebackground reduction and Fourier

transform to derive the $\chi(R)$ vsR spectra from the absorption spectra has been analysed. The generation of the theoretical EXAFS spectra starting from an assumed crystallographic structure and finally fitting of experimental data with the theoretical spectra using ARTEMIS software.

Electrochemical measurements

All of the electrochemical measurements were carried out at room temperature using a CHI7052E electrochemical workstation with standard three electrode cell, where Pt-ring served as counter, KCI saturated Ag/AgCI as reference and as synthesized electrocatalysts decorated glassy carbon (GCE, active geometrical area of~0.07 cm² for the RDE and 0.196 cm² for the RRDE) as working electrode. The electrochemical characterizations were carried out in a rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) system. 7 mg of as prepared catalyst or state-of-art catalyst (Pt/C) was dispersed in the 1 ml mixture of solution (Milli-Q water: ethanol= 1:1 (v/v)) followed by 30 min sonication to form homogeneous ink. 60 µl of ink mixed with 10µl Nafion (14.29 wt%) solution as a binder followed by sonication of 30 min. The fabrication of working electrode was done by loading 0.37mg/cm² (i.e. optimised loading) of ink onto glassy carbon electrode and dried at room temperature. All electrochemical measured potential was carried out against Ag/AgCl are converted with respected to reversible hydrogen electrode (RHE) using equation $E_{RHE} = E_{o Ag/AgCl} + (0.059*pH) + E_{Ag/AgCl}$, where $E_{o Ag/AgCl}$ is 0.197 V vs. SHE.²

The double layer capacitance (C_{dl}) was carried out by performing the cyclic voltammogram in O_2 saturated alkaline 0.1 M NaOH solution at the scan rate of 10-100 mV/s in non-faradaic region. The electrochemically active surface area (ECSA) and roughness factor were calculate by the following equations (1) and (2), respectively.³

$$ECSA (in cm2) = \frac{C_{dl}}{C_s}$$
(S1)

$$R_{f} = \frac{ECSA}{A_{g}}$$
(S2)

where C_{dl} is the double layer capacitance and C_s is the capacitance of atomically smooth, flat surface of catalyst material per unit area under similar experimental condition, i.e.0.040 mF cm⁻² (in alkaline solution).^{4,5} A_g represents the geometric area of the working electrode (A_g = 0.07 cm² for RDE).

The ORR LSV-RRDE polarization curves were carried out in O₂ saturated 0.1 M NaOH solution at the scan rate of 10 mV/s at various rotating speed (2400, 2000, 1600, 1200 rpm) within the potential window of 0.164 V to 1.0 V (vs. RHE). Furthermore, an in-depth understanding of the ORR process, the electron transfer number (n) and hydrogen peroxide formation (% HO_2^{-1}) were deduced from RRDE-LSVpolarization curve, calculated by the following equations:

$$n = 4 \times \frac{I_D}{\frac{I_R}{N} + I_D} \tag{S3}$$

$$\% HO_2^- = 200 \times \frac{I_R/N}{I_R/N + I_D}$$
 (S4)

where I_D and I_R represent the disc and ring currents, respectively and N=0.3 is the collection efficiency of the Pt ring.^{2,3}

Fig S1: (a) Bright field TEM image of CoPc, (b,c) HAADF-STEM image and (d-f) corresponding EDS mapping of C, N, Co elements, respectively for CoPc.

TGA of CoPc

Fig S2: Thermo gravimetric analysis (TGA) of CoPc.

Fig S3:(a,b) Bright field TEM image of Co-N-C@380.

Fig S4: (a) HAADF-STEM image of Co-N-C@600, (b-d) corresponding EDS mapping of C, N, Co elements, respectively for Co-N-C@600.

Fig S5:(a,b)Bright field TEM images of Co-N-C@750 at different magnification, (c-e) HAADF-STEM image of Co-N-C@750, (f-h) corresponding EDS mapping of C, N, Co elements, respectively for Co-N-C@750.

Fig S6: EDS spectra corresponding to elemental mapping fig 3 (d-f).

Fig S7: XRD patterns of (a) CoPc, (b) Co-N-C@T (T= 380, 600, 750, 900).

Fig S8: (a) Raman spectra of Co-N-C@750 and Co-N-C@900.

Fig S9:(a) The Fourier transform with different k weighted test on Co-N-C@750, CoO and Co metal, (b) Wavelet transforms EXAFS spectra at Co K edge of Co metal, CoO and Co-N-C@750.

Fig S10: High resolution (a) N 1s XPS spectra and (b) C 1s XPS spectra of Co-N-C@900.

Fig S11: High resolution (a) N 1s XPS spectra, (b) Co 2p XPS spectra and (c) C 1s XPS spectra of CoPc@900.

Fig S12:(a) Nyquist plot of Co-N-C@750 at various loading of 0.28 mg/cm², 0.37mg/cm², 0.46 mg/cm², (b)ORR LSV-RDE polarization curve of as prepared Co-N-C@750 at different loading (in O₂ saturated 0.1 M NaOH solution at scan rate 10 mV/s @2400 rpm), (c-e)Cyclic voltammograms in oxygen saturated alkaline 0.1 M NaOH electrolyte at the scan rate of 10-100 mV/s in non-faradaic region for 0.28 mg/cm², 0.37mg/cm², 0.46 mg/cm², respectively, (f)Double layer capacitance measurement of Co-N-C@750 for different loading.

Electrocatalysts loading(mg/cm ²)	C _{dl} (mF /cm ²)	ECSA (cm ²)	R _f	
0.28	9.67	16.92	241.75	
0.37	21.23	37.15	530.75	
0.46	11.45	20.04	286.25	

Table S1: C_{dl}, ECSA, R_f of Co-N-C@750 at different catalyst loading.

Fig S13: ORR LSV-RDE polarization curve of state-of-the-art Pt/C catalyst with different nation binder percentage used during ink preparation (in O_2 saturated 0.1 M NaOH solution at scan rate 10 mV/s and 2400 rpm rotation).

Fig S14:(a) ORR LSV-RDE polarization curve of as prepared Co-N-C@750 at different rotation speed from 800 to 2400 rpm (in O₂ saturated 0.1 M NaOH solution at scan rate 10 mV/s).

Fig S15 : Cyclic voltammograms in oxygen saturated alkaline 0.1 M NaOH electrolyte at the scan rate of 10-100 mV/s in non-faradaic region for (a) CoPc and (b-e) Co-N-C@T (T= 380,600, 750, 900°C), respectively.

Electrocatalysts loading	C _{dl} (mF/cm ²)	ECSA (cm ²)	R _f	
СоРс	0.17	0.30	4.25	
Co-N-C@380	0.42	0.74	10.50	
Co-N-C@600	1.07	1.87	26.75	

Table S2: C_{dl}, ECSA, R_f of CoPc and Co-N-C@T (T= 380, 600, 750, 900°C).

Co-N-C@750	21.23	37.15	530.75
Co-N-C@900	6.47	11.32	161.75

Fig. S16 : Freundlich adsorption isotherm for Co-N-C@T (T= 380, 600, 750 and 900).

Fig S17: (a)No. of electron transfer and (b) % H₂O₂ generation of CoPc and Co-N-C@T(T=380, 600, 750, 900°C), state-of-the-art Pt/C and RuO₂catalysts measured from their respective RRDE-LSV polarization curve.

Fig S18: The accelerated stability test in O_2 saturated 0.1 M NaOH electrolyte at the scan rate of 100 mV/s and rotation speed of 1600 rpm for (a) Co-N-C@750 and (b) Co-N-C@900 and (c) Pt/C

Fig S19: ORR-LSV RDE curve at 10 mV/s @2400 rpm in O_2 saturated 0.1 M NaOH and 0.1 M NaOH+ 10 mM NaCN electrolyte for (a) Co-N-C@750, (b) Co-N-C@900 and (c) Co-N-C@600.

Table S3: Summary of previously reported catalysts in terms of their ORR half wave potential in basic media.

Catalyst	E _{1/2} (mV vs RHE)	Loading (mg/cm ²)	References
NCAC-Co	743	-	6
Co0.25-N0.32/C-800	700	0.4	7
NGM-Co	770	0.25	8
CoNC	780	-	9
Co@NCNT	779	-	10
Co/N-C CNFs	710	0.2	11
FeNxC/C–S	720	0.8	12
NPMC-800	750		13
B-FeCNTs	739	0.75	14
Co-NC-900	800	0.40	15
CoNP@NC/NG-700	780	-	16
Co-N-C@750	778	0.37	Present study

Table S4: Summary of previously reported catalysts in terms of their ORR mass activity in basic media.

Catalysts	Mass activity (mA/mg)	Loading (mg/cm ²)	References
CNTs@Co-N-PC	9.333	0.6	17
Co/N-C CNFs	12.5	0.2	11
Co-NC	13.0	0.4	18
FeNxC/C–S	6.625	0.8	12
B-FeCNTs	8.533	0.75	14
cobalt-based CP	8.04	0.5969	19
Co-N- GA	5.892	0.611	20
Co SAs/N-C(900)	13.5	0.408	21
Co-NC-900	11.4	0.40	15
Co-N-C@750	14.24	0.37	Present study

Table S5: Summary of few recently featured reports based on Co-N-C based systems, where acidleaching has been used to develop Co-N-C based systems.

Catalysts/Materi	Commercial	Special	Synthesis	Journal
als	Chemicals Used	Chemicals	Conditions	
Cobalt single	Magnesium oxide	5 M	Four steps	Green
atoms anchored	(MgO), CoCl2·6H2O,	hydrochloric	First: Preparation	Chemistry,
on nitrogen-	1,10-	acid (HCl) with	of a MgO template	2020,
doped	phenanthroline	reflux		10.1039/d0gc
porous carbon		for 30 minutes	Second: Precursor	03498c
(Co-N-C)			can be obtained	
		2 M H2SO4 at 80	from the mixture	
		°C for 6 h	ofMgO,	
			CoCl2·6H2O and	
		Solvent used:	1,10-	
		Ethanol	phenanthroline in	
			ethanol solvent	
			and stirred and	
			heated at 60°C for	
			2 h.	

			Third: Pyrolysis at	
			700. 800. 900°C	
			(Ar gas flow during	
			synthesis)	
			-, ,	
			Fourth: 5 M HCl	
			with reflux	
			for 30 minutes	
			and 2 M H2SO4	
			treatment at 80 °C	
			for 6 h.	
Single Co atom	polvacrylonitrile	5M	Four steps	ACS Catal.
and N codoped	(PAN).	H₂SO₄treatment	First:	2017. 7. 6864
carbon	4-	for 24 h at 80°C	Electrospinning at	-6871
nanofibers	dimethylaminopyri		16-18 kV of the	0072
$(C_0 - N/C_NF_s)$	dine	Solvent used:	mixture of PAN.	
	(DMAP) cobalt	dimethylformam	DMAP and Co(Ac)?	
	acetate	ide	in DME solvent	
	(Co(Ac)2)	(DME)	Second: annealing	
			in Muffle furnace	
			at 250°C in air	
			at 250 C in an	
			Third, purchasic at	
			Fourth: 5 M	
			H-SO treatment	
			for 24 h at 80°C	
			101 24 11 at 60 C	
Atomically	2-	2 M HCl solution	Three stens	Eneray
dispersed Co-N-	 methylimidazole zin	treatment for 5 h	First: Precursor	Environ Sci
C@E127 catalyst	c nitrate	at 50°C	can be obtained	2019 12 250-
derived from	hevahydrate		from the mixture	-260
surfactant-	cobalt(II) nitrate	Solvent used:	of 2-	-200
assisted MOEs	bevabydrate E127	Methanol and	methylimidazole	
	(surfactant)	ethanol	zinc nitrate	
	(surractanty	ctilation	hevahydrate	
			cohalt(II) nitrate	
			hexahydrate and	
			F127 in Methanol	
			solvent and	
			centrifuged with	
			ethanol and dried	
			at 60°C for 12	
			nours,	

			Second: Pyrolysis at 900°C (N ₂ gas flow during synthesis) Third: 2 M HCI solution treatment for 5 h at 50°C	
Single atom cobalt catalysts (Co-SAC)	Co(NO3)2·6H2O, Zn(NO3)2·6H2O, 2-methylimidazole	3 M HCl treatment for 6 hour at 80°C Solvent used: Methanol	Three steps First:- ZnCo- biMOF can be obtained from mixture of 2- methylimidazole, zinc nitrate hexahydrate and cobalt(II) nitrate hexahydrate in Methanol solvent and centrifuged with ethanol and freeze dried overnight, Second: Pyrolysis at 900°C (N ₂ gas flow during synthesis) Third:-3 M HCI solution treatment for 6 h at 80°C	ChemSusChe m 2018, 11, 3473 – 3479
Single-atom	Co(phen)2(OAc)2.	Nitric acid		Chem. Sci.
dispersed Co–N–	Mg(OH)2	treatment	First: Precursor	2016, 7, 5758
C catalyst	- · ·		can be obtained	
		Solvent used:	from the mixture	
		tert-butyl	ofCo(phen)2(OAc)	
		alcohol	2 and Mg(OH)2	
			Second: Pyrolysis	
			at 700°C (N₂ gas	

			flowduringsynthesis)Third: Nitric acidtreatment to	
			remove MgO template	
Single atom Co- N-C catalyst	SiO2 nanospheres (50 nm),cobalt chloride hexahydrate (CoCl2·6H2O), dicyandiamide (C2H4N4)	0.15 M HF acid treatment 0.5 M HCl overnight to remove excess Co Solvent used: N- methyl-2- pyrrolidone (NMP)	Four steps First: Precursor can be obtained from the mixture ofSiO2 nanospheres, CoCl2·6H2O and C2H4N4 in NMP solvent and stirred and heated at 80°C for several h. Second: Solid were heated at 500°C for 2 h and then 750°C for 2 h. Third: 0.15 M HF solution treatment for completely remove the SiO2 Spheres.	Chemical Engineering Journal 389 (2020) 124377
			Fourth: 0.5 M HCl Overnight treatment to remove excess Co	
Co-N-C/750	Dicyandiamide, Cobalt phthalocyanine	Acid and Organic solvent Not used	No gas flow, Single step Pyrolysis temperature 750 °C	Present study

Table S6: Summary of previously reported M-N-C based systems in "Green Chemistry" where melamine/urea/ phthalocyanine as well as ZnO as a sacrificial agent has been used to develop M-N-C based systems

Catalysts/Materials	Commercial	Special	Synthesis	Journal
	Chemicals Used	Chemicals	Conditions	
Atomic Fe	Melamine,	Before	Three steps	Green Chem.,
embedded in	1-butyl-3-	annealing Hot 2	First:	2018, 20, 3521-
bamboo-CNTs	methylimidazolium	M HCl acid at 80	Electrochemical	3529
grown on	tetrachloroferrate	°C for 12 h	charging at 4V,	
graphene		(Twice	Second: Ball	
(Fe–N–G/bC)		repetition)	Milling	
(Third: pyrolysis	
		0.5 M	at 800 °C	
		H₂SO₄treatment		
		for 24 h after		
		annealing		
Ni catalysts	Urea, Glucose, ZnO	0.1 M HCl	N ₂ gas flow	Green Chem.,
supported on	nanoparticles,	solution	during synthesis	2020, 22 , 2755-
nitrogen doped	Semolina	treatment for 10	(8 h N ₂ gas flow)	2766
carbon (Ni/NDC)		h under		
		continuous	Pyrolysis at 950	
		stirring	°C	
Fe containing N-	Activated carbon,	6 M HCl	First:- Pyrolysis	Green Chem.,
doped carbon	FeCl ₃ , ammonium	treatment to	of material	2016, 18,
	peroxydisulphate,	activated carbon	between 700	1547–1559
	iron(II)	for 24 h	and 900 under N_2	
	phthalocyanine	0.5 M HCl for	gas flow	
		aniline	Second:- 0.5 M	
		polymerization	H ₂ SO ₄ treatment	
		with $(NH_4)_2S_2O_8$	for 8 h at 80 °C	
			after first	
			pyrolysis	
			Third:-	
			Repeating the	
			pyrolysis after	
			H_2SO_4 treatment	
			for 3 h at 700-	
			900 °C	
Co-N-C@750	Dicyandiamide,	Not used	No gas flow,	
(Present study)	Cobalt		Single step	
	phthalocyanine			

Pyrolysis	
temperature	
750 °C	

References

- A. K. Poswal, A. Agrawal, D. Bhattachryya, S. N. Jha and N. K. Sahoo, 2015, **1667**, 060027.
- 2 R. Nandan, A. Gautam and K. K. Nanda, J. Mater. Chem. A, 2018, 6, 20411–20420.
- 3 R. Nandan, A. Gautam, S. Tripathi and K. K. Nanda, *J. Mater. Chem. A*, 2018, **6**, 8537–8548.
- 4 C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977–16987.
- J. S. Sagu, D. Mehta and K. G. U. Wijayantha, *Electrochem. commun.*, 2018, **87**, 1–4.
- 6 Z. Liu, Z. Li, J. Ma, X. Dong, W. Ku, M. Wang, H. Sun, S. Liang and G. Lu, *Energy*, 2018, **162**, 453–459.
- 7 R. Zhang, Y. Li, L. Liu, M. Jiang and W. Wang, *Ionics (Kiel).*, 2017, **23**, 1849–1859.
- 8 C. Tang, B. Wang, H. F. Wang and Q. Zhang, *Adv. Mater.*, 2017, **29**, 1–7.
- 9 M. Wang, J. Ma, H. Yang, G. Lu, S. Yang and Z. Chang, *Catalysts*, , DOI:10.3390/catal9110954.
- 10 L. Chen, X. Xu, W. Yang and J. Jia, *Chinese Chem. Lett.*, 2020, **31**, 626–634.
- 11 K. Yu, P. H. Shi, J. C. Fan, Y. L. Min and Q. J. Xu, *J. Nanoparticle Res.*, , DOI:10.1007/s11051-019-4678-z.
- 12 J. Zhang, D. He, H. Su, X. Chen, M. Pan and S. Mu, J. Mater. Chem. A, 2014, **2**, 1242–1246.
- 13 X. Li, G. Liu and B. N. Popov, *J. Power Sources*, 2010, **195**, 6373–6378.
- 14 R. Nandan and K. K. Nanda, *J. Mater. Chem. A*, 2017, **5**, 16843–16853.
- 15 C. Guo, Y. Wu, Z. Li, W. Liao, L. Sun, C. Wang, B. Wen, Y. Li and C. Chen, *Nanoscale Res. Lett.*, 2017, **12**, 4–11.
- X. Zhong, Y. Jiang, X. Chen, L. Wang, G. Zhuang, X. Li and J. G. Wang, J. Mater. Chem. A, 2016, 4, 10575–10584.
- 17 K. Huang, W. Zhang, J. Li, Y. Fan, B. Yang, C. Rong, J. Qi, W. Chen and J. Yang, *ACS Sustain. Chem. Eng.*, 2020, **8**, 478–485.
- 18 T. Jiang, W. Luan and S. Wu, *Energy Procedia*, 2019, **158**, 2372–2377.
- 19 P. Mani, A. Sheelam, S. Das, G. Wang, V. K. Ramani, K. Ramanujam, S. K. Pati and S. Mandal, ACS Omega, 2018, **3**, 3830–3834.

- 20 X. Fu, J. Y. Choi, P. Zamani, G. Jiang, M. A. Hoque, F. M. Hassan and Z. Chen, *ACS Appl. Mater. Interfaces*, 2016, **8**, 6488–6495.
- 21 P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei and Y. Li, *Angew. Chemie Int. Ed.*, 2016, **55**, 10800–10805.