Supporting Information

Levulinic Acid Hydrogenation to γ-Valerolactone over Single Ru Atoms on TiO₂@Nitrogen Doped Carbon Support

Kaili Zhang^a, Qinglei Meng^b, Haihong Wu^a*, Tongying Yuan^a, Shitao Han^a, Jianxin Zhai^a, Bingxiao Zheng^a, Caiyun Xu^a, Wei Wu^a, Mingyuan He^a, Buxing Han^{a,b}*

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

1. Experimental

1.1 Chemicals

The Tetra-n-butyl-titanate (TBOT)(98.0%, AR grade), *N*,*N*-Dimethylformamide (DMF)(99.5%, AR grade) were purchased from Sinopharm Chemical Reagent Co., Ltd. MeOH (>99.9%, HPLC grade) was obtained from Energy Chemical, 2-aminoterephthalic acid (99%, AR grade) was provided Alfa Aesar. RuCl₃ (99%, AR grade), Terephthalic acid (99%, AR grade) and Titanium oxide (99%, AR grade) were obtained from Beijing InnoChem Science & Technology Co., Ltd. H₂ and N₂ were purchased from Shanghai Chemical Industry Park Pujiang Special Gas Co., Ltd. All the chemicals were used as received without further purification.

1.2 Catalyst preparation

Ru@NH₂-MIL-125 (Ti): Tetra-n-butyl-titanate (1.4 g, 4 mmol), 2-aminoterephthalic acid (1.1 g, 6 mmol) and RuCl₃ (10.2 mg, 0.04 mmol) were dissolved in 100 mL of DMF/MeOH (V/V, 9/1). The mixture was stirred at room temperature for 2 h and was placed in an oil bath and heated to 393 K for 48 h. A yellow powder of Ru/NH₂-MIL-125 (Ti) was isolated by centrifugation. Then the powder was washed three times with DMF and dried under vacuum at 373 K overnight.

Ru@MIL-125 (Ti): A gray powder of Ru@MIL-125 (Ti) was synthesized in accordance with the synthesis of Ru@NH₂-MIL-125 (Ti), expect that the same molar amount of terephthalic acid was used instead of 2-aminoterephthalic acid.

Ru/TiO₂@CN: The powder of Ru/NH₂-MIL-125 (Ti) was placed in a tube furnace and then heated to 973 K at a heating rate of 2 °C/min, and then kept for 2 h under a flowing nitrogen atmosphere. After cooling to room temperature, the black powder was collected for future use. For comparison, the catalysts of Ru/TiO₂@CN-500 and Ru/TiO₂@CN-900 were prepared by the same procedures for preparing the Ru/TiO₂@CN catalyst except the calcination temperature was 773K and 1173K.

 $Ru/TiO_2@C$: The black powder of $Ru/TiO_2@C$ was obtained by calcining Ru@MIL-125 (Ti) powder, and the heating program was the same as synthesize $Ru/TiO_2@CN$.

 $TiO_2@CN$: The black powder of $TiO_2@CN$ was synthesized following the same procedures to synthesize Ru/TiO_2@CN, the main difference was that RuCl₃ was not added.

 $Ru(0.14wt\%)/TiO_2$: Anatase TiO₂ (0.5 g) was added into 10 mL deionized water, $RuCl_3$ (1.77 mg) was dissolved in 10 mL deionized water. While stirring. The RuCl₃ aqueous solution was added dropwise to the titanium oxide suspension. After stirring for 24 h at room temperature, the excess water was evaporated at 60 °C under vacuum to collect the gray powder. The catalyst was reduced at 400 °C for 2 h in 10% H₂/Ar flow.

1.3 Catalytic reaction

The hydrogenation of levulinic acid (LA) was carried out in a Teflon-lined stainless steel reactor of 16 mL with mechanical stirring at approximately 800 rpm. In a typical experiment, 10 mg of catalyst, 58 mg (0.5 mmol) LA and 1 mL of deionized water were added into the reactor. The reactor was purged with H₂ three times, and finally sealed at a H₂ pressure of 6 MPa. After suitable reaction time, the stirring was stopped. The liquid phase was separated from the catalyst by filtration through a Nylon membrane (Whatman, Φ 13 mm×0.45 µm). The combined liquid mixture was then analyzed on a HPLC (Waters 2695) equipped with an Aminex HPX-87H column, with a UV/Visible detector (Waters 2489) and a Refractive Index Detector (Waters 2414), and the mobile phase was 5 mM sulfuric acid at a flow rate of 0.7 mL/min. Identification of the products were conducted on GC/MS (Agilent 7890B GC+ 5977A MSD).

In the recycle experiment, the catalyst was separated from solution by filtrate through a Nylon membrane (Φ 50mm×0.2 µm). The catalyst was washed by ethanol several times, and then dried at 333 K overnight. The recovered catalyst was used for the next cycle.

1.4 Characterization

X-ray diffraction (XRD) patterns were collected on a Rigaku Ultima IV X-ray diffractometer using Cu K α radiation at 35 kV and 25 mA ($\lambda = 1.5405$ Å) over a 2 θ ranging from 5 °C to 90 °C at a scanning speed of 5° /min. The crystal morphology and size were determined by scanning electron microscopy (SEM) on a Hitachi S-4800 microscope and transmission electron microscopy (TEM) on a JEOL JEM-2100 microscope at an accelerating voltage of 200 kV. The high angle annular dark- field scanning TEM (HAADF-STEM) were operated at 300 kV by a JEOL Grand ARM 300F. The Ru and Ti contents were quantified by inductively coupled plasma emission spectrometer (ICP-OES) on anOptima 8300. X-ray photoelectron spectroscopy (XPS) was worked with Al_{ka} (hv = 1486.36 eV) radiation with a Thermo Scientific K-Alpha spectrometer. Nitrogen sorption isotherms were obtained at 77K by using a BEL-SORP-MAX instrument after degassing the samples for 8 h under vacuum at 473 K. The surface areas were calculated by the BET method. ¹H NMR spectroscopy was acquired on a Bruker Advance 500MHz spectrometer. Raman spectroscopy was collected by using Shimadzu LabRAM HR Evolution with laser excitation at 633 nm. Fourier Transform Infrared Spectra (FI-IR) was performed on a Thermo Scientific Nicolet NEXUS670 FI-IR microscope. XAFS spectra at the Ru K-edge ((22117 eV) were measured at the beamline 1W1B station of Beijing Synchrotron Radiation Facility (BSRF, 2.5 GeV, 250 mA, monochromatized with Si(111) double-crystals). The resulting spectra were energy-calibrated, background corrected, and normalized at the height of the edge step using the Athena program from the iFeffit® software suite (B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537). Fourier transformations were performed from 3 to 14 \AA^{-1} .

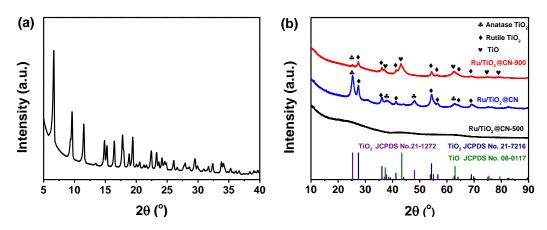


Figure S1. XRD pattern of (a) Ru/NH_2 -MIL-125(Ti) and (b) $Ru/TiO_2@CN-500$ and $Ru/TiO_2@CN-900$.

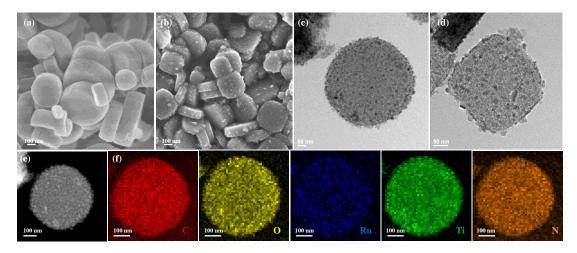


Figure S2. SEM and TEM images of the samples. SEM images of (a) Ru/NH_2 -MIL-125(Ti) and (b) TiO₂@CN, TEM images of (c) Ru/TiO_2 @CN and (d) TiO₂@CN. (e) HAADF-STEM and (f) elemental mapping results of Ru/TiO_2 @CN.

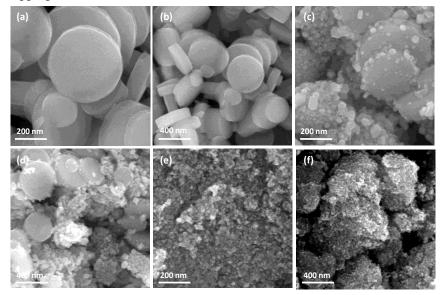


Figure S3. SEM images of (a and b) Ru/TiO₂@CN-500, (c and d) Ru/TiO₂@CN-900 and (e, f) Ru/TiO₂@C.

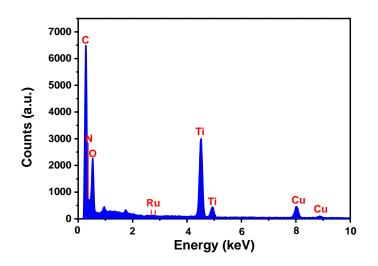


Figure S4. The EDX images of the Ru/TiO₂@CN catalyst.

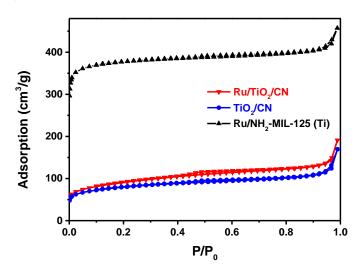


Figure S5. N2 adsorption-desorption isotherms of different materials.

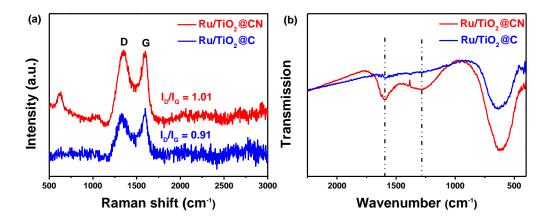


Figure S6. Raman spectra for Ru/TiO₂@CN and Ru/TiO₂@C. (b) FT-IR spectra of Ru/TiO₂@CN and Ru/TiO₂@C.

Figure S7. Gas chromatogram result of the transformation of LA at 10 h. Reaction conditions: LA (0.5 mmol), Ru/TiO₂@CN (10 mg), D₂O (1 mL), 30 °C,H₂ (6 MPa).

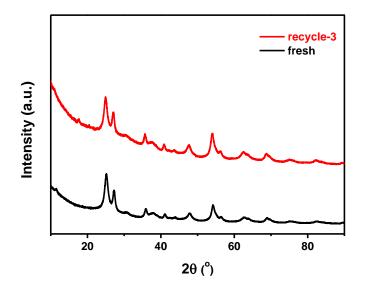


Figure S8. XRD patterns of fresh and reused (3 cycles) $Ru/TiO_2@CN$.

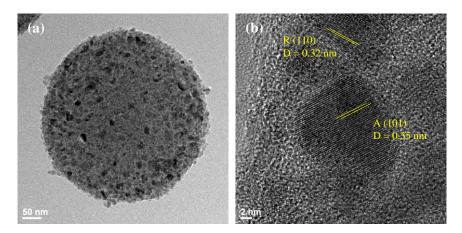


Figure S9. TEM images of (a, b) Ru/TiO₂@CN after reused 3 cycles.

Catalyst	EDX analysis (wt%)					
	C (K)	N (K)	O (K)	Ti(K)	Ru (K)	
Ru/TiO2@CN	62.55	6.15	11.83	18.8	0.83	

Table S1. EDX analysis of the Ru/TiO₂@CN catalyst.

	5	=	1 1		
			Micropore	External	Microporevolume ^b
Entry	catalyst	$S_{BET}(m^2g^{-1})^a$	surface	surface	(cm^3g^{-1})
			area ^b (m ² g ⁻¹)	area ^b (m ² g ⁻¹)	
1	Ru/NH ₂ -MIL-125(Ti)	1316.1	1234.9	81.2	0.551
2	Ru/TiO2@CN	319.9	167	153	0.075
3	TiO ₂ @CN	281.5	186	96	0.083
מ/ ת	0.01.0.2				

Table S2. Summary of the results from N_2 adsorption - desorption.

 $^{a}P/P_{0} = 0.01 - 0.2.$

 ${}^{b}P/P_{0} = 0.24-0.4$, obtained by the t-plot method.

Entry	Catalyst	Ru (wt%)	Ti (wt%)				
1	RuTiO ₂ /CN	0.14	21				
2	RuTiO ₂ /C	0.25	11				
3	RuTiO ₂ /CN-500	0.13	20				
4	RuTiO ₂ /CN-900	0.23	6				
5	Ru/TiO ₂	0.12	59				
6	RuTiO ₂ /CN(1 cycle)	0.14	19				

Table S3. ICP – OES analysis of different catalysts and used Ru/TiO₂@CN catalysts.