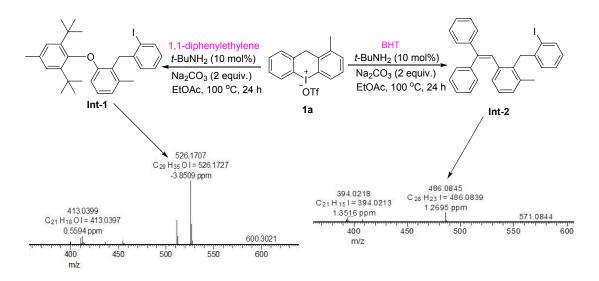
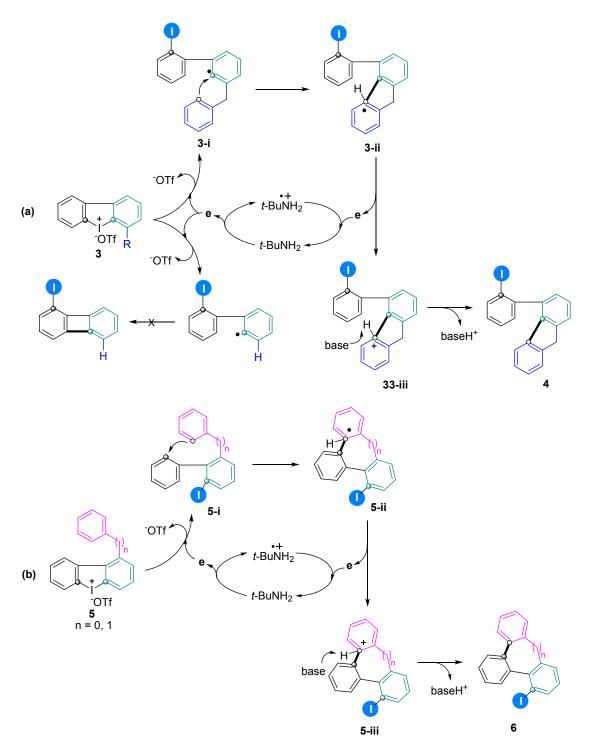

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

^[a]Reaction conditions: all reactions were carried out with **1a** (0.2 mmol), amine (2 equiv.) in 1.0 mL toluene under argon in a sealed tube, 100 °C for 24 h. Yields were determined by NMR.

Table S2: Screening of solvent ^a

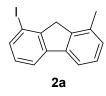

Entry	Solvent	Yield (%)
1	DMF	48
2	DMSO	30
3	THF	47
4	DCE	34
5	H ₂ O	12
6	EtOH	45
7	iPrOH	51
8	<i>n</i> BuOH	52
9	EtOAc	84
10	Anisole	5
11	Sulfolane	80
12	iPrOAc	81
13	nBuOAc	81

^a Reaction conditions: all reactions were carried out with **1a** (0.2 mmol), *t*BuNH₂ (2 equiv.) in 1.0 mL solvent under argon in a sealed tube, 100 °C for 24 h. Yields were determined by NMR.

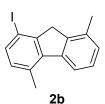

Table S3: Screening of base ^a

	$ \begin{array}{c} $		
Entry	Amines	Base	Yield (%)
2	tBuNH ₂	NA	13
3	tBuNH ₂	Na ₂ CO ₃	88
4	tBuNH ₂	NaHCO ₃	86
5	tBuNH ₂	K_2CO_3	83
6	tBuNH ₂	NaOH	41
7	tBuNH ₂	Li ₂ CO ₃	39
8	tBuNH ₂	$(NH_4)_2CO_3$	35
9	tBuNH ₂	AcONa	43
10	tBuNH ₂	tBuCO ₂ Na	63
11	tBuNH ₂	HCO ₂ Na	46

^a Reaction conditions: all reactions were carried out with **1a** (0.2 mmol), $tBuNH_2$ (0.1 equiv.), base (2.0 equiv.) in 1.0 mL EtOAc under argon in a sealed tube, 100 °C for 24 h. NA: not added. Yields were determined by NMR.


Figure S1. Control experiments with BHT or 1,1-diphenylethylene. Note: One drop of the crude reaction mixture was delivered to EI-HRMS for detection.

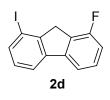
Scheme S1. The potential free radical pathways to generate polycyclic aromatic hydrocarbons 4 and 6 from cyclic diaryliodoniums 3 and 5.


The general information for the synthetic experiments: Synthesis details for key compounds are described here. All solvents were commercially available and were used without a further purification unless stated. The chemicals used were either purchased from commercial sources or prepared according to literature procedures. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance spectrometer 400 at 400 MHz and 100 MHz respectively. Chemical shifts are given in ppm (δ) referenced to *CDCl*₃ with 7.26 for ¹H and 77.10 for ¹³C, and to *d*₆-*DMSO* with 2.50 for ¹H and 39.5 for ¹³C. In the case of multiplet, the signals are reported as intervals. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants are expressed in hertz. High-resolution mass spectra (HRMS) were recorded on Thermo Fisher spectrometer, Orbitrap QExactive GC/MS (EI mode) and Orbitrap QExactive LC/MS(ESI mode) or BRUKER VPEXII spectrometer (ESI mode). The progress of the reactions was monitored by thin-layer chromatography on a glass plate coated with silica gel with fluorescent indicator (GF254). Column chromatography was performed on silica gel (200-300 mesh).

General procedure to synthesize π -extended arenes (2, 4, 6): To a reaction tube was added cyclic diaryliodoniums 1, 3, and 5 (0.2 mmol, 1.0 equiv), Na₂CO₃ (2.0 equiv), degassed and recharged with argon, a solution of *tert*-butylamine (0.1 equiv) in EtOAc (1.0 mL) was added by a syringe. Then the tube was sealed, and the reaction proceeded at 100 °C for 24 h under argon atmosphere. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc) to provide products 2, 4, 6.

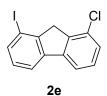
1-Iodo-8-methyl-9*H***-fluorene (2a)**: The product was isolated as a white solid (52 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.7 Hz, 1H), 3.70 (s, 2H), 2.45 (s, 3H) ppm. ¹³C NMR (100 MHz,

CDCl₃) δ 147.8, 142.9, 141.4, 141.0, 135.8, 134.5, 128.7, 128.5, 127.4, 119.8, 118.2, 94.1, 41.5, 19.0 ppm. HRMS (EI, *m/z*) calcd for C₁₄H₁₁I [M]⁺: 305.9900, found: 305.9900.

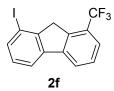


1-Iodo-4,8-dimethyl-9*H***-fluorene (2b)**: The product was isolated as a white solid (47 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, S4

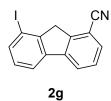
1H), 3.68 (s, 2H), 2.68 (s, 3H), 2.46 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 142.4, 141.3,
141.0, 135.4, 134.2, 133.2, 131.2, 127.8, 127.3, 121.4, 90.7, 41.9, 20.8, 19.1 ppm. HRMS (EI, *m/z*) calcd for C₁₅H₁₃I [M]⁺: 320.0056, found: 320.0058.


H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

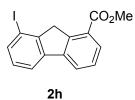
HRMS (EI, *m/z*) calcd for C₁₃H₉I [M]⁺: 291.9743, found: 291.9745.


1-Fluoro-8-iodo-9*H***-fluorene (2d)**: The product was isolated as a white solid (47 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 14.7, 7.7 Hz, 2H), 7.52 (d, J = 7.5 Hz, 1H), 7.38 (dt, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 8.6 Hz, 1H), 3.84 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 159.6 (d, J = 12.9, 6.5 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 12.9, 6.5 Hz, 1H), 7.13 (t, J = 12.9, 7.14 (t, J = 12.

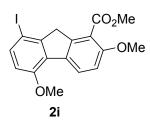
247.6 Hz), 147.6, 144.8 (d, *J* = 6.6 Hz), 141.6 (d, *J* = 2.5 Hz), 136.6, 129.2 (d, *J* = 7.1 Hz), 128.9, 127.7 (d, *J* = 18.3 Hz), 120.1, 116.5 (d, *J* = 3.2 Hz), 114.2, 114.0, 94.0, 39.0 ppm. HRMS (EI, *m/z*) calcd for C₁₃H₈FI [M]⁺: 309.9649, found: 309.9651.


1-Chloro-8-iodo-9*H***-fluorene (2e)**: The product was isolated as a white solid (53 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 6.7 Hz, 1H), 7.33 (t, *J* = 10.0 Hz, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 3.81 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 143.4, 141.8, 140.2, 136.6, 131.2, 129.0, 128.8,

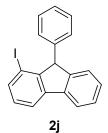
127.4, 120.2, 119.0, 93.9, 42.2 ppm. HRMS (EI, *m/z*) calcd for C₁₃H₈ClI [M]⁺: 325.9354, found: 325.9355.


1-Iodo-8-(trifluoromethyl)-9*H***-fluorene (2f)**: The product was isolated as a white solid (64 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.75 (dd, *J* = 16.7, 7.7 Hz, 2H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.14 (t, *J* = 7.7 Hz, 1H), 3.97 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ

147.5, 143.4, 140.8, 139.5, 136.9, 128.9, 127.6, 127.5, 127.2, 125.6, 124.1 (q, *J* = 4.5 Hz), 123.9, 123.4, 119.8, 93.7, 41.6. ppm. HRMS (EI, *m/z*) calcd for C₁₄H₈F₃I [M]⁺: 359.9617, found: 359.9617.


8-Iodo-9*H***-fluorene-1-carbonitrile (2g)**: The product was isolated as a white solid (43 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.61 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 1H), 3.98 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 145.8,

142.9, 140.6, 137.3, 130.4, 129.2, 128.0, 124.8, 120.2, 117.5, 109.5, 93.9, 42.2 ppm. HRMS (EI, *m/z*) calcd for C₁₄H₈IN [M]⁺: 316.9696, found: 316.9697.

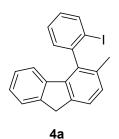

Methyl 8-iodo-9*H*-fluorene-1-carboxylate (2h): The product was isolated as a white solid (55 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 1H), 4.16 (s,

2H), 4.00 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.2, 144.1, 143.0, 141.1, 136.6, 129.1, 128.7, 127.4, 127.0, 124.8, 119.6, 93.8, 52.2, 44.1 ppm. HRMS (EI, *m/z*) calcd for C₁₅H₁₁IO₂ [M]⁺: 349.9798, found: 349.9800.

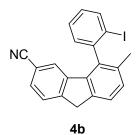
Methyl 8-iodo-2,5-dimethoxy-9H-fluorene-1-carboxylate (2i): The product was isolated as a white solid (66 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.67 (d, J = 8.6 Hz, 1H), 4.00 (s, 3H), 3.98 (s, 3H), 3.93 (s, 3H), 3.92 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 157.2, 155.6,

148.5, 143.4, 135.9, 134.6, 129.8, 127.6, 118.4, 111.5, 110.8, 82.2, 56.6, 55.6, 52.2, 43.2 ppm. HRMS (EI, *m/z*) calcd for C₁₇H₁₅IO₄ [M]⁺: 410.0010, found: 410.0010.

1-Iodo-9-phenyl-9*H***-fluorene (2j)**: The product was isolated as a white solid (57 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 7.5, 0.5 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.70 (dd, *J* = 7.8, 0.7 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.29 – 7.22 (m, 5H), 7.14 (t, *J* = 7.7 Hz, 1H), 7.10 – 7.05 (m, 2H), 5.00 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 148.1, 143.7, 139.8, 139.7, 137.5, 129.5, 129.0, 128.8,

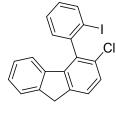

128.1, 127.5, 126.9, 125.4, 120.4, 119.7, 94.8, 58.6 ppm. HRMS (EI, m/z) calcd for C₁₉H₁₃I [M]⁺: 368.0056, found: 368.0053.

7-Iodo-8H-indeno[2,1-b]thiophene (2k): ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.3 Hz, 1H), 7.36 (d, J = 4.2 Hz, 1H), 7.26 (s, 1H), 7.07 (t, J = 7.4 Hz, 1H), 3.77 (s, 2H) ppm.¹³C NMR (100 MHz, CDCl₃) δ 151.1, 147.5, 143.7, 140.2, 133.8, 129.0, 128.8, 119.0, 119.0, 93.3, 40.2 ppm. HRMS (EI, m/z) calcd for C₁₁H₇IS [M]⁺: 297.9308, found: 297.9311.

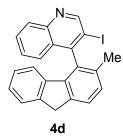


1-Iodo-9,10-dihydrophenanthrene (21): The product was isolated as a white solid (35 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 2H), 7.34 -7.28 (m, 2H), 7.25 - 7.22 (m, 3H), 2.88 (s, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 143.4, 140.8, 139.5, 136.9, 129.0, 127.6, 127.5, 127.2, 125.8, 124.1, 124.0, 124.0, 123.0, 123.1, 93.7, 41.6 ppm. HRMS (EI, m/z) calcd for C₁₄H₁₁ [M]⁺: 305.9900, found: 305.9902.

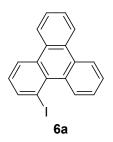
4-(2-Iodophenyl)-3-methyl-9H-fluorene (4a): The product was isolated as a white solid (48 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 8.0, 0.8Hz, 1H), 7.55 – 7.48 (m, 3H), 7.27 (dt, J = 12.7, 4.5 Hz, 2H), 7.22 – 7.15 (m, 2H), 7.00 (t, J = 7.6 Hz, 1H), 6.24 (d, J = 7.8 Hz, 1H), 4.01 – 3.83 (m, 2H), 2.10 (s,


3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 144.0, 141.6, 141.3, 139.6, 139.2, 138.9, 134.5, 130.0, 129.3, 129.1, 128.3, 126.7, 126.3, 124.9, 124.5, 122.2, 100.5, 36.8, 19.8 ppm. HRMS (EI, m/z) calcd for C₂₀H₁₅I [M]⁺: 382.0213, found: 382.0218.

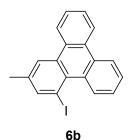
5-(2-Iodophenyl)-6-methyl-9H-fluorene-3-carbonitrile (4b): The product was isolated as a white solid (53 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.9 Hz, 1H), 7.60 - 7.55 (m, 2H), 7.53 (dd, J = 4.4, 3.2 Hz, 1H),7.47 (dd, J = 7.8, 1.5 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.27 - 7.21 (m, 2H), 6.39 (d, J = 0.7 Hz, 1H), 4.02 – 3.91 (m, 2H), 2.11 (s, 3H) ppm. ¹³C NMR


(100 MHz, CDCl₃) δ 149.0, 144.2, 142.6, 141.0, 139.9, 139.5, 137.4, 135.2, 130.1, 13.0, 129.8, 129.5, 129.2, 128.2, 125.6, 124.7, 119.7, 110.6, 99.8, 37.2, 19.7 ppm. HRMS (EI, m/z) calcd for C₂₁H₁₄IN [M]⁺: 407.0165, found: 407.0167.

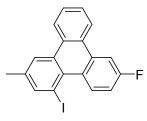
3-Chloro-4-(2-iodophenyl)-9H-fluorene (4c): The product was isolated as a


4c

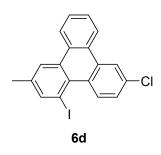
white solid (48 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.9 Hz, 1H), 7.57 – 7.49 (m, 3H), 7.44 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 7.6, 1.5 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 6.29 (d, J = 7.9 Hz, 1H), 4.01 – 3.87 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.2, 142.3, 141.2, 140.7, 139.5, 137.4, 132.3, 130.2, 129.9, 129.0, 127.3, 127.2, 127.0, 125.6, 125.0, 122.5, 100.0, 36.8 ppm. HRMS (EI, *m/z*) calcd for C₁₉H₁₂ClI [M]⁺: 401.9667, found: 401.9672.


3-Iodo-4-(3-methyl-9*H***-fluoren-4-yl)quinolone (4d)**: The product was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.79 – 7.73 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.3 Hz, 3H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.24 (t, *J* = 5.7 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 1H), 4.22 (s, 2H), 1.89 (s, 3H) ppm. HRMS (EI, *m/z*) calcd for C₂₃H₁₆NI [M]⁺:

433.0322, found: 433.0322.

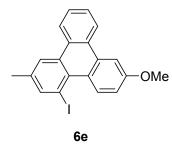

1-iodotriphenylene (6a): The product was isolated as a white solid (35 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 9.43 (dd, *J* = 8.3, 0.8 Hz, 1H), 8.61 – 8.53 (m, 3H), 8.50 (dd, *J* = 6.7, 2.7 Hz, 1H), 8.29 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.70 – 7.62 (m, 3H), 7.62 – 7.56 (m, 1H), 7.24 (t, *J* = 7.9 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.2, 132.2, 131.0, 130.3, 129.9, 129.7, 129.5, 128.4, 128.2, 127.9, 127.8,

127.6, 127.3, 124.8, 123.4, 123.4, 123.3, 123.2, 123.2, 90.9 ppm. HRMS (EI, *m/z*) calcd for C₁₈H₁₁I [M]⁺: 353.9900, found: 353.9903.

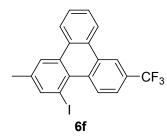


1-Iodo-3-methyltriphenylene (6b): The product was isolated as a white solid (53 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 9.40 (d, *J* = 8.1 Hz, 1H), 8.62 – 8.46 (m, 3H), 8.37 (s, 1H), 8.16 (s, 1H), 7.72 – 7.51 (m, 4H), 2.52 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 137.7, 131.9, 130.6, 130.4, 129.9, 129.8, 129.4, 128.1, 127.8, 127.7, 127.5, 124.8, 123.6, 123.3, 123.2, 123.1, 90.9, 21.0

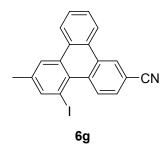
ppm. HRMS (EI, *m/z*) calcd for C₁₉H₁₃I [M]⁺: 368.0056, found: 368.0060.



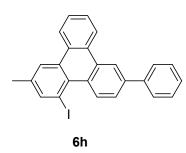
10-Fluoro-1-iodo-3-methyltriphenylene (6c): The product was isolated as a white solid (52 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 9.39 (dd, *J* = 9.2, 5.9 Hz, 1H), 8.49 (dd, *J* = 6.3, 3.1 Hz, 1H), 8.41 (dd, *J* = 6.3, 3.2 Hz, S8 1H), 8.35 (s, 1H), 8.18 – 8.10 (m, 2H), 7.68 – 7.59 (m, 2H), 7.32 – 7.27 (m, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 247.1 Hz), 143.8, 137.5, 132.9 (d, J = 8.1 Hz), 131.4, 130.3, 130.2, 129.9, 129.7 (d, J = 3.0 Hz), 129.4, 128.1, 127.9, 126.2 (d, J = 2.3 Hz), 123.7, 123.4 (d, J = 3.3 Hz), 112.8 (d, J = 22.3 Hz), 108.6 (d, J = 22.6 Hz), 90.6, 21.0 ppm. HRMS (EI, *m/z*) calcd for C₁₉H₁₂FI [M]⁺: 385.9962, found: 385.9963.


10-Chloro-1-iodo-3-methyltriphenylene (6d): The product was isolated as a white solid (54 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, J = 8.9 Hz, 1H), 8.52 – 8.42 (m, 3H), 8.35 (s, 1H), 8.15 (s, 1H), 7.63 (dd, J = 5.9, 3.5 Hz, 2H), 7.51 (dd, J = 8.9, 2.0 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 137.8, 133.6, 132.1, 131.7, 129.7, 129.3, 129.2, 129.0, 128.0, 128.0, 127.8, 124.9, 123.6, 123.3, 123.2,

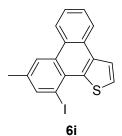
122.7, 90.7, 21.0 ppm. HRMS (EI, *m/z*) calcd for C₁₉H₁₂ClI [M]⁺: 401.9667, found: 401.9665.


1-Iodo-10-methoxy-3-methyltriphenylene (6e): The product was isolated as a white solid (41 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 9.2 Hz, 1H), 8.49 (dd, J = 9.7, 6.3 Hz, 2H), 8.36 (s, 1H), 8.13 (s, 1H), 7.95 (d, J = 2.5 Hz, 1H), 7.62 (dd, J = 6.2, 3.3 Hz, 2H), 7.19 (dd, J = 9.1, 2.6 Hz, 1H), 4.02 (s, 3H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 143.6, 136.7, 132.4, 130.9, 130.2,

130.0, 129.9, 129.6, 127.6, 127.6, 123.7, 123.6, 123.5, 123.3, 112.6, 106.2, 90.3, 55.6, 21.0 ppm. HRMS (EI, *m/z*) calcd for C₂₀H₁₅IO [M]⁺: 398.0162, found: 398.0168.


1-Iodo-3-methyl-10-(trifluoromethyl)triphenylene (6f): The product was isolated as a white solid (50 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 9.49 (t, *J* = 7.9 Hz, 1H), 8.75 (d, *J* = 5.0 Hz, 1H), 8.58 – 8.52 (m, 1H), 8.51 – 8.46 (m, 1H), 8.36 (d, *J* = 11.6 Hz, 1H), 8.17 (d, *J* = 4.5 Hz, 1H), 7.76 (d, *J* = 8.7 Hz, 1H), 7.65 (ddd, *J* = 7.0, 5.8, 1.5 Hz, 2H), 2.52 (s,

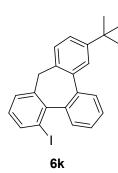
3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.8, 132.6, 132.2, 130.6, 129.8, 129.6, 129.3, 129.1, 128.9, 128.7, 128.3, 128.2, 125.6, 123.8, 123.5, 123.3, 120.9 (q, *J* = 3.4 Hz), 120.4 (q, *J* = 4.1 Hz), 91.3, 21.1 ppm. HRMS (EI, *m/z*) calcd for C₂₀H₁₂F₃I [M]⁺: 435.9930, found: 435.9940.


5-Iodo-7-methyltriphenylene-2-carbonitrile (6g): The product was isolated as a white solid (52 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 8.6 Hz, 1H), 8.80 (d, *J* = 1.4 Hz, 1H), 8.53 – 8.44 (m, 2H), 8.37 (s, 1H), 8.18 (s, 1H), 7.79 – 7.74 (m, 1H), 7.72 – 7.65 (m, 2H), 2.54 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 139.3, 132.9, 132.7,

130.6, 129.7, 128.7, 128.6, 128.6, 128.3, 128.3, 127.8, 126.6, 123.7, 123.4, 123.1, 119.3, 110.7, 91.4, 21.1 ppm. HRMS (EI, *m/z*) calcd for C₂₀H₁₂IN [M]⁺: 393.0009, found: 393.0016.

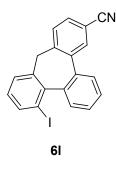
1-Iodo-3-methyl-10-phenyltriphenylene (6h): The product was isolated as a white solid (44 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 9.49 (d, J = 8.6 Hz, 1H), 8.73 (s, 1H), 8.68 – 8.61 (m, 1H), 8.56 – 8.48 (m, 1H), 8.38 (s, 1H), 8.17 (s, 1H), 7.81 (dd, J = 6.9, 3.8 Hz, 3H), 7.64 (p, J = 7.0 Hz, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 2.53 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ

143.7, 141.1, 140.2, 137.6, 132.0, 131.0, 130.4, 129.7, 129.0, 128.9, 128.5, 127.8, 127.7, 127.6, 127.5, 123.8, 123.7, 123.4, 123.3, 121.5, 90.9, 21.0 ppm. HRMS (EI, *m/z*) calcd for C₂₅H₁₇I [M]⁺: 444.0369, found: 444.0374.


11-Iodo-9-methylphenanthro[9,10-b]thiophene (6i): The product was isolated as a white solid (37 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.67 – 8.61 (m, 1H), 8.57 (s, 1H), 8.37 – 8.30 (m, 1H), 8.24 (s, 1H), 8.10 (d, *J* = 5.5 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.60 (d, *J* = 5.5 Hz, 1H), 2.55 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.8, 136.2, 131.3, 129.3, 129.0, 128.9, 127.8, 126.4,

125.8, 124.4, 123.8, 122.4, 93.0, 21.2 ppm. HRMS (EI, *m/z*) calcd for C₁₇H₁₁IS [M]⁺: 373.9621, found: 373.9626.

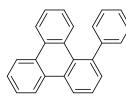
5-loc solid 7.55 7.24 6j


5-Iodo-9*H***-tribenzo[***a***,** *c***,** *e***][7]annulene (6j): The product was isolated as a white solid (32 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.63 – 7.55 (m, 2H), 7.49 (td,** *J* **= 7.5, 1.3 Hz, 1H), 7.41 (td,** *J* **= 7.5, 1.4 Hz, 1H), 7.33 – 7.24 (m, 4H), 6.90 (t,** *J* **= 7.7 Hz, 1H), 3.60 (d,** *J* **= 3.9 Hz, 2H) ppm. ¹³C NMR S10**

(100 MHz, CDCl₃) δ 145.0, 142.5, 140.7, 139.4, 139.2, 139.1, 138.0, 132.6, 129.7, 129.2, 128.7, 128.3, 127.9, 127.1, 126.5, 126.4, 125.8, 99.7, 41.5 ppm. HRMS (EI, *m/z*) calcd for C₁₉H₁₃I [M]⁺: 368.0056, found: 368.0060.

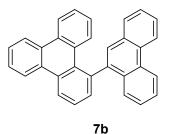
12-(*tert*-**butyl**)-**5-**iodo-9*H*-tribenzo[*a*, *c*, *e*][7]annulene (6k): The product was isolated as a white solid (40 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.78 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.58 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.49 (td, *J* = 7.5, 1.3 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.28 (dd, *J* = 7.8, 2.2 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 7.7 Hz, 1H), 3.57 (s, 2H), 1.34 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.9,

145.3, 140.9, 139.8, 139.5, 139.4, 139.0, 137.4, 132.7, 129.8, 129.2, 128.2, 126.4, 126.2, 125.7, 125.7, 124.9, 99.8, 41.0, 34.8, 31.6 ppm. HRMS (EI, *m/z*) calcd for C₂₃H₂₁I [M]⁺: 424.0682, found: 424.0681.

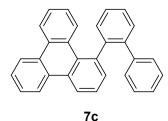


13-Iodo-9*H***-tribenzo[***a***,** *c***,** *e***][7]annulene-6-carbonitrile (6I): The product was isolated as a white solid (34 mg, 43%). ¹H NMR (400 MHz, CDCl₃) \delta 7.88 (s, 1H), 7.85 (d,** *J* **= 7.8 Hz, 1H), 7.81 (d,** *J* **= 7.5 Hz, 1H), 7.58 – 7.46 (m, 4H), 7.36 (d,** *J* **= 7.2 Hz, 1H), 7.28 (s, 1H), 6.94 (t,** *J* **= 7.5 Hz, 1H), 3.65 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) \delta 147.2, 143.4, 140.3, 139.7, 139.5, 139.1, 137.0, 132.8, 132.2, 131.4, 129.6, 128.7, 127.4, 127.0, 126.6, 119.0, 111.1, 99.7, 41.6**

ppm. HRMS (EI, *m/z*) calcd for C₂₀H₁₂IN [M]⁺: 393.0009, found: 393.0014.


General procedure to synthesize 7a-7c

To **6i** (50 mg, 141.2 μ mol) was added arylboronic acid (1.2 equiv.), K₃PO₄ (2.5 equiv.), Pd(PPh₃)₄ (0.05 equiv.), DMF (1 mL), degassed and recharged with argon three times. The reaction proceeded at 90 °C for 12 h under argon atmosphere. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel to provide **7a-7c**.

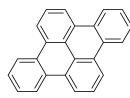

1-phenyltriphenylene (7a): The product was isolated as a white solid (41 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.67 – 8.60 (m, 3H), 8.55 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.63 (m, 3H), 7.53 (dd, *J* = 7.2, S11

1.0 Hz, 1H), 7.48 – 7.38 (m, 6H), 7.09 – 7.03 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 140.9, 131.7, 131.6, 131.1, 130.4, 130.2, 130.1, 129.8, 129.3, 129.2, 128.8, 127.5, 127.5, 127.4, 127.0, 126.8, 126.5, 125.1, 123.8, 123.4, 123.3, 123.2, 122.4 ppm. HRMS (EI, *m/z*) calcd for C₂₄H₁₆ [M]⁺: 304.1247, found: 304.1245.

1-(Phenanthren-9-yl)triphenylene (7b): The product was isolated as a white solid (50 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (t, *J* = 8.1 Hz, 3H), 8.77 – 8.74 (m, 1H), 8.67 – 8.61 (m, 1H), 8.54 (d, *J* = 8.1 Hz, 1H), 7.88 (t, *J* = 8.5 Hz, 2H), 7.79 (s, 1H), 7.75 – 7.67 (m, 4H), 7.66 – 7.56 (m, 4H), 7.33 (td, *J* = 7.5, 0.9 Hz, 2H), 6.80 – 6.74 (m, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 138.6, 132.9, 132.2, 131.4, 131.2, 131.0, 130.8, 130.4, 130.3, 130.2, 130.0, 129.9, 128.9, 128.7, 127.6, 127.5, 127.3, 127.2, 127.0, 127.0, 126.9, 126.8, 126.8, 126.6, 126.0, 123.9, 123.4, 123.3, 123.1, 123.0, 122.8 ppm. HRMS (EI, *m/z*) calcd for C₃₂H₂₀ [M]⁺: 404.1560, found: 404.1567.

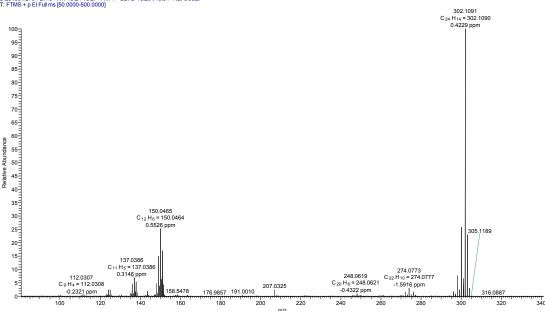
1-([1,1'-Biphenyl]-2-yl)triphenylene (7c): The product was isolated as a white solid (53 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 6.3, 3.3 Hz, 1H), 8.54 (dd, *J* = 10.7, 5.7 Hz, 2H), 8.50 (d, *J* = 7.9 Hz,


1H), 7.89 (dd, J = 8.4, 0.7 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.54 – 7.45 (m,

4H), 7.45 – 7.39 (m, 2H), 7.29 (dd, J = 7.3, 1.2 Hz, 1H), 7.11 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 6.95 – 6.87 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.1, 140.2, 139.9, 132.4, 131.3, 131.1, 130.9, 130.7, 130.2, 130.1, 130.0, 129.5, 129.1, 128.9, 128.2, 127.8, 127.5, 127.3, 127.3, 126.6, 126.3, 126.2, 125.5, 123.6, 123.1, 122.2 ppm. HRMS (EI, m/z) calcd for C₃₀H₂₀ [M]⁺: 380.1560, found: 380.1564.

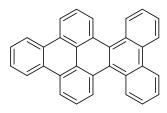
The procedure to synthesize 8a

To 7a (30.00 mg, 98.56 µmol) was added FeCl₃ (95.9 mg, 591.34 µmol, 6.0 equiv.), degassed and recharged with argon three times, and DCM (10 mL) was added by a syringe. The reaction proceeded at 0 °C for 12 h under argon atmosphere. The reaction was quenched with methanol (5.0 mL), then the reaction mixture was concentrated by rotary evaporaion. To the crude residue was added HCl (conc. 10 mL) and ultrasonicated for 10 min, the mixture was filtered and washed with water (20 mL), methanol


(20 mL) and DCM (20 mL) successively. After dried in vacuum, **8a** was obtained as a yellow solid (19 mg, 64 %).

8a

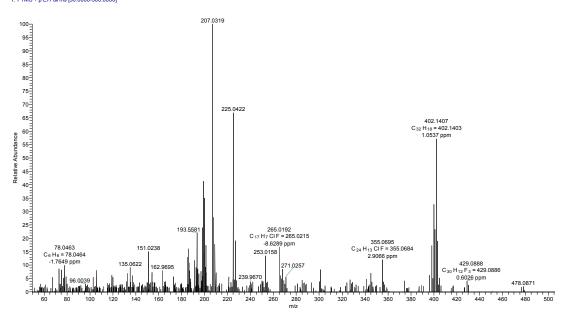
Dibenzo[*fg*, *op*]**tetracene (8a)**: ¹H NMR (400 MHz, $C_2D_4Cl_2$) δ 8.96 (d, J = 8.0 Hz, 4H), 8.85 (dd, J = 6.2, 3.4 Hz, 4H), 8.11 (t, J = 7.9 Hz, 2H), 7.79 (dd, J = 6.2, 3.3 Hz, 4H) ppm. HRMS (EI, *m/z*) calcd for $C_{24}H_{14}$ [M]⁺: 302.1090,


found: 302.1091. Data are identical to reported work.^[1]

DQ3495 #2704-2710 RT: 15.24-15.27 AV: 7 SB: 2 15.20 , 15.34 NL: 5.95E7 T: FTMS + p El Full ms (50 0000-500 0000)

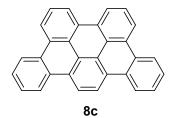
The procedure to synthesize 8b

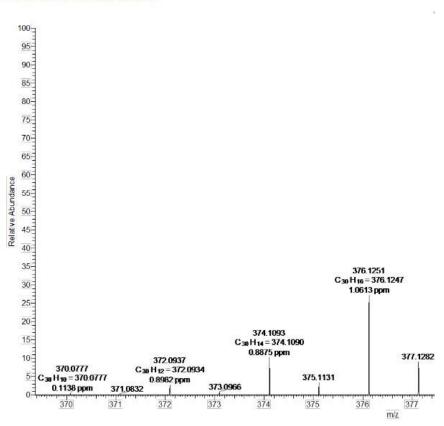
To **7b** (30.00 mg, 74.16 µmol) was added FeCl₃ (72.17 mg, 444.98 µmol, 6.0 equiv.), degassed and recharged with argon three times, and DCM (10 mL) was added by a syringe. The reaction proceeded at 0 °C for 12 h under argon atmosphere. The reaction was quenched with methanol (5.0 mL), then the reaction mixture was concentrated by rotary evaporaion. To the crude residue was added HCl (conc. 10 mL) and ultrasonicated for 10 min, the mixture was filtered and washed with water (20 mL), methanol (20 mL) and DCM (20 mL) successively. After dried in vacuum, **8b** was obtained as a yellow solid (17 mg, 57 %).



Tetrabenzo[*a*, *c*, *fg*, *op*]**tetracene** (**8b**): ¹H NMR (400 MHz, C₂D₄Cl₂) δ 8.99 (d, *J* = 7.9 Hz, 2H), 8.94 (d, *J* = 7.8 Hz, 2H), 8.90 – 8.82 (m, 4H), 8.78 (d, *J* = 8.0 Hz, 2H), 8.08 (t, *J* = 7.9 Hz, 2H), 7.80 (dd, *J* = 6.1, 3.1

8b

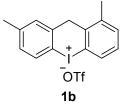

Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H) ppm. HRMS (EI, *m/z*) calcd for C₃₂H₁₈ [M]⁺: 402.1403, found: 402.1407.



The procedure to synthesize 8c

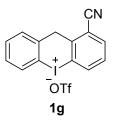
To **7c** (30.00 mg, 78.85 µmol) was added FeCl₃ (153.46 mg, 946.15 µmol, 12.0 equiv.), degassed and recharged with argon three times, and DCM (10 mL) was added by a syringe. The reaction proceeded at 0 °C for 12 h under argon atmosphere. The reaction was quenched with methanol (5.0 mL), then the reaction mixture was concentrated by rotary evaporaion. To the crude residue was added HCl (conc. 10 mL) and ultrasonicated for 10 min, the mixture was filtered and washed with water (20 mL), methanol (20 mL) and DCM (20 mL) successively. After dried in vacuum, **8c** was obtained as a dark solid (18 mg, 61 %).

Tribenzo[*fg*, *ij*, *rst*]**pentaphene (8c)**. HRMS (EI, *m/z*) calcd for C₃₀H₁₆ [M]⁺: 376.1247, found: 376.1251.



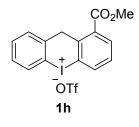
Cyclic diphenyl iodonium salts 1 were prepared according to reported procedures.^[2]

T T T T
1a


1-Methyl-10*H*-dibenzo[*b*, *e*]iodinin-5-ium trifluoromethanesulfonate (1a): ¹H NMR (400 MHz, DMSO) δ 8.11 – 8.05 (m, 1H), 7.91 (t, *J* = 8.0 Hz, 2H), 7.58 (td, J = 7.5, 0.9 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.27 (t, J = 7.8 Hz, 1H), 4.25 (s, 2H), 2.56 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 139.2, 138.9, 137.2, 133.8, 133.4, 132.0, 131.9, 131.0, 129.3, 128.9, 117.6, 116.9, 42.8, 20.6 ppm.

HRMS (ESI, *m/z*) calcd for C₁₄H₁₂I [M-OTf]⁺: 306.9978, found: 306.9974.

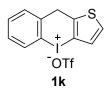
1, 8-Dimethyl-10H-dibenzo[b, e]iodinin-5-ium trifluoromethanesulfonate (1b): ¹H NMR (400 MHz, DMSO) δ 7.95 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.1Hz, 1H), 7.75 (s, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.24 (d, J = 8.3 Hz, 1H), 4.22 (s, 2H), 2.57 (s, 3H), 2.37 (s, 3H) ppm. ¹³C NMR


(100 MHz, DMSO) δ 142.0, 138.8, 138.5, 137.0, 133.2, 133.1, 131.6, 131.3, 129.6, 128.5, 117.4, 112.9, 42.4, 20.6, 20.3 ppm. HRMS (ESI, *m/z*) calcd for C₁₅H₁₄I [M-OTf]⁺: 321.0135, found: 321.0135.

1-Cyano-10*H*-dibenzo[*b*, *e*]iodinin-5-ium trifluoromethanesulfonate (1g):

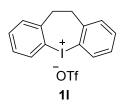
¹H NMR (400 MHz, DMSO) δ 8.43 – 8.36 (m, 1H), 8.18 – 8.09 (m, 2H), 7.89 (d, J = 6.4 Hz, 1H), 7.68 – 7.59 (m, 2H), 7.51 – 7.44 (m, 1H), 4.52 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO) δ 141.9, 138.8, 137.3, 136.0, 133.8, 132.1, 131.0, 129.7, 129.5, 117.3, 116.5, 116.5, 112.7, 44.8 ppm. HRMS (ESI, *m/z*) calcd for

C₁₄H₉IN [M-OTf]⁺: 317.9774, found: 317.9769.



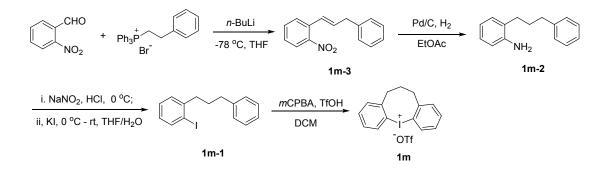
trifluoromethanesulfonate (1h): ¹H NMR (400 MHz, DMSO) δ 8.31 (dd, *J* = 8.1, 1.1 Hz, 1H), 8.11 (dd, *J* = 8.1, 1.0 Hz, 1H), 8.00 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.81 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.62 (td, *J* = 7.5, 1.1 Hz, 1H), 7.54 (t, *J* = 7.9 Hz, 1H), 7.45 (td, *J* = 8.0, 1.6 Hz, 1H), 4.58 (s, 2H), 3.97 (s, 3H) ppm.

e|iodinin-5-ium


¹³C NMR (100 MHz, DMSO) δ 166.5, 138.7, 138.6, 137.5, 133.5, 132.7, 132.0, 131.9, 130.8, 129.3, 128.8, 119.3, 117.2, 53.0, 43.2 pmm. HRMS (ESI, *m/z*) calcd for C₁₅H₁₂IO₂ [M-OTf]⁺: 350.9877, found: 350.9868.

1-(Methoxycarbonyl)-10*H*-dibenzo[*b*,

9*H*-Benzo[b]thieno[2,3-*e*]iodinin-4-ium trifluoromethanesulfonate (1k): ¹H
NMR (400 MHz, DMSO) δ 8.08 (dd, J = 8.1, 0.9 Hz, 1H), 7.79 – 7.71 (m, 2H),
7.60 (td, J = 7.5, 1.0 Hz, 1H), 7.44 (dd, J = 7.7, 1.2 Hz, 1H), 7.40 (d, J = 5.4 Hz,
1H), 4.44 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO) δ 140.6, 138.2, 133.7, 131.5,

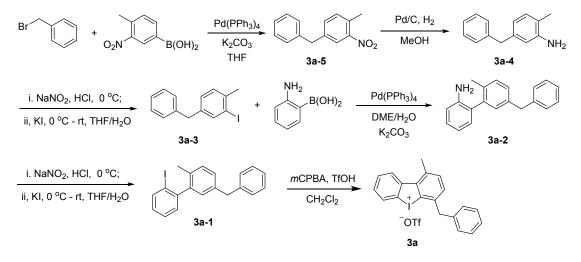

131.3, 129.1, 128.7, 127.8, 115.4, 99.6, 36.8 ppm. HRMS (ESI, *m/z*) calcd for C₁₁H₈IS [M-OTf]⁺: 298.93859, found: 298.93851.

10, 11-Dihydrodibenzo[*b*, *f*]iodepin-5-ium trifluoromethanesulfonate (11): ¹H NMR (400 MHz, DMSO) δ 8.04 (dd, *J* = 8.0, 0.9 Hz, 2H), 7.60 – 7.49 (m, 4H), 7.33 – 7.25 (m, 2H), 3.44 (s, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 135.9, 132.8, 132.4, 128.8, 117.7, 33.8 ppm. HRMS (ESI, *m/z*) calcd for

 $C_{14}H_{12}I$ [M-OTf]⁺: 306.9978, found: 306.9981.

Procedures for the synthesis of 1m

1-Nitro-2-(3-phenylprop-1-en-1-yl)benzene (1m-3): To a solution of the Wittig reagent (1.2 equiv) in dry THF was added n-BuLi (1.6 M in hexanes, 1.2 equiv) dropwise at -78 °C. After 1 h, a solution of 2-nitrobenzaldehyde (1g, 6.62 mmol, 1 equiv) in dry THF was added dropwise. The solution was stirred at -78 °C for 1 h and then at room temperature overnight. The reaction was quenched by saturated NH₄Cl solution. The aqueous phase was extracted with EtOAc (3 × 30 mL), and the combined organic layers were washed by brine, dried over anhydrous Na₂SO₄, and concentrated by rotary evaporation. The crude mixture was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 -10/1) to provide **1m-3** (1.12 g, 71% yield) as a colorless oil.


2-(3-Phenylpropyl)aniline (1m-2): To a solution of **1m-3** (1.1 g, 4.6 mmol) in EtOAc (20 mL) was added Pd/C (110 mg), then this mixture was degassed and recharged by H_2 balloon. The reaction proceeded at room temperature. The reaction was completed after 4 h and filtrated by a pad of celite. The crude was concentrated by rotary evaporation and purified by column chromatography on a silica gel (PE/EtOAc = 10/1) to provide **1m-2** (953 mg, 98% yield) as a yellow oil.

1-Iodo-2-(3-phenylpropyl)benzene (1m-1): To a stirred solution of **1m-2** (950 mg, 4.5 mmol) in THF (20 mL) was added 4M aqueous HCl (11.2 mL), and the solution was cooled in an ice water bath. A solution of NaNO₂ (372 mg, 5.39 mmol) in H₂O (5 mL) was added dropwise. After 20 min, a solution of KI (1.87 g, 11.2 mmol) in H₂O (5 mL) was added, and stirred for 10 min in the ice water bath. Then the solution was slowly warmed up to r.t. and stirred for 1 h before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (20 mL x 3). The combined organic layers were washed with H₂O (5 mL x 2) and brine (5 mL x 1), dried over anhydrous Na₂SO₄, concentrated in a vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 50/1-20/1) to provide **1m-1** (1.16 g, 80% yield) as a yellow liquid.

6,7-Dihydro-5H-dibenzo[b,g]iodocin-12-ium trifluoromethanesulfonate (1m): To a stirred solution

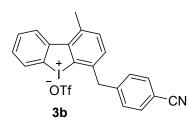
of **1m-1** (1.0 g, 3.1 mol) in anhydrous CH₂Cl₂ (15 mL) was added *m*-CPBA (85%, 856 mg, 4.66 mol), TfOH (0.82 mL, 9.31 mmol) at 0 °C, and 30 mins later, the solution was stirred for 1h at r.t. before CH₂Cl₂ was removed by rotary evaporation. Et₂O (15 mL) was added to the remained solid. The mixture was stirred for 30 min, and then filtered. The obtained solid was washed with Et₂O three times, dried in high vacuo to provide **1m** (1.19 g, 81% yield) as a gray solid. ¹H NMR (400 MHz, DMSO) δ 8.30 (d, *J* = 8.0 Hz, 2H), 7.57 – 7.45 (m, 4H), 7.22 (t, *J* = 7.4 Hz, 2H), 3.45 – 3.37 (m, 2H), 3.35 – 3.22 (m, 2H), 2.55 – 2.47 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO) δ 145.6, 135.8, 132.8, 132.0, 129.1, 124.9, 40.0, 31.1 ppm. ¹³C-DEPT135 NMR (100 MHz, DMSO) δ 136.3, 133.3, 132.4, 129.6, 40.5, 31.5 ppm. HRMS (ESI, *m/z*) calcd for C₁₅H₁₄I [M-OTf]⁺: 321.01347, found: 321.01331.

The general procedure for the preparation of cyclic diphenyl iodonium salts 3a-3c was exemplified by the synthesis of 3a.

4-benzyl-1-methyl-2-nitrobenzene (3a-5): To a stirred solution of (4-methyl-3-nitrophenyl)boronic acid (1.90 g, 10.52 mmol) in THF (20 mL) was added (bromomethyl)benzene (1.5 g, 8.77 mmol), K_2CO_3 (4.85 g, 35.08 mmol, 2 M, 17.54 mL), Pd(PPh_3)₄ (203 mg, 0.17 mmol). The reaction proceeded at a reflux for 12 h under argon atmosphere before THF was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 -10/1) to provide **3a-5** (1.72 g, 86% yield) as a yellow oil.

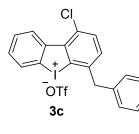
5-benzyl-2-methylaniline (3a-4): To a stirred solution of **3a-5** (1.7 g, 7.48 mmol) in MeOH (20 mL) was added Pd/C (170 mg), degassed and recharged by H_2 . The mixture was stirred vigorously for 4h at r.t. before it was filtered through a pad of celite. The filtrate was concentrated in a vacuo to provide **3a**-

4 (1.5 g, 100% yield) as a yellow solid.


4-benzyl-2-iodo-1-methylbenzene (3a-3): To a stirred solution of **3a-4** (1.5 g, 7.6 mmol) in THF (20 mL) was added 4M aqueous HCl (19.0 mL), and the solution was cooled in an ice water bath. A solution of NaNO₂ (630 mg, 13.4 mmol) in H₂O (10 mL) was added dropwise. After 20 min, a solution of KI (3.16 g, 28.0 mmol) in H₂O (10 mL) was added, and stirred for 10 min in the ice water bath. Then the solution was slowly warmed up to r.t. and stirred for 1 h before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (25 mL x 3). The combined organic layers were washed with H₂O (5 mL x 2) and brine (5 mL x 1), dried over anhydrous Na₂SO₄, concentrated in a vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 40/1-20/1) to provide **3a-3** (1.95 g, 83% yield) as a yellow liquid.

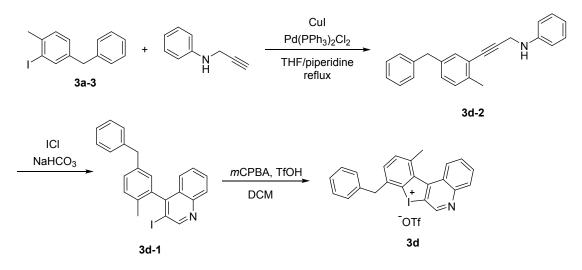
5'-benzyl-2'-methyl-[1,1'-biphenyl]-2-amine (3a-2): To a stirred solution of (2-aminophenyl)boronic acid (1.01 g, 7.40 mmol) in DME (20 mL) and H₂O (20 mL) was added **3a-3** (1.9 g, 6.17 mmol), $K_2CO_3(3.41 \text{ g}, 24.66 \text{ mmol})$, Pd(PPh₃)₄ (143 mg, 0.12 mmol). The reaction proceeded at a reflux for 12 h under argon atmosphere before THF was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 - 10/1) to provide **3a-2** (1.64 g, 97% yield) as a yellow oil.

5-benzyl-2'-iodo-2-methyl-1, 1'-biphenyl (3a-1): To a stirred solution of **3a-2** (1.6 g, 5.85 mmol) in THF (20 mL) was added 4M aqueous HCl (14.6 mL), and the solution was cooled in an ice water bath. A solution of NaNO₂ (485 mg, 7.02 mmol) in H₂O (10 mL) was added dropwise. After 20 min, a solution of KI (2.43 g, 14.63 mmol) in H₂O (10 mL) was added, and stirred for 10 min in the ice water bath. Then the solution was slowly warmed up to r.t. and stirred for 1 h before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (25 mL x 3). The combined organic layers were washed with H₂O (5 mL x 2) and brine (5 mL x 1), dried over anhydrous Na₂SO₄, concentrated in a vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 40/1-20/1) to provide **3a-1** (1.7 g, 76% yield) as a yellow solid.


4-Benzyl-1-methyldibenzo[*b*, *d*]iodol-5-ium trifluoromethanesulfonate (3a): To a stirred solution of **3a-1** (1.7 g, 4.42 mol) in anhydrous CH₂Cl₂ (25 mL) was added *m*-CPBA (85%, 1.35 g, 6.64 mol),

TfOH (1.17 mL, 13.27 mmol) at 0 °C, and 30 mins later, the solution was stirred for 1h at r.t. before CH₂Cl₂ was removed by rotary evaporation. Et₂O (20 mL) was added to the remained solid. The mixture was stirred for 30 min, and then filtered. The obtained solid was washed with Et₂O three times, dried in high vacuo to provide **3a** (1.96 g, 83% yield) as a white solid. ¹H NMR (400 MHz, DMSO) δ 8.55 (d, *J* = 7.5 Hz, 1H), 8.39 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.91 (t, *J* = 7.2 Hz, 1H), 7.76 – 7.71 (m, 1H), 7.71 – 7.66 (m, 1H), 7.45 – 7.30 (m, 6H), 4.40 (s, 2H), 2.87 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 143.2, 139.8, 137.9, 137.8, 135.1, 131.2, 131.0, 130.9, 130.3, 130.2, 129.6, 129.1, 127.5, 126.1, 120.5, 43.9, 22.7 ppm. HRMS (ESI, *m/z*) calcd for C₂₀H₁₆I [M-OTf]⁺: 383.02912, found: 383.02890.

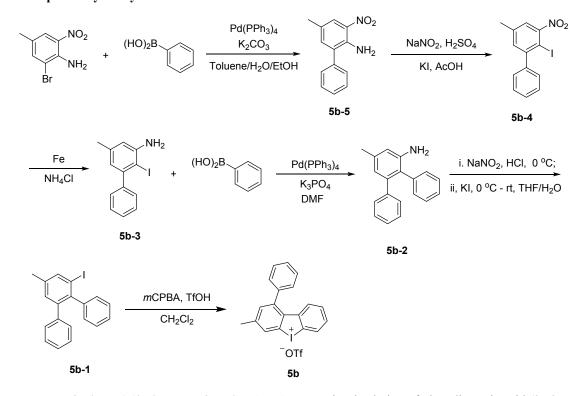
4-(4-Cyanobenzyl)-1-methyldibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (3b): 1H NMR (400 MHz, DMSO) δ 8.55 (d, J = 8.1 Hz, 1H), 8.43 (d, J = 8.3 Hz, 1H), 7.92 (t, J = 7.6Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.75 (t, J = 7.7 Hz, 1H), 7.69 (d,J = 7.7 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.7 Hz, 1H),


4.50 (s, 2H), 2.88 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 144.1, 143.5, 140.0, 138.9, 138.3, 135.2, 132.7, 131.3, 131.0, 131.0, 130.4, 130.2, 130.0, 126.8, 120.6, 118.8, 109.9, 44.1, 22.8 ppm. HRMS (ESI, *m/z*) calcd for C₂₁H₁₅IN [M-OTf]⁺: 408.0244, found: 408.0247.

4-Benzyl-1-chlorodibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (3c): 1H NMR (400 MHz, DMSO) δ 9.19 (d,J = 7.6 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.8 Hz, 2H), 7.82 (t,J = 6.8 Hz, 1H), 7.38 (dd, J = 24.8, 7.8 Hz, 6H), 4.43 (s, 2H) ppm. 13CNMR (100 MHz, DMSO) δ 141.6, 140.9, 137.6, 137.5, 134.3, 131.7,

131.2, 130.9, 130.8, 130.8, 130.8, 129.6, 129.1, 127.6, 127.2, 121.0, 99.5, 43.8 ppm. HRMS (ESI, *m/z*) calcd for C₁₉H₁₃ClI [M-OTf]⁺: 402.9745, found: 402.9740.

Procedures for the synthesis of 3d


N-(3-(5-Benzyl-2-methylphenyl)prop-2-yn-1-yl)aniline (3d-2): To a stirred solution of 3a-3 (800 mg, 2.6 mmol, 1.0 equiv) in THF (5 mL) and piperidine (5 mL) was added 3a-3 (409 g, 3.12 mmol, 1.2 equiv), Pd(PPh₃)₂Cl₂ (91 mg, 0.05 equiv), CuI (25 mg, 0.05 equiv). The reaction proceeded at a reflux for 12 h under argon atmosphere before the solvents were removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 30/1 - 15/1) to provide 3d-2 (760 mg, 94% yield) as a yellow oil.

4-(5-Benzyl-2-methylphenyl)-3-iodoquinoline (3d-1): To a stirred solution of **3d-2** (750 mg, 2.41 mmol, 1.0 equiv) in MeCN (6 mL) was added NaHCO₃ (405 mg, 2.0 equiv), a solutions of ICl (782 mg, 2.0 equiv) in MeCN (4 mL). The reaction proceeded at rt for 2 h. The remained mixture was extracted with EtOAc, the combined organic layers were washed with 1M aqueous Na₂S₂O₃ and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 30/1 - 10/1) to provide **3d-1** (852 mg, 81% yield) as a yellow oil.

8-Benzyl-11-methylbenzo[4,5]iodolo[2,3-c]quinolin-7-ium trifluoromethanesulfonate (3d): o a stirred solution of 3d-1 (500 mg, 1.15 mol) in anhydrous CH_2Cl_2 (10 mL) was added *m*-CPBA (85%, 350 mg, 1.72 mol), TfOH (0.3 mL, 3.45 mmol) at 0 °C, and 30 mins later, the solution was stirred for 1h at r.t. before CH_2Cl_2 was removed by rotary evaporation. Et₂O (10 mL) was added to the remained solid. The mixture was stirred for 30 min, and then filtered. The obtained solid was washed with Et₂O three times, dried in high vacuo to provide 3d (460 mg, 69% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO) δ 9.55 (s, 1H), 8.27 (d, *J* = 7.9 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 8.04 – 7.97 (m, 1H), 7.87 – 7.78 (m, 2H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.45 – 7.40 (m, 4H), 7.38 – 7.33 (m, 1H), 4.47 (s, 2H),

2.55 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 148.0, 147.9, 147.6, 140.6, 140.1, 139.7, 137.9, 135.2, 132.0, 131.3, 129.7, 129.2, 128.1, 127.6, 127.1, 126.5, 122.3, 119.1, 116.2, 43.7, 24.0 ppm. HRMS (ESI, *m/z*) calcd for C₂₃H₁₇NI [M-OTf]⁺: 434.04002, found: 434.04001.

The general procedure for the preparation of cyclic diphenyl iodonium salts 5a-5i was exemplified by the synthesis of 5b.

5-methyl-3-nitro-[1,1'-biphenyl]-2-amine (5b-5): To a stirred solution of phenylboronic acid (2.53 g, 20.77 mmol) in toluene (30 mL), H₂O (20 mL), EtOH (10 mL) was added 2-bromo-4-methyl-6-nitroaniline (4.0 g, 17.31 mmol), K₂CO₃ (9.57 g, 69.25 mmol), Pd(PPh₃)₄ (400 mg, 0.346 mmol). The reaction proceeded at 100 °C for 12 h under argon atmosphere before solvent was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 - 10/1) to provide **5b-5** (3.89 g, 98% yield) as a orange oil.

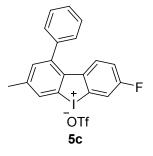
2-iodo-5-methyl-3-nitro-1,1'-biphenyl (5b-4): To NaNO₂ (2.12 g, 30.67 mmol) was added concentrated H_2SO_4 slowly until all the solid dissolved at room temperature, and this mixture was added dropwise into a mixture of **5b-5** (3.5 g, 15.33 mmol) in AcOH (30 mL), at room temperature. 20 mins after the addition of NaNO₂ mixture was finished, a solution of KI (6.36 g, 38.33 mmol) in H_2O (10 mL) was added slowly, at room temperature. The reaction process was tracked by TLC. After the

reaction was finished, the remained mixture was extracted with EtOAc, the combined organic layers were washed with 1M aqueous $Na_2S_2O_3$ and brine and dried over anhydrous Na_2SO_4 , evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 40/1 -20/1) to provide **5b-4** (4.36 g, 84%yield) as yellow solid.

2-iodo-5-methyl-[1,1'-biphenyl]-3-amine (5b-3): To **5b-4** (4.3 g, 12.68 mmol) in EtOH (20 mL) and H_2O (20 mL) was added NH₄Cl (1.42 g, 61.92 mmol), iron powder (2.83 g, 50.72 mmol), 60 °C, 3 h. After the reaction was finished, the mixture was filtered by a pad of celite, and the filtrate was concentrated by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H_2O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 -10/1) to yield **5b-3** (3.58 g, 91% yield) as a yellow liquid.

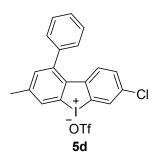
5'-methyl-[1,1':2',1''-terphenyl]-3'-amine (5b-2): To a stirred solution of phenylboronic acid (1.66 g, 13.59 mmol) in DMF (20 mL), H₂O (20 mL), EtOH (10 mL) was added **5b-3** (3.5 g, 11.32 mmol), K_3PO_4 (6.01 g, 28.30 mmol), Pd(PPh₃)₄ (262 mg, 0.226 mmol). The reaction proceeded at 100 °C for 12 h under argon atmosphere before solvent was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 20/1 -10/1) to provide **5b-2** (2.83 g, 96% yield) as an orange oil.

3'-iodo-5'-methyl-1,1':2',1''-terphenyl (5b-1): To a stirred solution of **5b-2** (2.8 g, 10.8 mmol) in THF (25 mL) was added 4M aqueous HCl (27.0 mL), and the solution was cooled in an ice water bath. A solution of NaNO₂ (894 mg, 12.96 mmol) in H₂O (10 mL) was added dropwise. After 20 min, a solution of KI (4.48 g, 26.99 mmol) in H₂O (10 mL) was added, and stirred for 10 min in the ice water bath. Then the solution was slowly warmed up to r.t. and stirred for 1 h before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (25 mL x 3). The combined organic layers were washed with H₂O (5 mL x 2) and brine (5 mL x 1), dried over anhydrous Na₂SO₄, concentrated in a vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 40/1-20/1) to provide **5b-1** (3.55 g, 89% yield) as a yellow liquid.

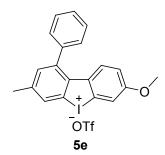

3-Methyl-1-phenyldibenzo[*b*, *d*]iodol-5-ium trifluoromethanesulfonate (5b): To a stirred solution of **5b-1** (3.0 g, 8.1 mol) in anhydrous CH₂Cl₂ (40 mL) was added *m*-CPBA (85%, 2.47 g, 12.15 mol),

TfOH (2.15 mL, 24.31 mmol) at 0 °C, and 30 mins later, the solution was stirred for 1h at r.t. before CH₂Cl₂ was removed by rotary evaporation. Et₂O (20 mL) was added to the remained solid. The mixture was stirred for 30 min, and then filtered. The obtained solid was washed with Et₂O three times, dried in high vacuo to provide **5b** (3.68 g, 88% yield) as a white solid. ¹H NMR (400 MHz, DMSO) δ 8.20 (dd, *J* = 8.2, 0.8 Hz, 1H), 8.10 (d, *J* = 0.6 Hz, 1H), 7.62 – 7.56 (m, 3H), 7.54 (dd, *J* = 11.3, 4.1 Hz, 1H), 7.46 (d, *J* = 0.8 Hz, 1H), 7.42 – 7.35 (m, 3H), 6.83 (dd, *J* = 8.2, 1.1 Hz, 1H), 2.50 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 143.1, 141.2, 140.1, 139.4, 135.8, 134.5, 130.8, 130.2, 129.8, 129.7, 129.4, 129.2, 128.7, 128.5, 122.6, 121.0, 20.8 ppm. HRMS (ESI, *m/z*) calcd for C₁₉H₁₄I [M-OTf]⁺: 369.0135, found:369.0133.

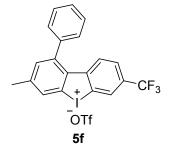
OTf 5a


1-Phenyldibenzo[b, d]iodol-5-ium trifluoromethanesulfonate (5a):

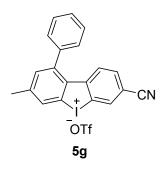
¹H NMR (400 MHz, DMSO) δ 8.33 (d, *J* = 8.2 Hz, 1H), 8.24 (d, *J* = 8.2 Hz, 1H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.68 – 7.53 (m, 5H), 7.41 (s, 3H), 6.89 (d, *J* = 8.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO) δ 143.5, 141.7, 139.5, 138.4, 133.6, 130.9, 130.6, 130.0, 129.7, 129.7, 129.6, 129.5, 128.8, 128.5, 122.6, 122.0, 121.3, 119.4 ppm. HRMS (ESI, *m/z*) calcd for C₁₈H₁₂I [M-OTf]⁺: 354.99782, found: 354.99768.


7-Fluoro-3-methyl-1-phenyldibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (5c): 1 H NMR (400 MHz, DMSO) & 8.08 (s,1H), 8.01 (dd, J = 7.7, 2.7 Hz, 1H), 7.63 – 7.54 (m, 3H), 7.46 (s, 1H), 7.37(ddd, J = 13.2, 7.0, 2.9 Hz, 3H), 6.80 (dd, J = 9.1, 5.2 Hz, 1H), 2.50 (s, 3H)ppm. 13 C NMR (100 MHz, DMSO) & 161.1 (d, J = 253.1 Hz), 142.9,140.18 (s), 139.19 (s), 138.54 (d, J = 2.8 Hz), 134.75 (d, J = 4.3 Hz), 130.3

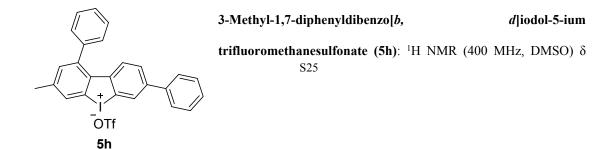
(d, J = 8.1 Hz), 129.8, 129.6, 129.0, 128.6, 123.1, 122.4, 121.6 (d, J = 9.4 Hz), 119.2, 118.0 (d, J = 15.6 Hz), 117.8 (d, J = 10.8 Hz), 20.9 ppm. HRMS (ESI, m/z) calcd for C₁₉H₁₃FI [M-OTf]⁺: 387.0041, found: 387.0033.


7-Chloro-3-methyl-1-phenyldibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (5d): 1 H NMR (400 MHz, DMSO) & 8.21 (d,J = 2.2 Hz, 1H), 8.09 (d, J = 0.8 Hz, 1H), 7.62 – 7.56 (m, 3H), 7.53 (dd, J= 8.9, 2.2 Hz, 1H), 7.48 (d, J = 0.9 Hz, 1H), 7.41 – 7.35 (m, 2H), 6.77 (d,

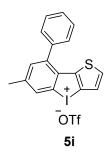
J = 8.8 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 143.2, 140.8, 140.7, 139.1, 134.8, 133.8, 130.1, 129.9, 129.8, 129.6, 129.0, 128.5, 123.2, 121.8, 20.9 ppm. HRMS (ESI, *m/z*) calcd for C₁₉H₁₃ClI [M-OTf]⁺: 402.97450, found: 402.97458.


7-Methoxy-3-methyl-1-phenyldibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (5e): 1 H NMR (400 MHz, DMSO) δ 8.05 (s,1H), 7.74 (t, J = 8.5 Hz, 1H), 7.56 (t, J = 7.0 Hz, 3H), 7.42 (s, 1H), 7.37(d, J = 3.6 Hz, 2H), 7.01 (dd, J = 9.1, 2.5 Hz, 1H), 6.69 (d, J = 9.1 Hz,1H), 3.81 (s, 3H), 2.48 (s, 3H) ppm. 13 C NMR (100 MHz, DMSO) δ

159.8, 142.0, 139.4, 138.9, 135.6, 134.4, 134.1, 132.8, 130.7, 129.7, 129.4, 128.9, 128.7, 128.5, 128.0, 122.1, 121.9, 116.5, 115.3, 56.0, 20.7 ppm. HRMS (ESI, *m/z*) calcd for C₂₀H₁₆IO [M-OTf]⁺: 399.0240, found: 399.0242.


3-Methyl-1-phenyl-7-(trifluoromethyl)dibenzo[*b*, *d*]iodol-5-ium trifluoromethanesulfonate (5f): ¹H NMR (400 MHz, DMSO) δ 8.55 (s, 1H), 8.15 (s, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.65 – 7.57 (m, 3H), 7.54 (s, 1H), 7.42 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 1H), 2.54 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 145.6, 143.9, 141.5, 139.0, 134.8,

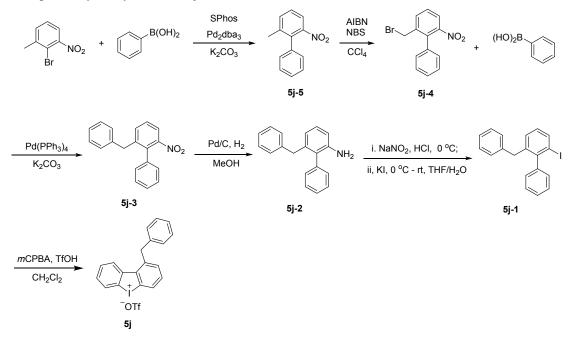
134.5, 129.8, 129.5, 129.4, 129.0, 128.4, 127.5 (q, J = 4.4 Hz), 126.7 (q, J = 3.2 Hz), 124.0, 121.6, 99.6,
20.9 ppm. HRMS (ESI, *m/z*) calcd for C₂₀H₁₃F₃I [M-OTf]⁺: 437.00085, found: 437.00061.


7-Cyano-3-methyl-1-phenyldibenzo[b,d]iodol-5-iumtrifluoromethanesulfonate (5g): ¹H NMR (400 MHz, DMSO) δ 8.52 (d,J = 1.2 Hz, 1H), 8.13 (s, 1H), 7.88 (dd, J = 8.6, 1.3 Hz, 1H), 7.64 – 7.56(m, 3H), 7.53 (s, 1H), 7.44 – 7.35 (m, 2H), 6.91 (d, J = 8.6 Hz, 1H), 2.53(s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 145.9, 144.0, 141.9, 138.9,134.8, 134.4, 134.2, 133.2, 129.8, 129.6, 129.0, 129.0, 128.4, 124.4,

121.2, 117.3, 111.5, 21.0 ppm. HRMS (ESI, *m/z*) calcd for C₂₀H₁₃IN [M-OTf]⁺: 394.00872, found: 394.00858.

8.48 (d, J = 1.7 Hz, 1H), 8.10 (s, 1H), 7.73 (dd, J = 8.6, 1.7 Hz, 1H), 7.68 (d, J = 7.3 Hz, 2H), 7.64 – 7.56 (m, 3H), 7.50 (dd, J = 14.2, 6.4 Hz, 3H), 7.46 – 7.38 (m, 3H), 6.88 (d, J = 8.6 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 143.0, 141.4, 140.5, 140.2, 139.4, 137.5, 135.4, 134.6, 129.8, 129.4, 129.3, 128.8, 128.8, 128.5, 128.1, 127.9, 126.6, 122.8, 122.0, 20.8 ppm. HRMS (ESI, *m/z*) calcd for C₂₅H₁₈I [M-OTf]⁺: 445.04477, found: 445.04312.

6-Methyl-8-phenylbenzo[b]thieno[2,



trifluoromethanesulfonate (5i): ¹H NMR (400 MHz, DMSO) δ 8.09 (s, 1H), 7.66 (d, J = 5.4 Hz, 1H), 7.61 – 7.55 (m, 3H), 7.46 (s, 1H), 7.45 (d, J = 5.4 Hz, 1H), 7.40 (dd, J = 6.2, 2.8 Hz, 2H), 2.50 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO) δ 144.4, 140.7, 139.1, 138.0, 132.8, 132.5, 131.0, 130.0, 129.2, 129.1, 129.1, 125.8, 125.5, 122.0, 119.4, 111.2, 20.9 ppm. HRMS (ESI, m/z) calcd for C₁₇H₁₂IS [M-

3-d|iodol-4-ium

OTf]⁺: 374.96989, found: 374.96988.

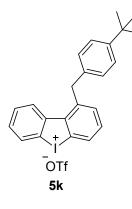
The general procedure for the preparation of cyclic diphenyl iodonium salts 5j-5l was exemplified by the synthesis of 5j.

2-Methyl-6-nitro-1,1'-biphenyl (5j-5): To a stirred solution of phenylboronic acid (1.69 g, 13.89 mmol) in toluene (15 mL), H₂O (10 mL), EtOH (5 mL) was added 2-bromo-1-methyl-3-nitrobenzene (2.0 g, 9.26 mmol), K₂CO₃ (5.12 g, 37.03 mmol), Pd₂dba₃ (84.78 mg, 92.58 μmol), SPhos (152.03 mg, 370.31μmol). The reaction proceeded at 100 °C for 24 h under argon atmosphere before solvent was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined S26

organic layers were washed with H_2O and brine and dried over anhydrous Na_2SO_4 , evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 30/1 - 15/1) to provide **5j-5** (1.83 g, 93% yield) as a white solid.

2-(bromomethyl)-6-nitro-1, 1'-biphenyl (5j-4): to a solution of **5j-5** (1.53 g , 7.18 mmol) in CCl₄ (15 mL) was added AIBN (117.82 mg , 717.51 μ mol), NBS (1.4 g, 7.89 mmol). The reaction proceeded at a reflux for 6h, and the reaction was monitored by TLC plate. When the reaction was finished, the solvent was removed by rotary evaporation, and the residue was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 30/1 -15/1) to yield **5j-4** (1.79 g, 85% yield) as a yellow lsolid.

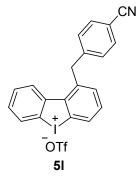
2-benzyl-6-nitro-1, 1'-biphenyl (5j-3): To a stirred solution of phenylboronic acid (851.45 mg, 6.98 mmol) in toluene (15 mL), H₂O (10 mL), EtOH (5 mL) was added **5j-4** (1.70 g, 5.82 mmol), K₂CO₃ (3.22 g, 23.28 mmol, 2M, 11.64 mL H₂O), Pd(PPh₃)₄ (201.74 mg, 174.58 μ mol). The reaction proceeded at 100 °C for 12 h under argon atmosphere before solvent was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel (PE/EtOAc = 30/1 -15/1) to provide **5j-3** (1.65 g, 98% yield) as a white solid.


6-benzyl-[1, 1'-biphenyl]-2-amine (5j-2): To a stirred solution of **5j-3** (1.65 g, 5.70 mmol) in MeOH (20 mL) was added Pd/C (165 mg), degassed and recharged by H₂. The mixture was stirred vigorously for 4h at r.t. before it was filtered through a pad of celite. The filtrate was concentrated in a vacuo to provide **5j-2** (1.27 g, 86% yield) as a white solid.

2-benzyl-6-iodo-1, 1'-biphenyl (5j-1):

To a stirred solution of **5j-2** (1.2 g, 4.63 mmol) in THF (15 mL) was added 4M aqueous HCl (11.57 mL), and the solution was cooled in an ice water bath. A solution of NaNO₂ (383.08 mg, 5.55 mmol) in H₂O (5 mL) was added dropwise. After 20 min, a solution of KI (1.92 g, 11.57 mmol) in H₂O (5 mL) was added, and stirred for 10 min in the ice water bath. Then the solution was slowly warmed up to r.t. and stirred for 1 h before 1M aqueous Na₂S₂O₃ was added until the color of the mixture didn't change. The phases were separated, and the aqueous phase extracted with EtOAc (20 mL x 3). The combined organic layers were washed with H₂O (5 mL x 2) and brine (5 mL x 1), dried over anhydrous Na₂SO₄,

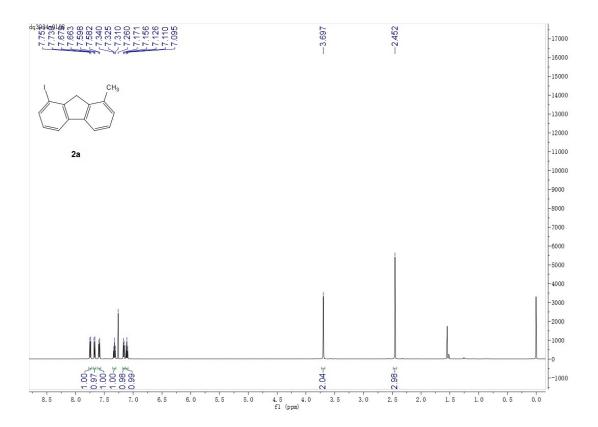
concentrated in a vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 40/1-20/1) to provide **5j-1** (1.49 g, 87% yield) as a colorless oil.

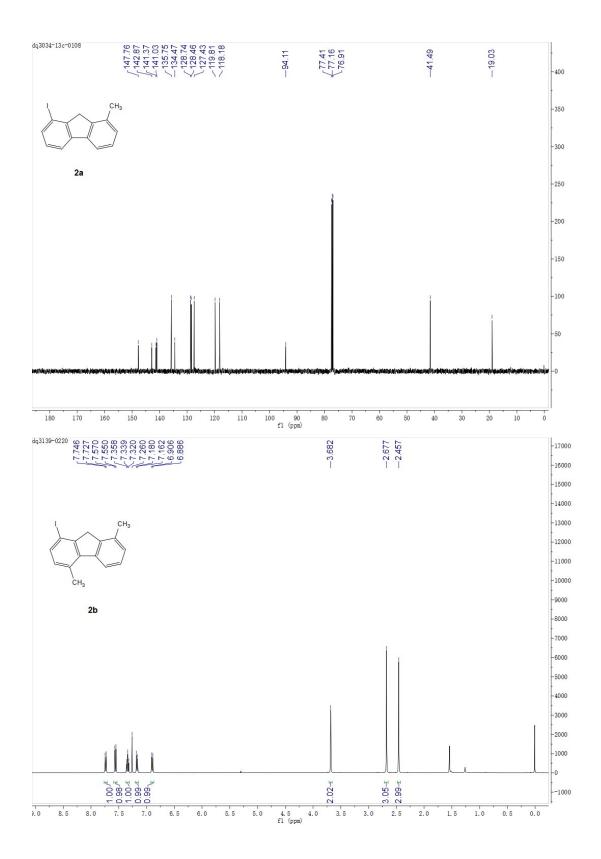

1-Benzyldibenzo[b, d]iodol-5-ium trifluoromethanesulfonate (5j): To a stirred solution of **5j-1** (1.45 g, 3.92 mol) in anhydrous CH₂Cl₂ (20 mL) was added *m*-CPBA (85%, 1.19 g, 5.87 mol), TfOH (1.04 mL, 11.75 mmol) at 0 °C, and 30 mins later, the solution was stirred for 1h at r.t. before CH₂Cl₂ was removed by rotary evaporation. Et₂O (20 mL) was added to the remained solid. The mixture was stirred for 30 min, and then filtered. The obtained solid was washed with Et₂O three times, dried in high vacuo to provide **5j** (1.82 g, 90% yield) as a white solid. ¹H NMR (400 MHz, DMSO) δ 8.35 – 8.24 (m, 3H), 7.76 – 7.62 (m, 4H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 2H), 4.73 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO) δ 141.9, 141.6, 139.8, 138.6, 135.1, 130.9, 130.6, 130.6, 130.5, 130.2, 129.4, 128.9, 128.4, 126.7, 122.7, 120.6, 40.2 ppm. HRMS (ESI, *m/z*) calcd for C₁₉H₁₄I [M-OTf]⁺: 369.01347, found: 369.01334.

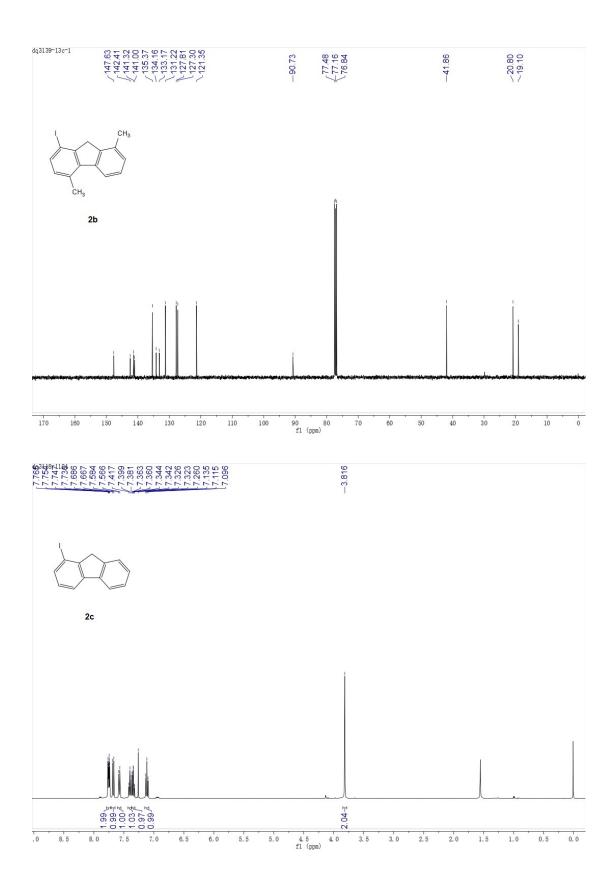
1-(4-(*tert*-Butyl)benzyl)dibenzo[*b*, *d*]iodol-5-ium

trifluoromethanesulfonate (5k): ¹H NMR (400 MHz, DMSO) δ 8.35 (d, *J* = 8.1 Hz, 1H), 8.27 (dd, *J* = 12.7, 7.7 Hz, 2H), 7.74 (t, *J* = 7.4 Hz, 1H), 7.65 (t, *J* = 7.2 Hz, 3H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 7.7 Hz, 2H), 4.67 (s, 2H), 1.23 (s, 9H) ppm. ¹³C NMR (100 MHz, DMSO) δ 149.0, 142.0, 141.8, 139.7, 135.5, 135.0, 130.9, 130.7, 130.5, 130.4, 130.2, 129.4, 128.2, 125.6, 122.6, 122.1, 120.6, 119.5, 40.0, 34.2, 31.2 ppm. HRMS (ESI,

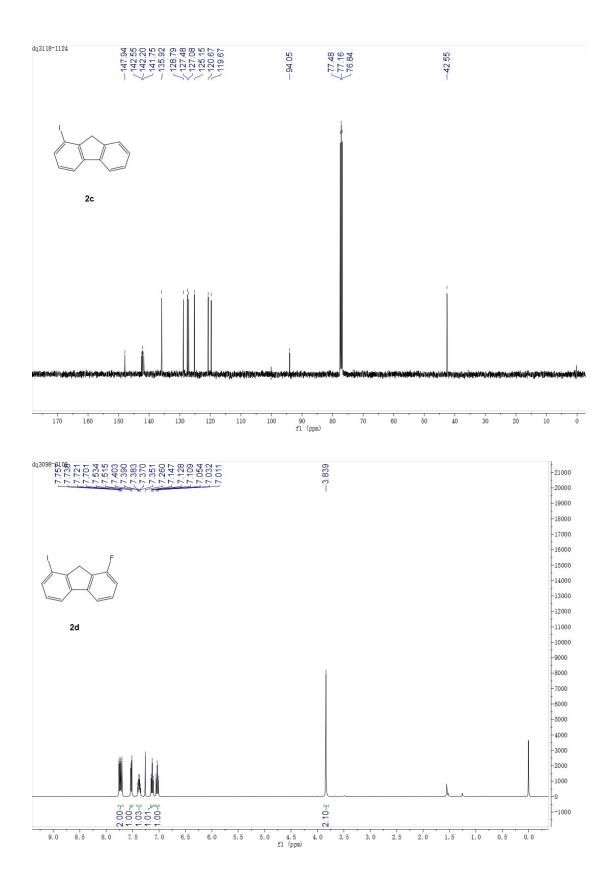
m/z) calcd for C₂₃H₂₂I [M-OTf]⁺: 425.07607, found: 425.07587.

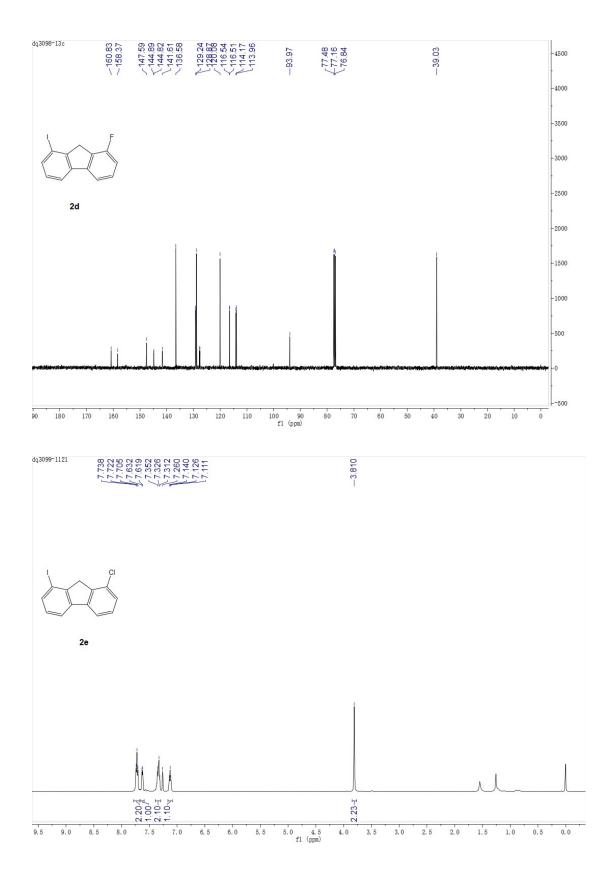


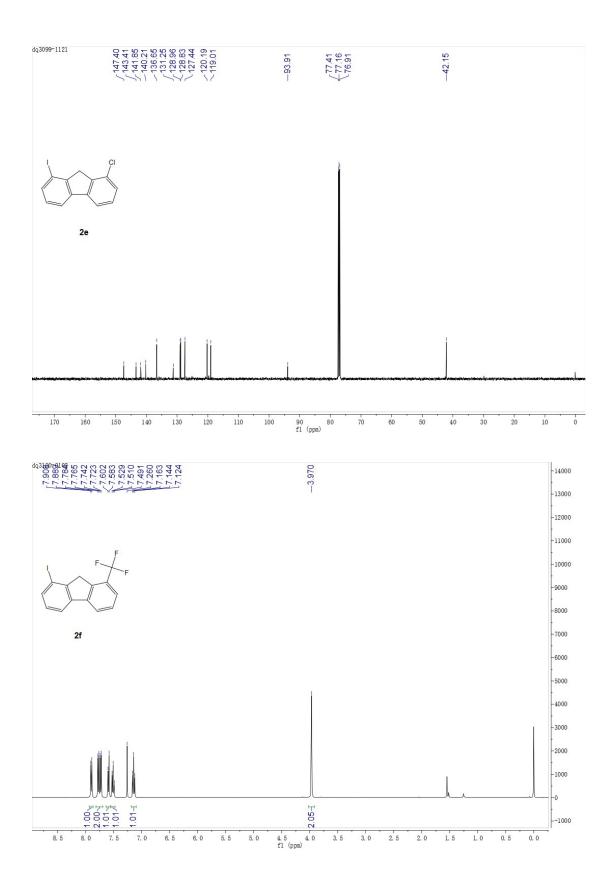

1-(4-Cyanobenzyl)dibenzo[*b*, *d***]iodol-5-ium trifluoromethanesulfonate** (**5l**): ¹H NMR (400 MHz, DMSO) δ 8.28 (d, *J* = 6.4 Hz, 2H), 8.22 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.4 Hz, 2H), 7.73 – 7.63 (m, 4H), 7.34 (d, *J* = 7.5 Hz, 2H), 4.84 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO) δ 144.8, 141.8, 140.2, 139.9, 135.3, 132.8, 131.0, 130.8, 130.6, 130.4, 130.4, 129.9, 129.6, 122.9, 122.4, 120.7, 119.2, 119.0, 109.6, 40.2 ppm. HRMS (ESI, *m/z*) calcd

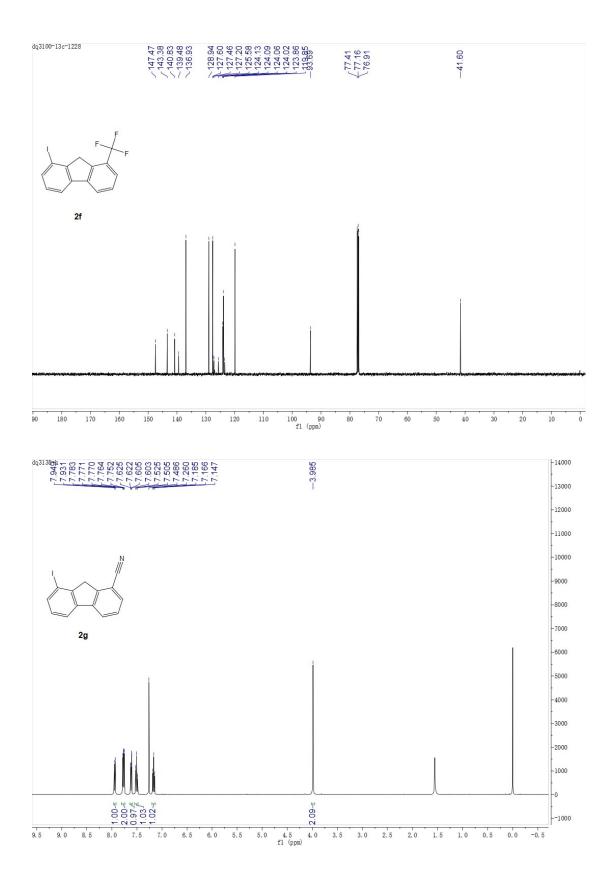

for C₂₀H₁₃IN [M-OTf]⁺: 394.00872, found: 394.00858.

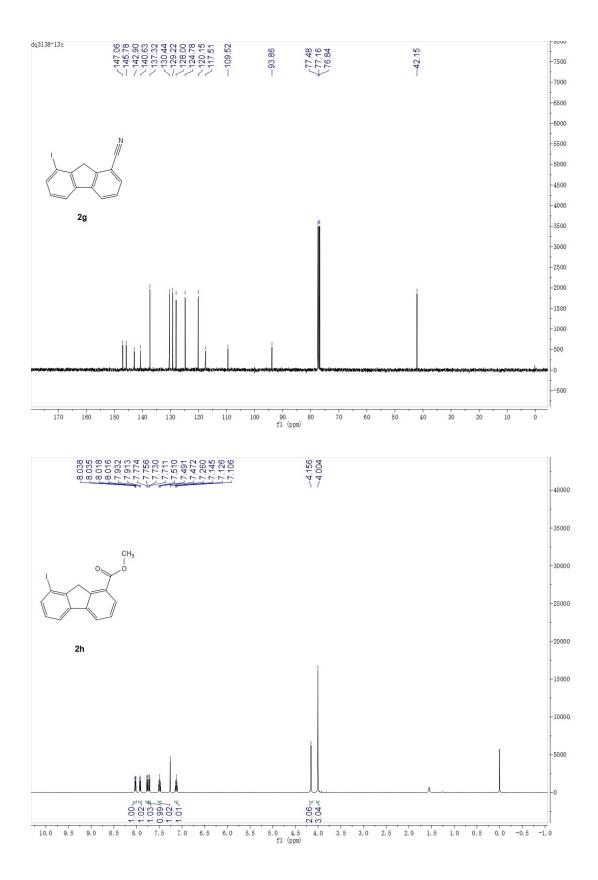
References

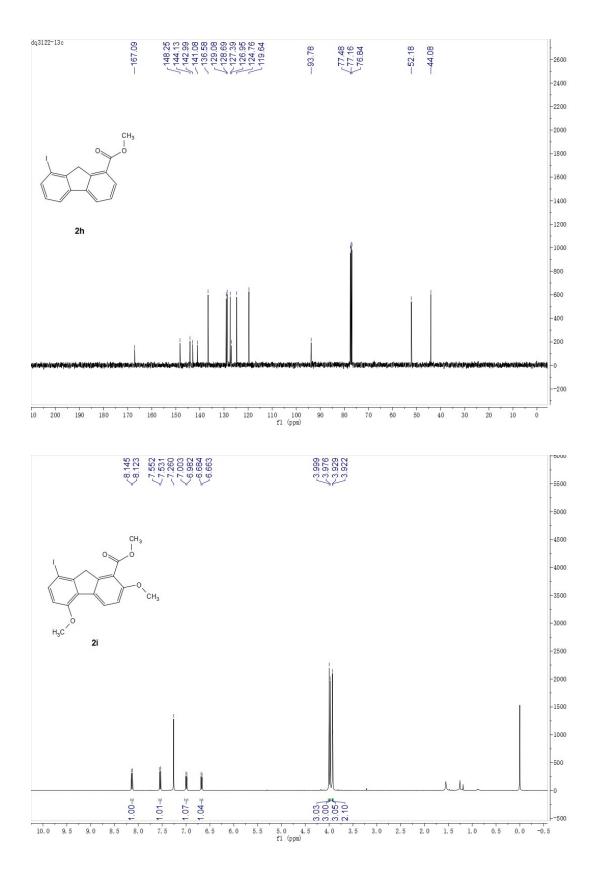

- [1] C. Zhu, D. Wang, D. Wang, Y. Zhao, W. Sun, and Z. Shi. Angew. Chem. Int. Ed. 2018, 57, 8848-8853
- [2] D. Zhu, M. Li, Z. Wu, Y. Du, B. Luo, P. Huang, S. Wen. Eur. J. Org. Chem. 2019, 4566–4571.

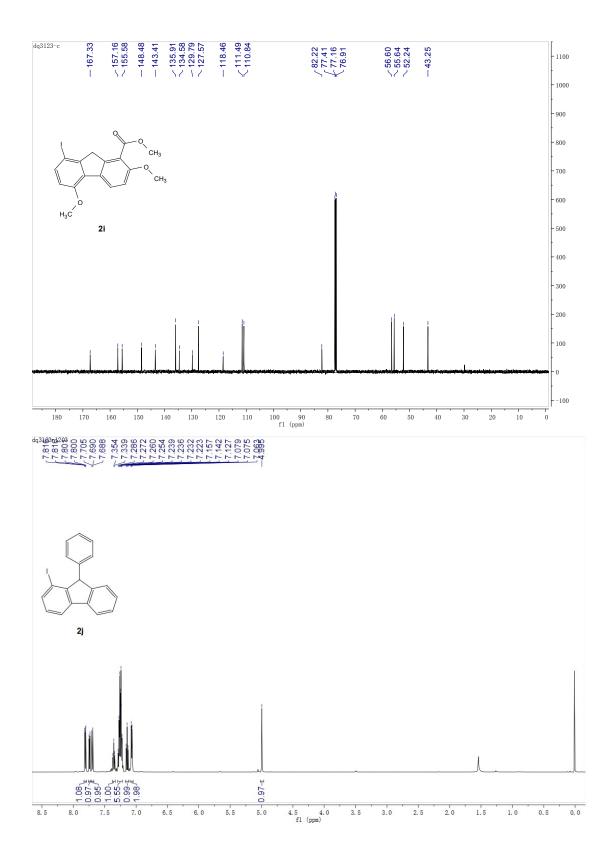


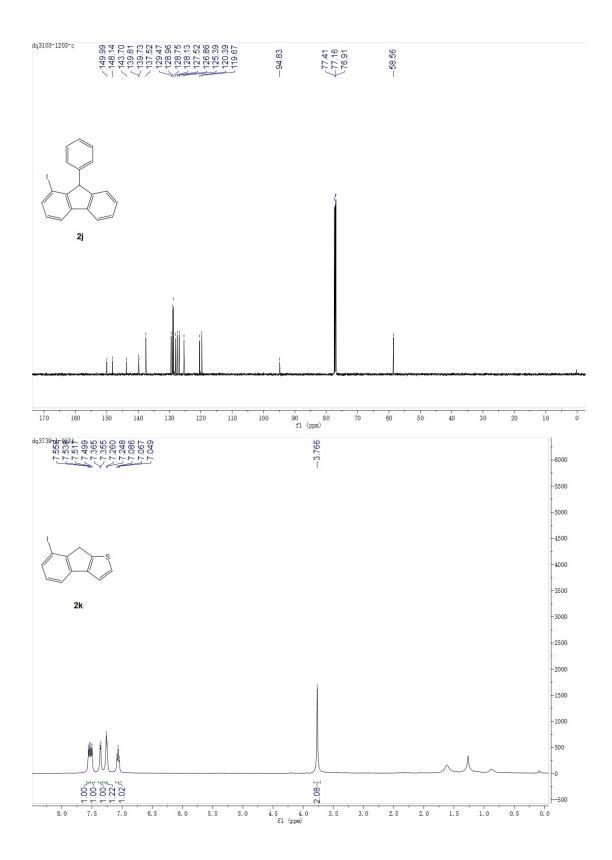


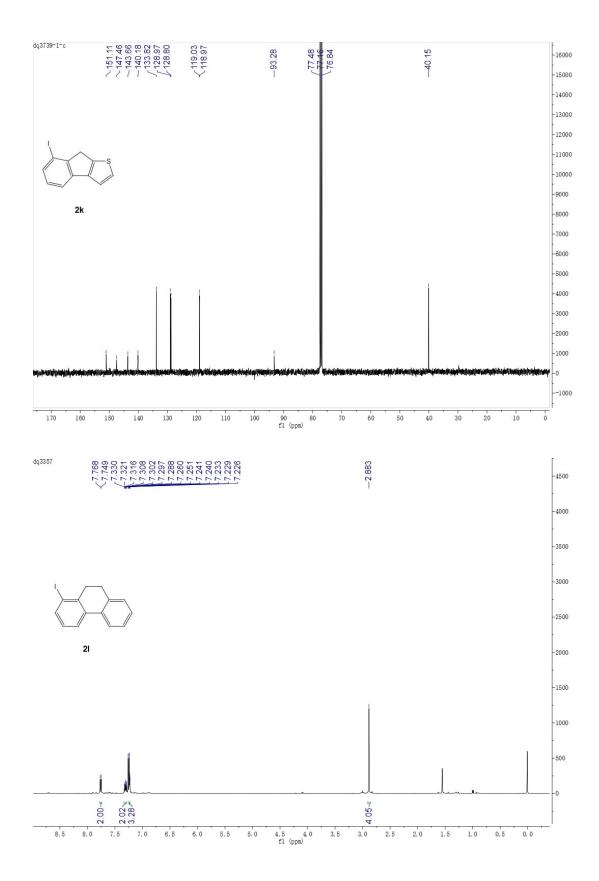

S31

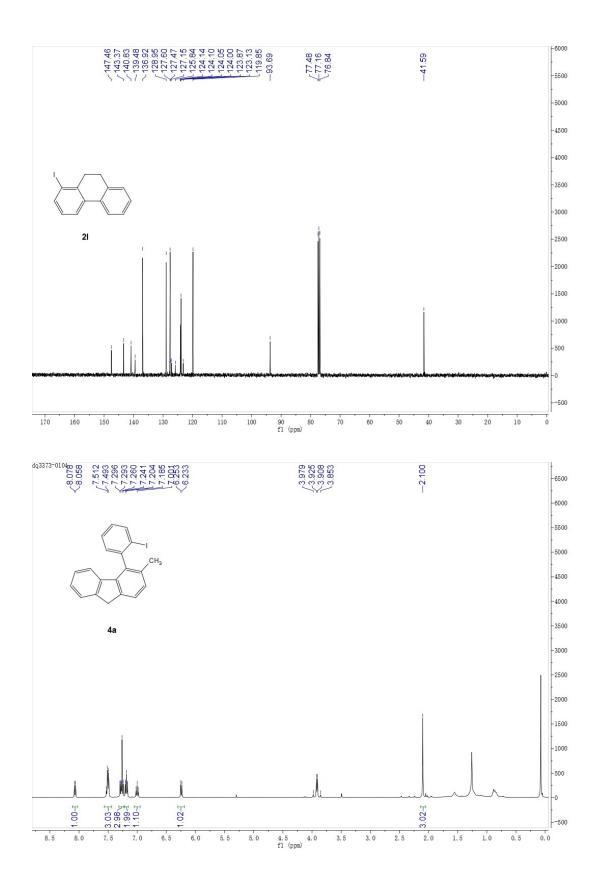


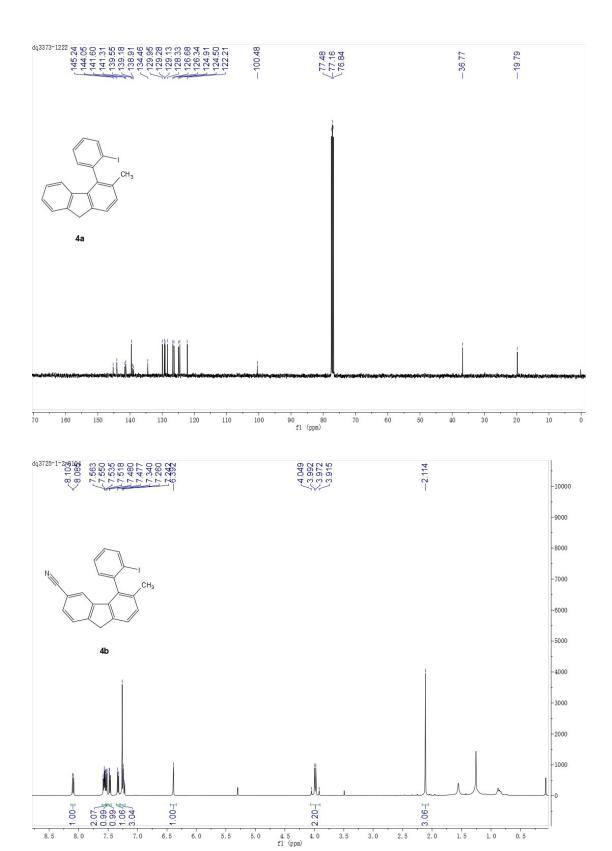


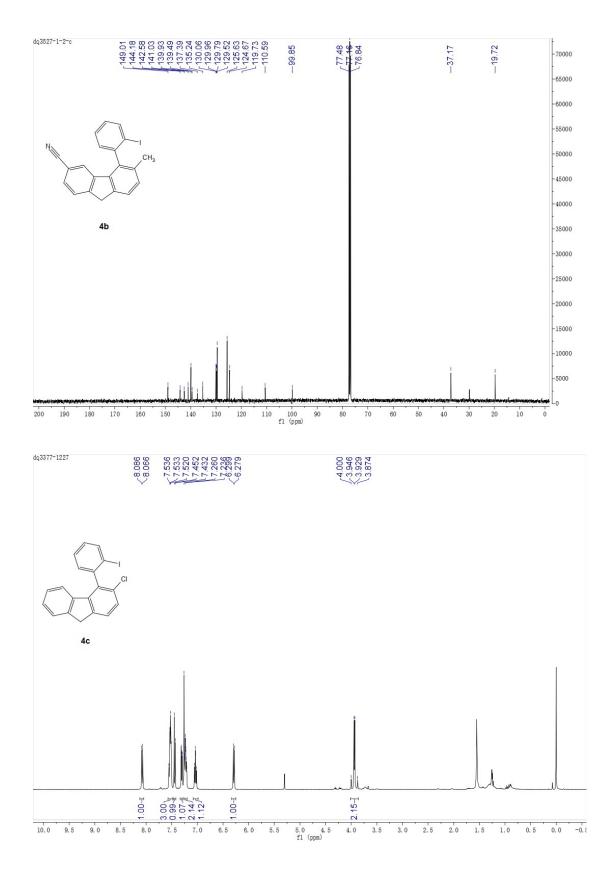


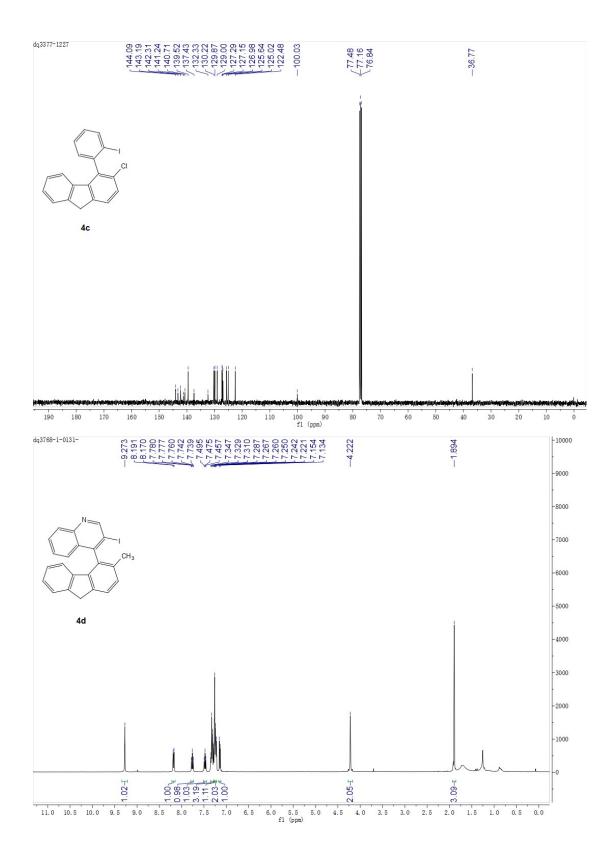

S34

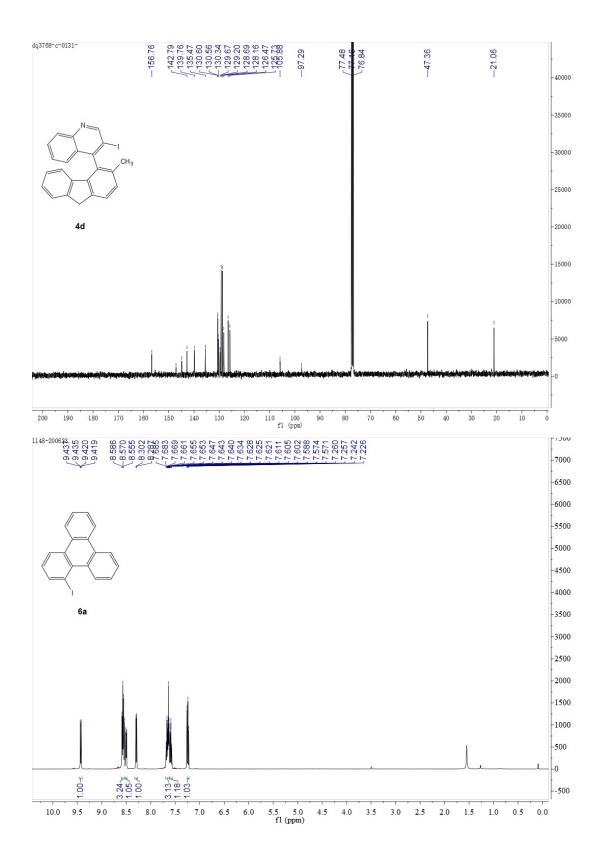


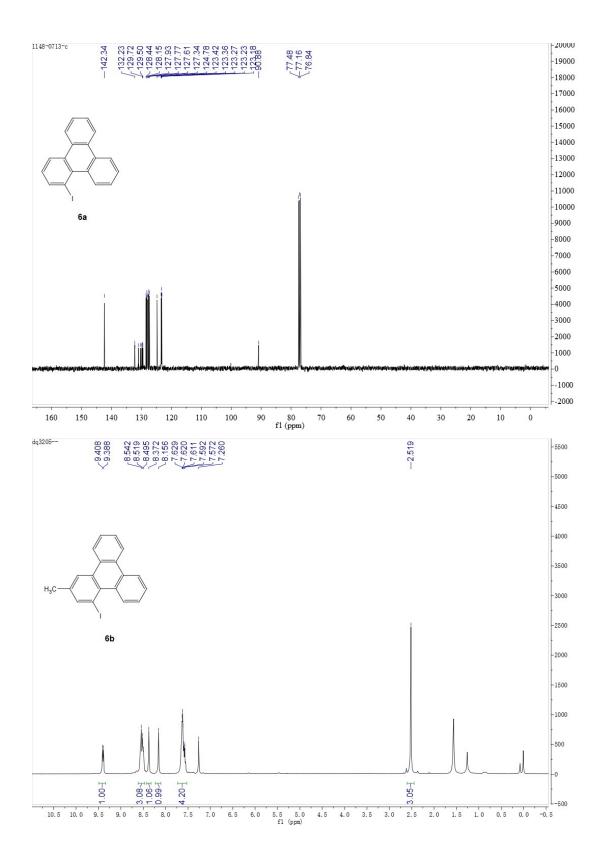


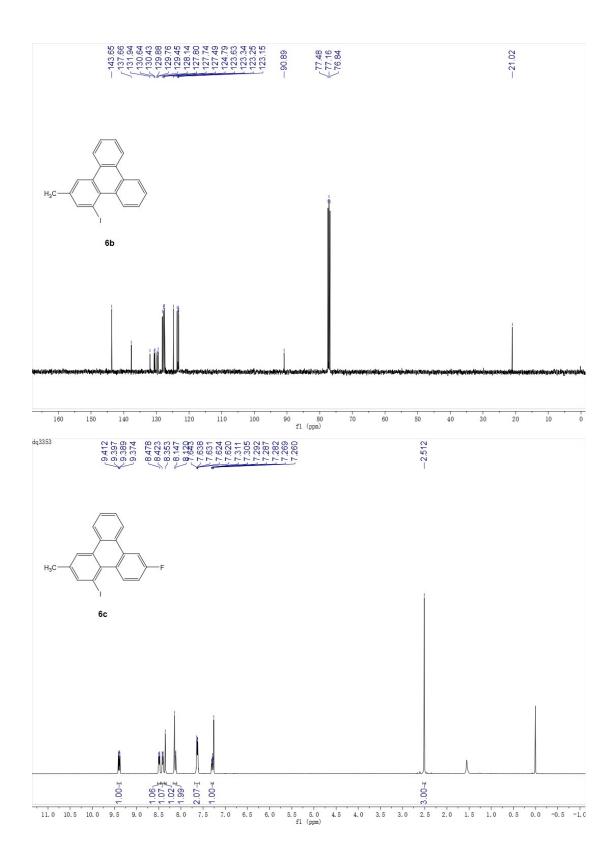


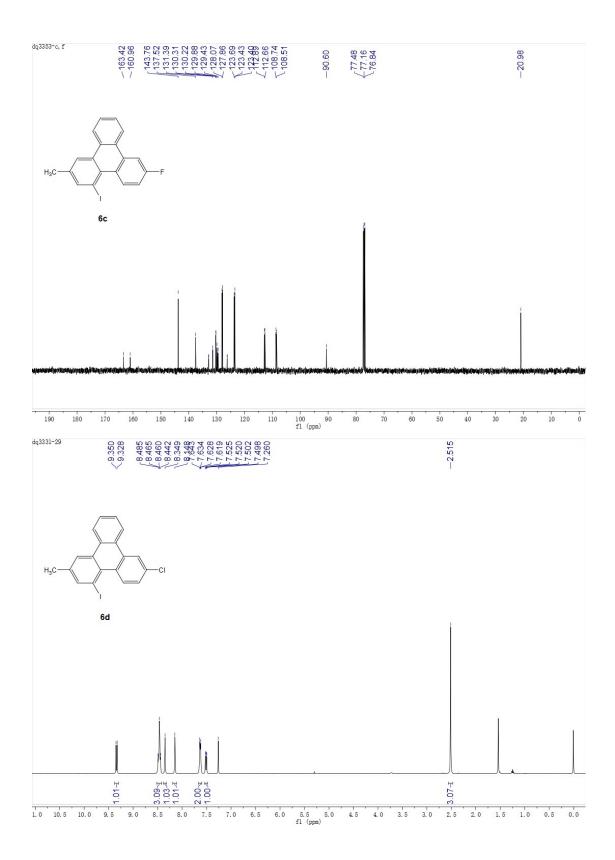


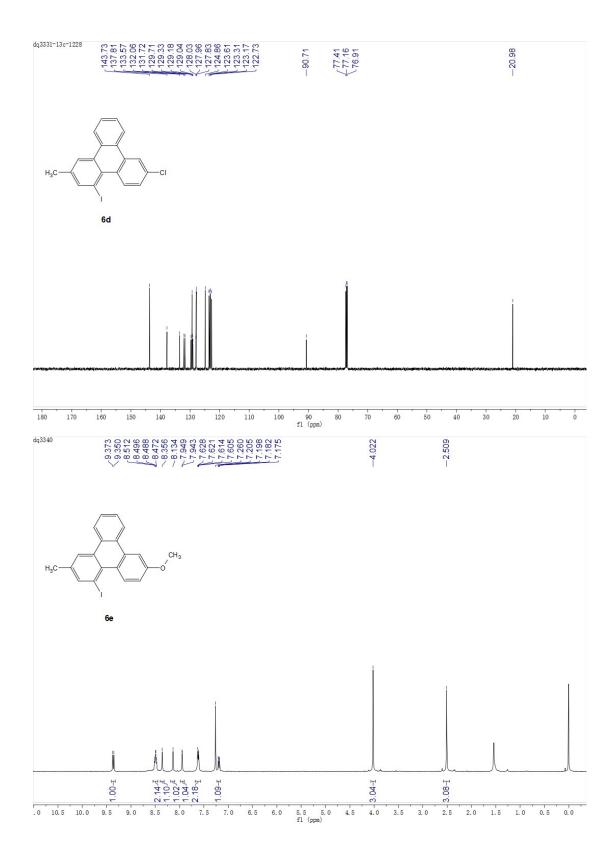


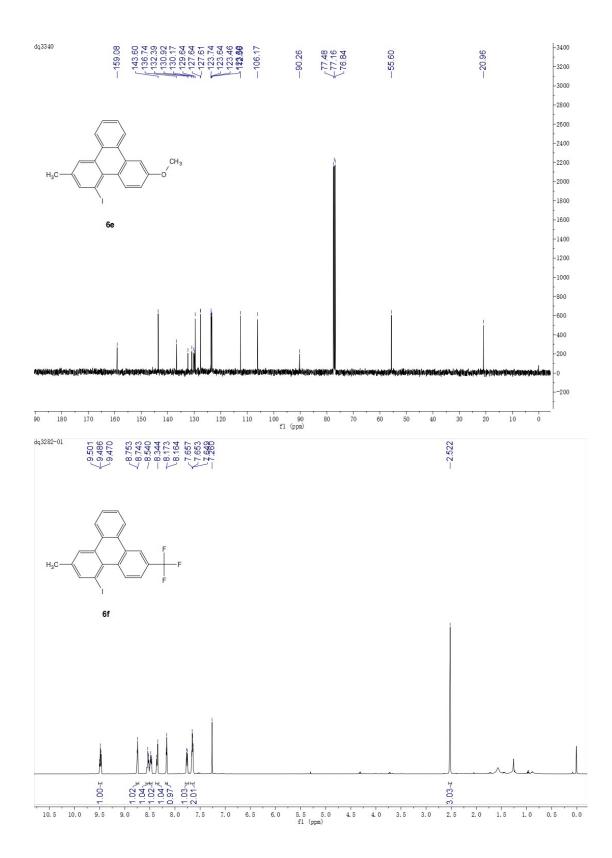


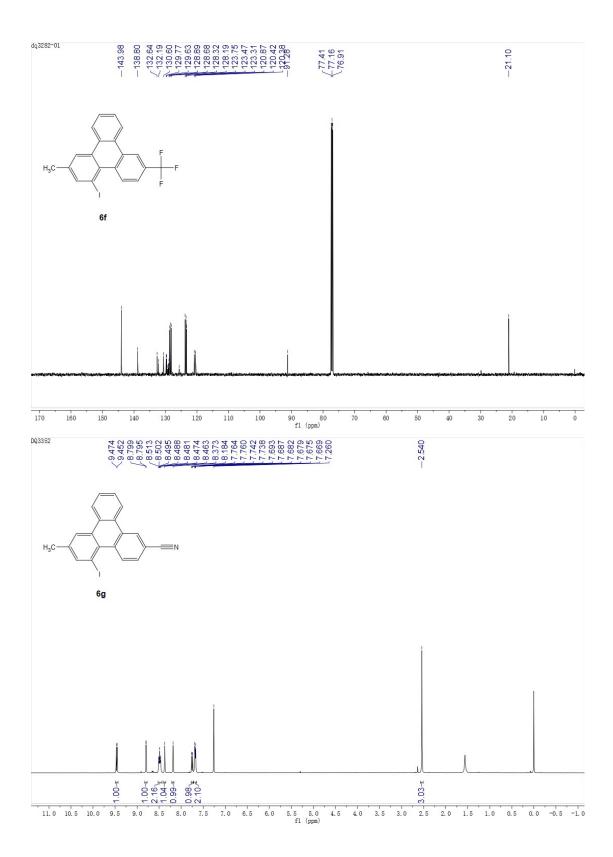


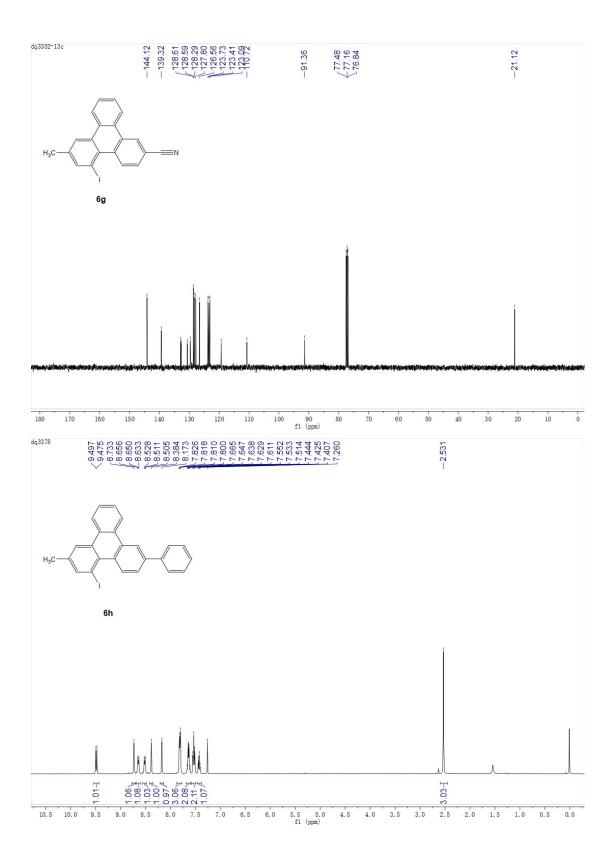


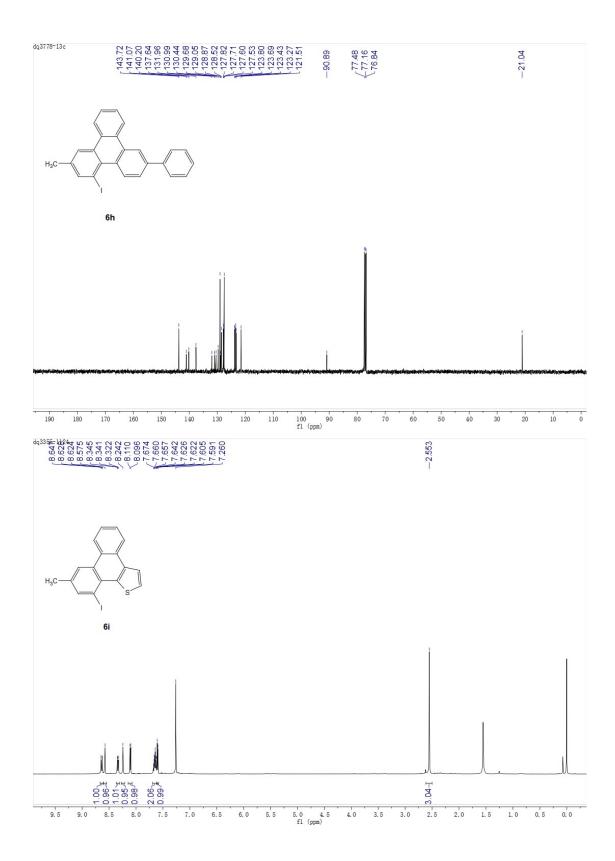


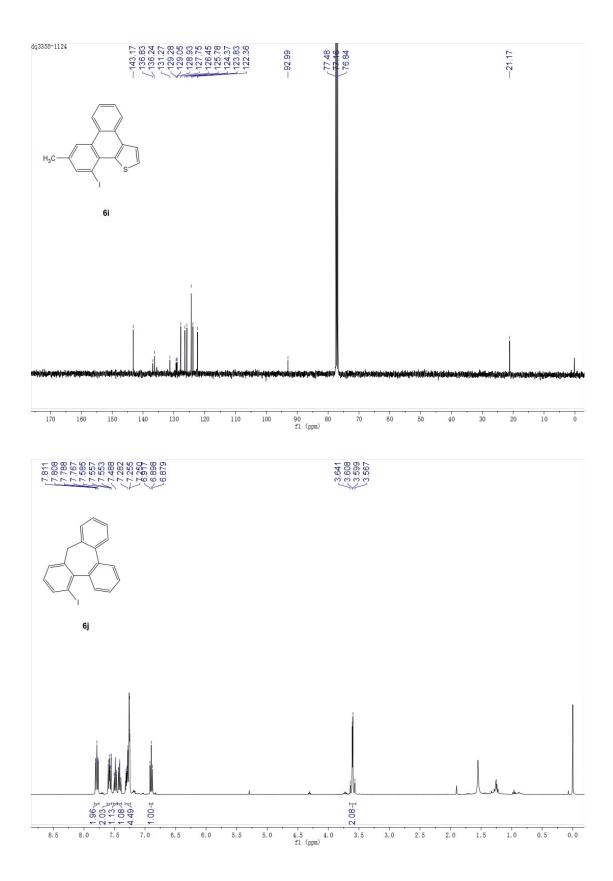


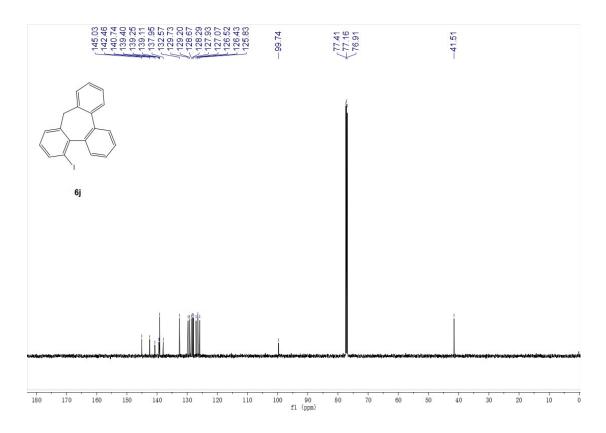


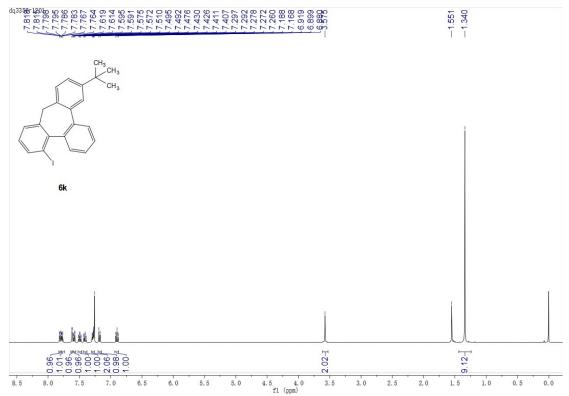


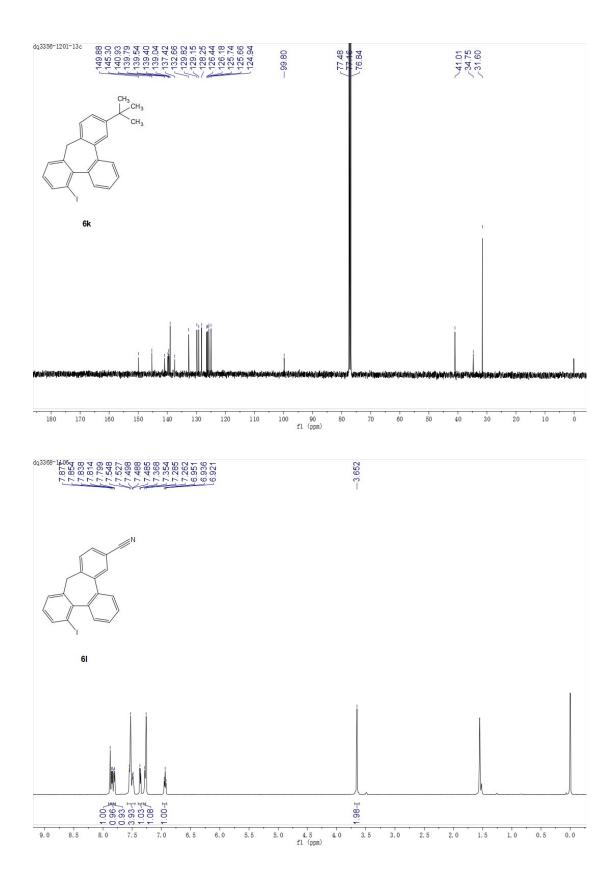


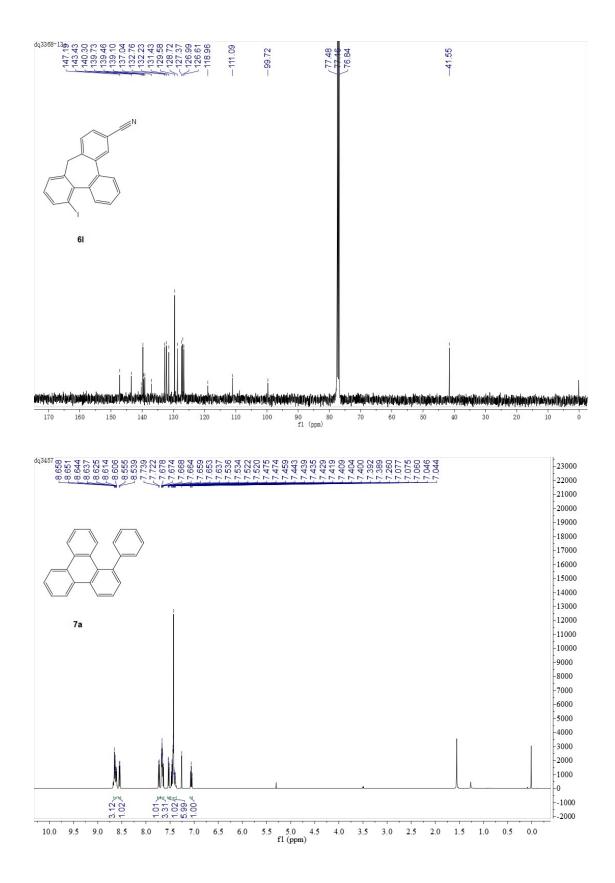


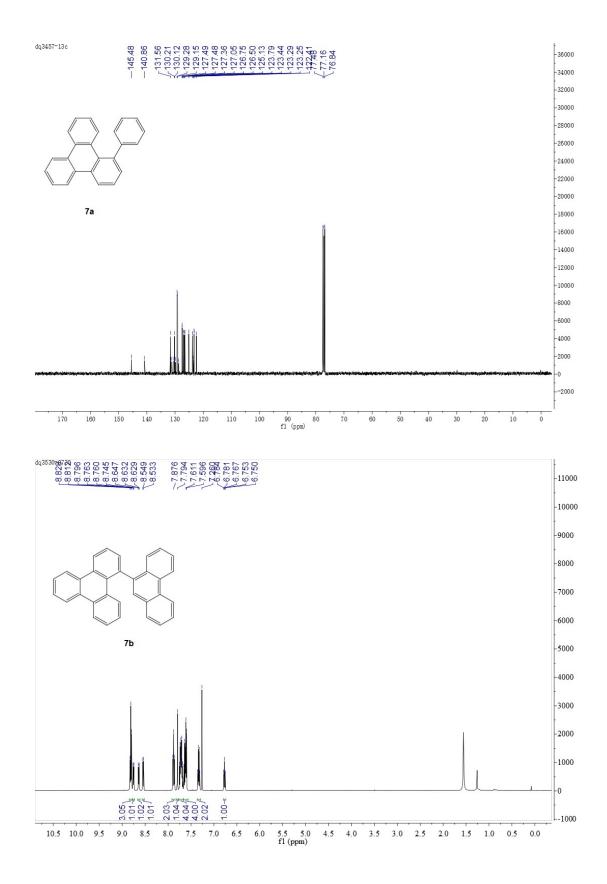


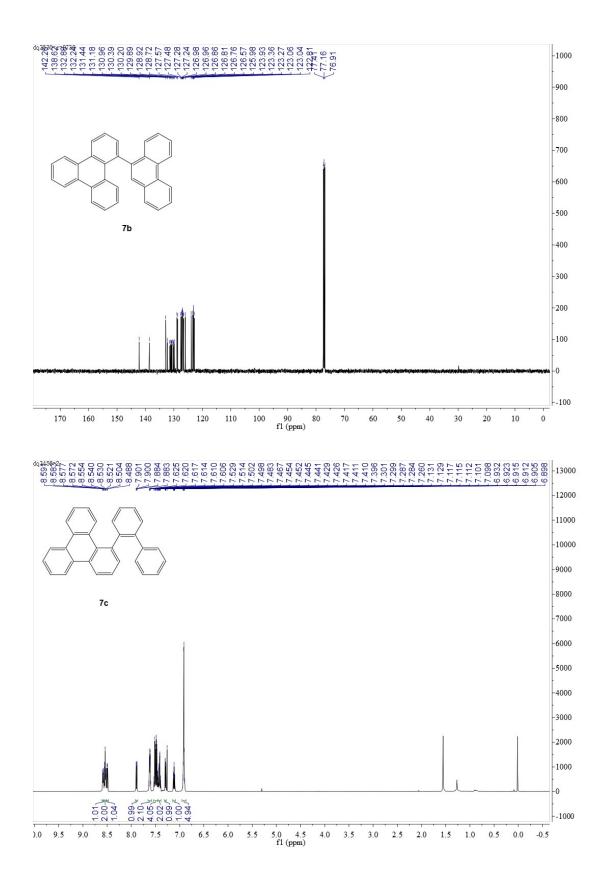


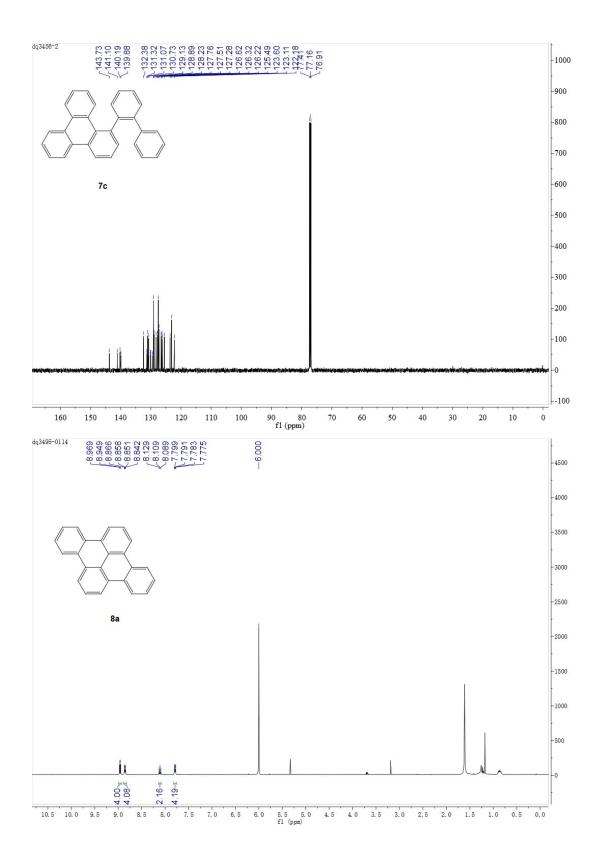


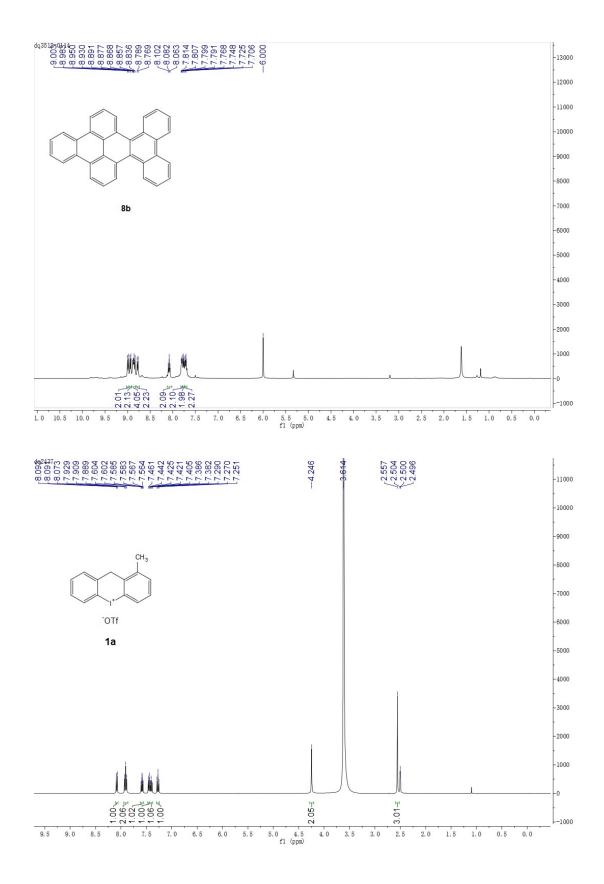


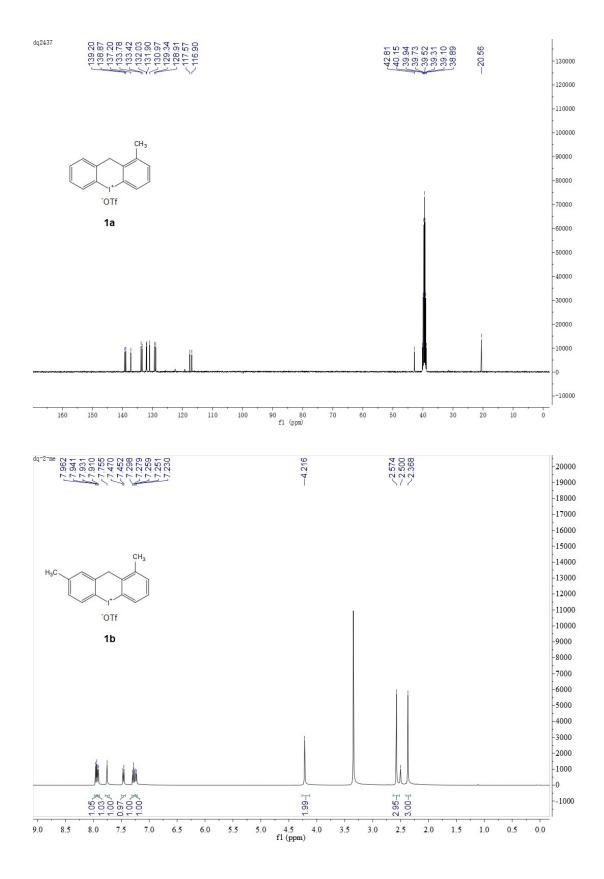


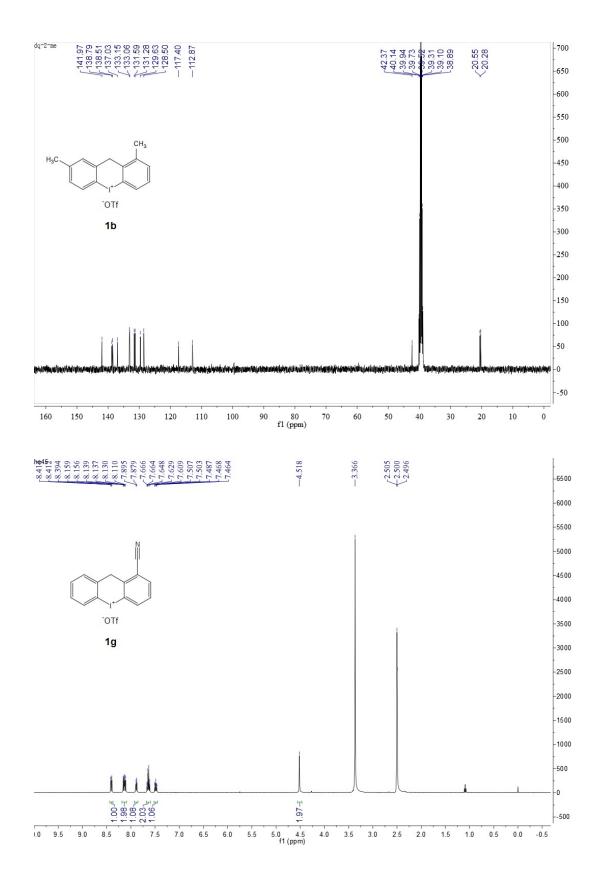


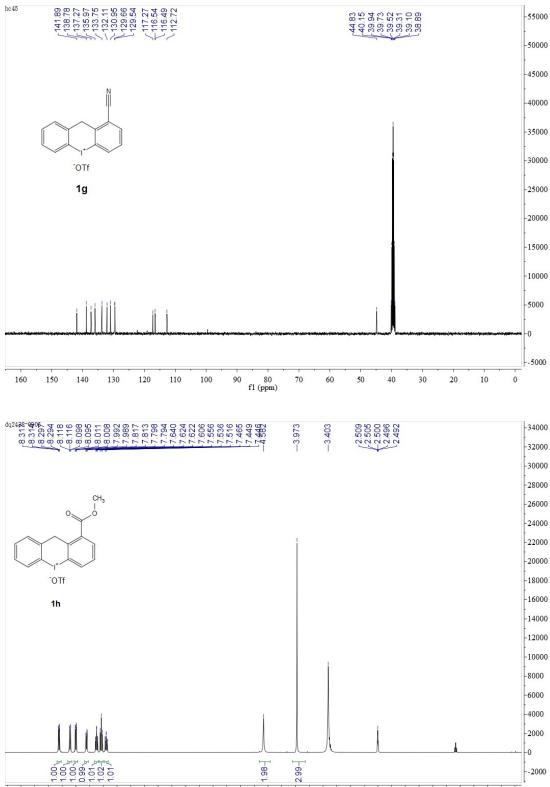






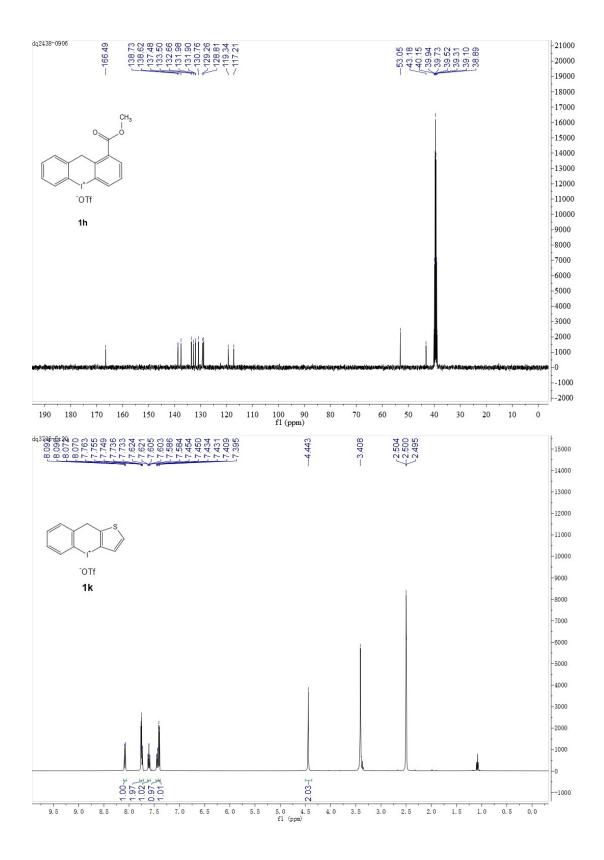


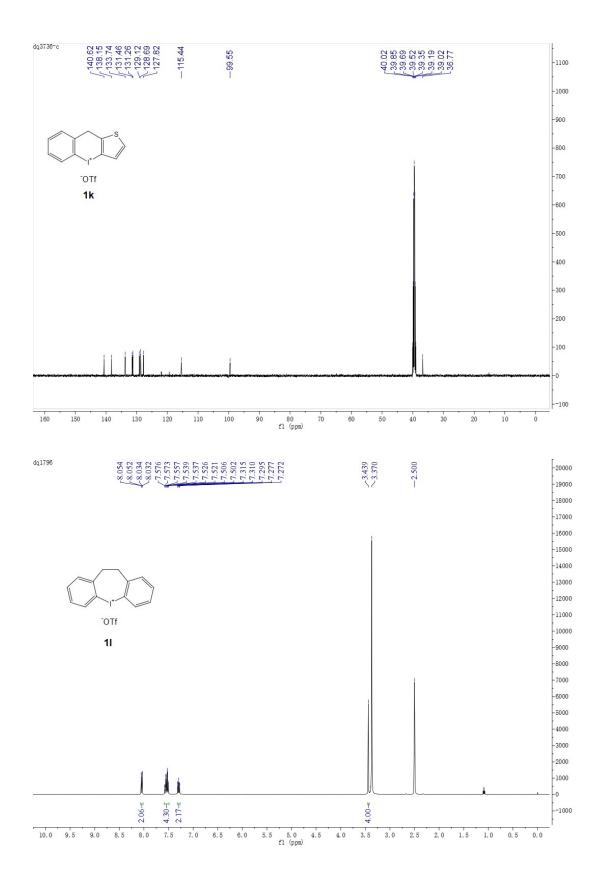


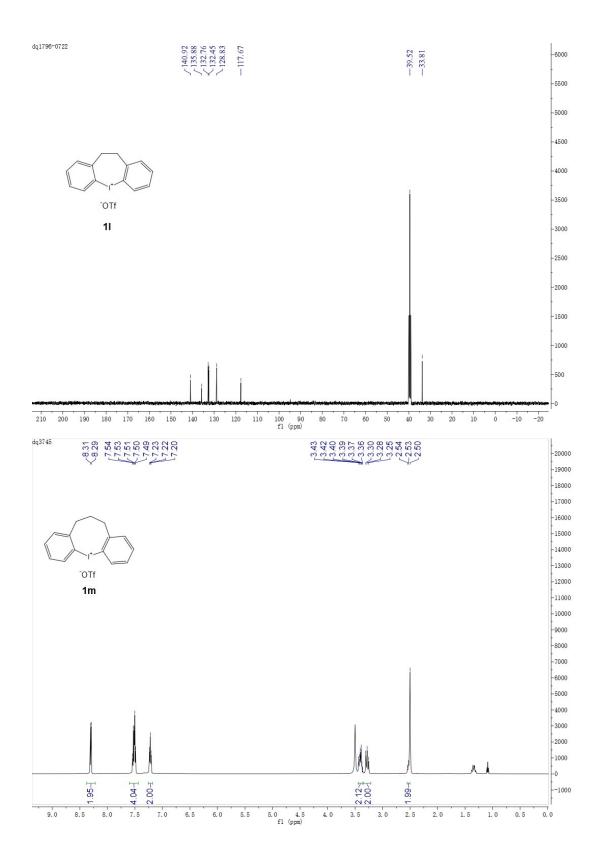


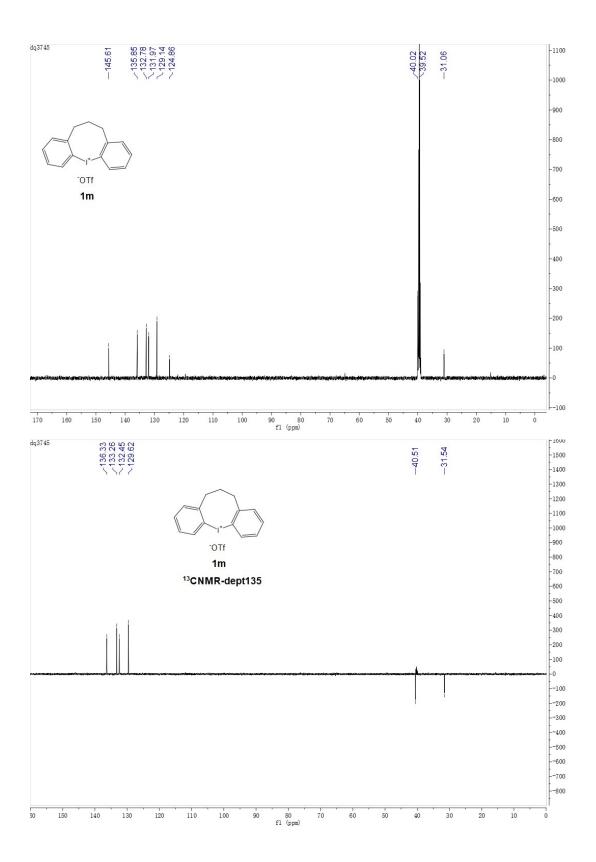
 S
 S
 O
 O

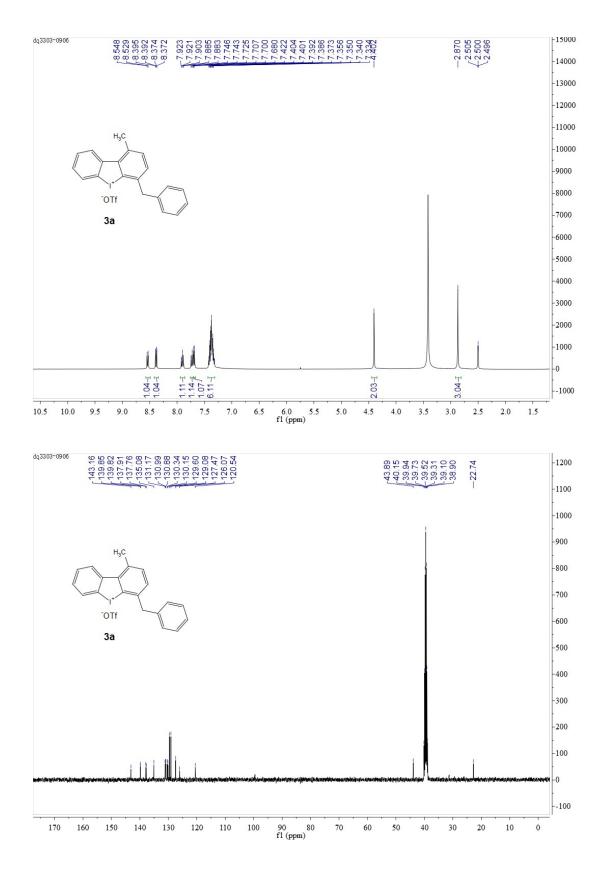
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 3.5
 3.0
 2.5
 2.0

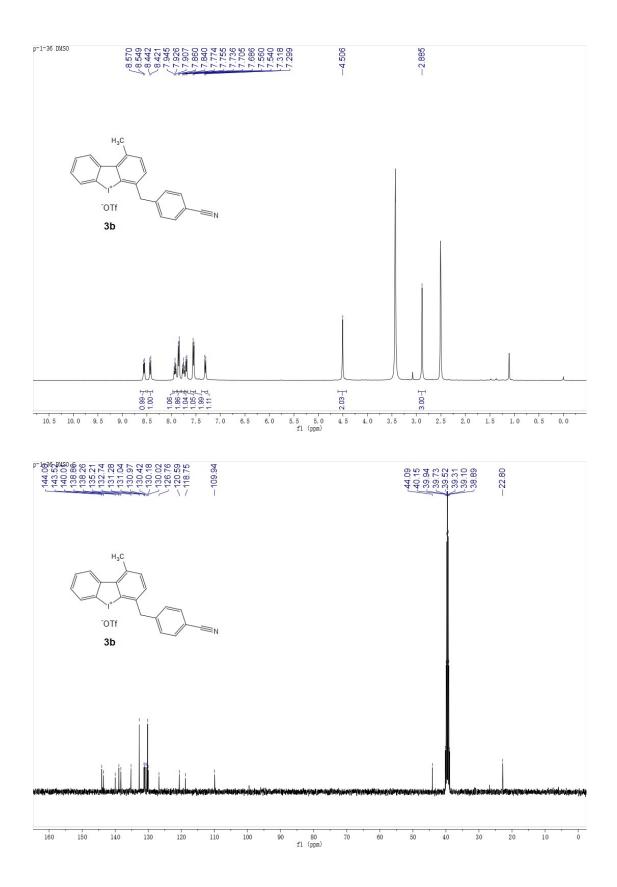

9.0

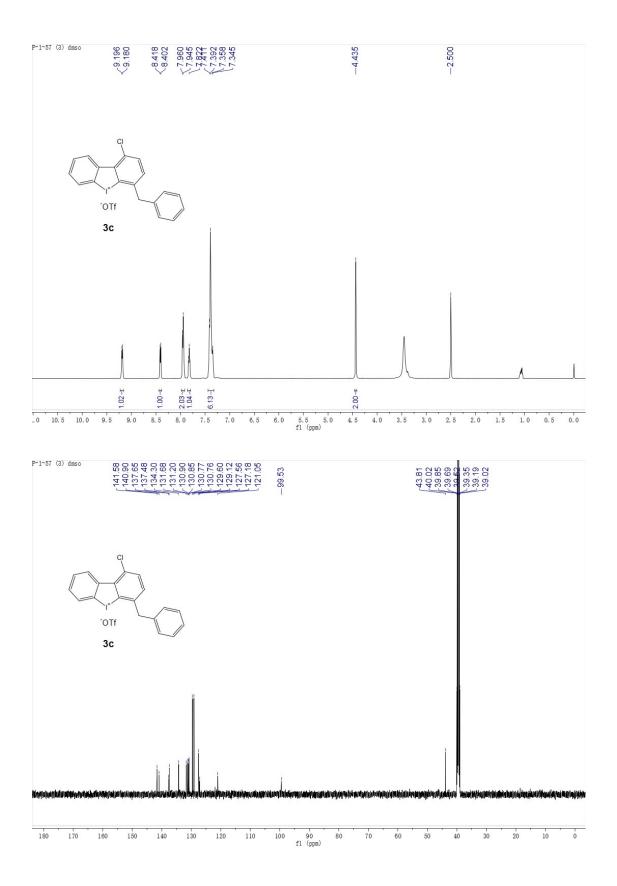

1.5

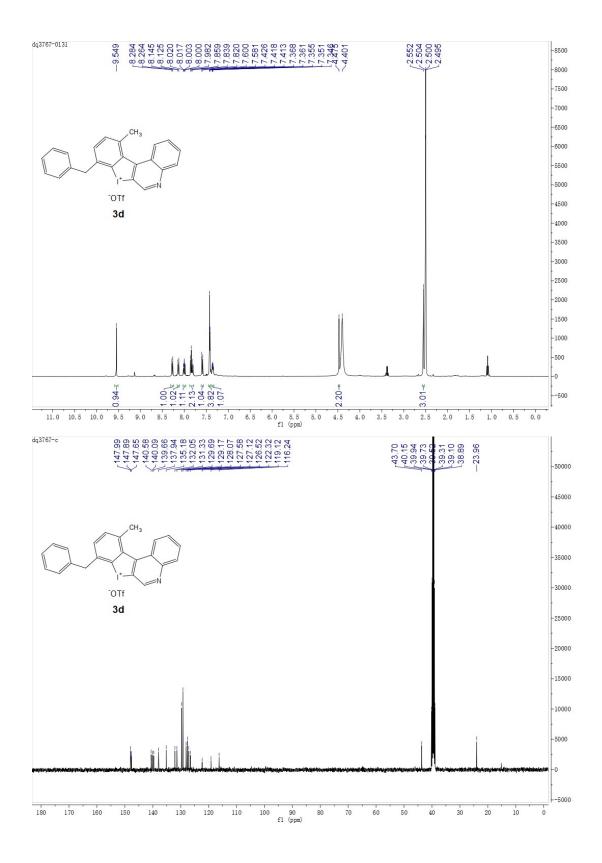

1.0

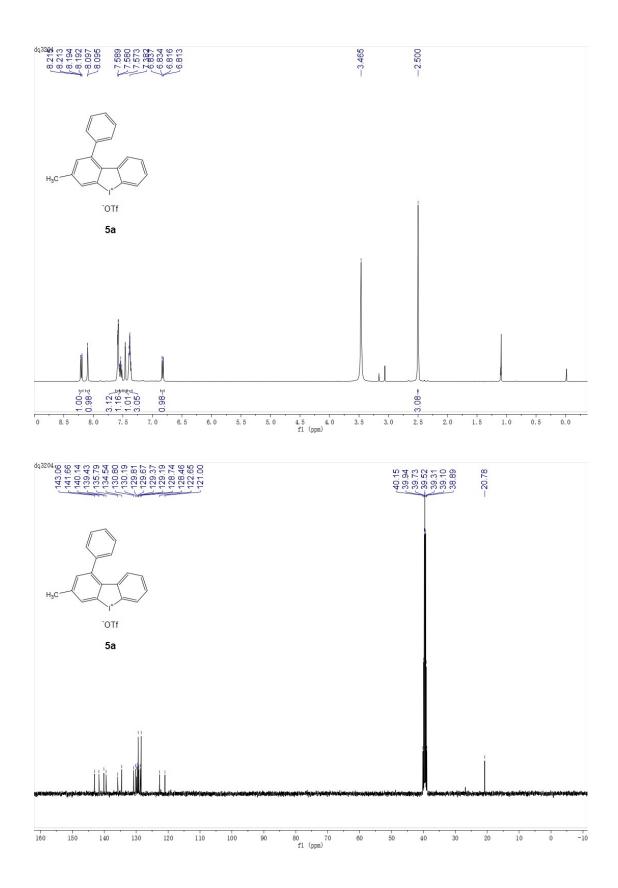

0.5

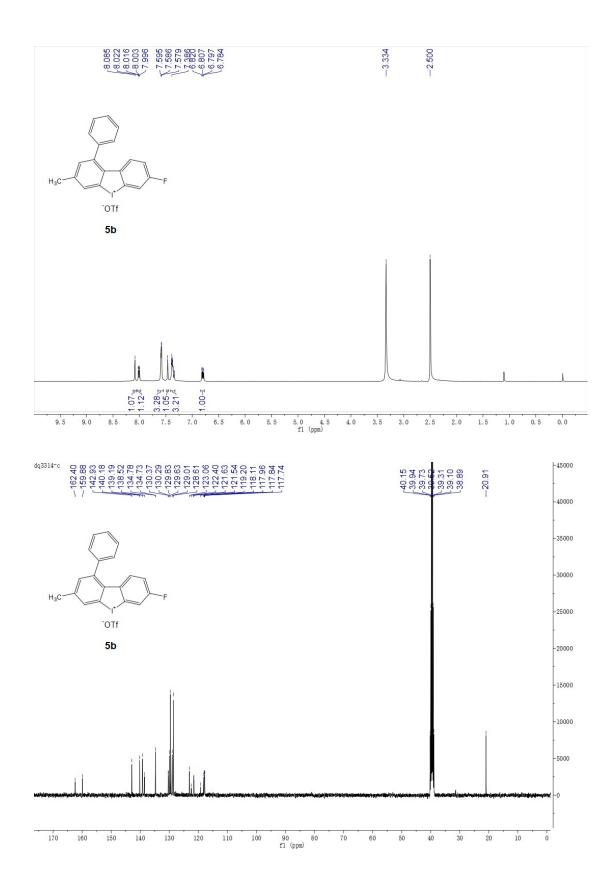

0.0

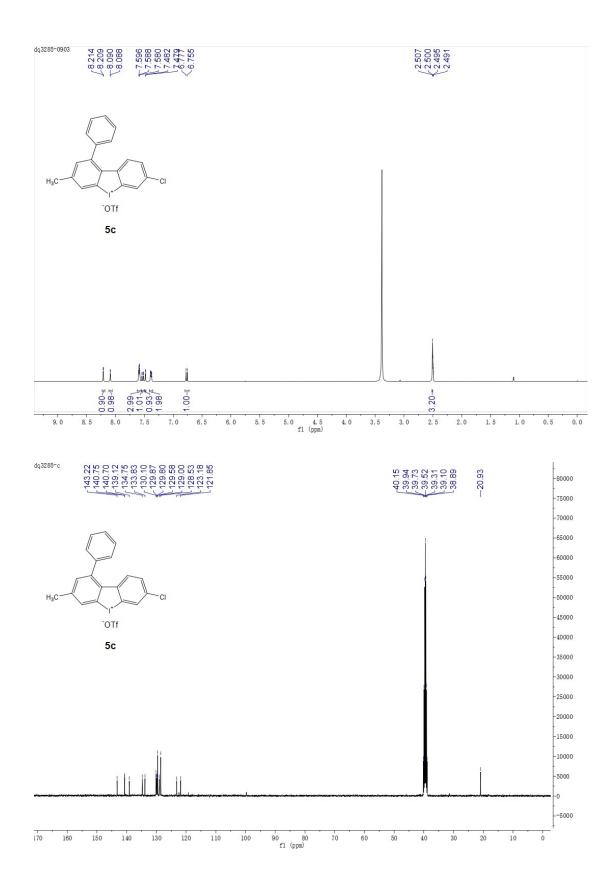


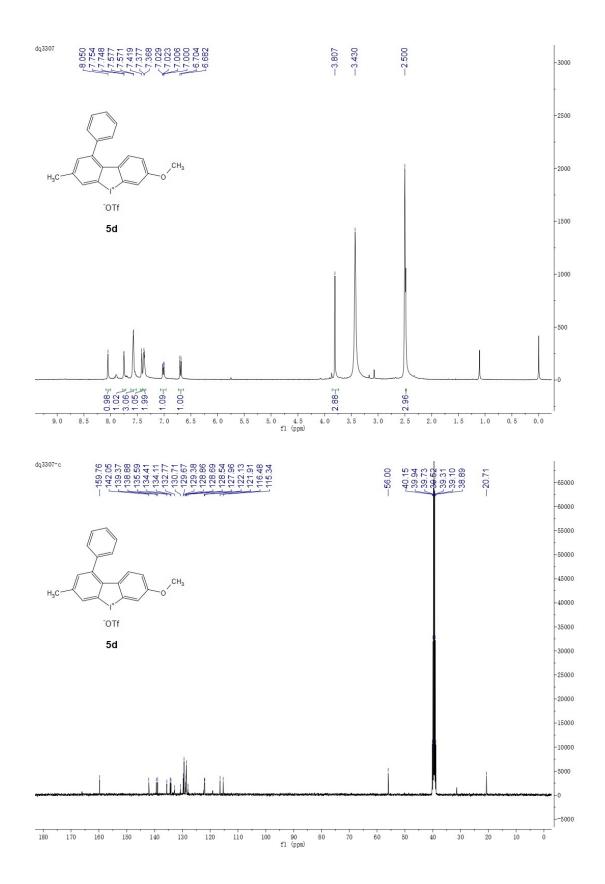


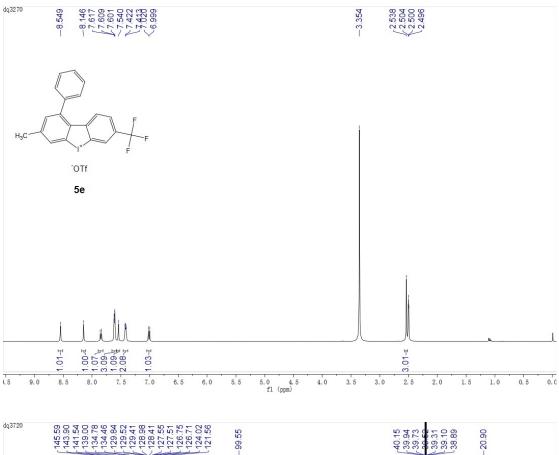


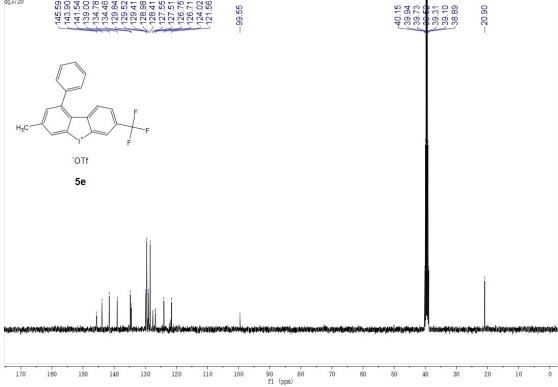


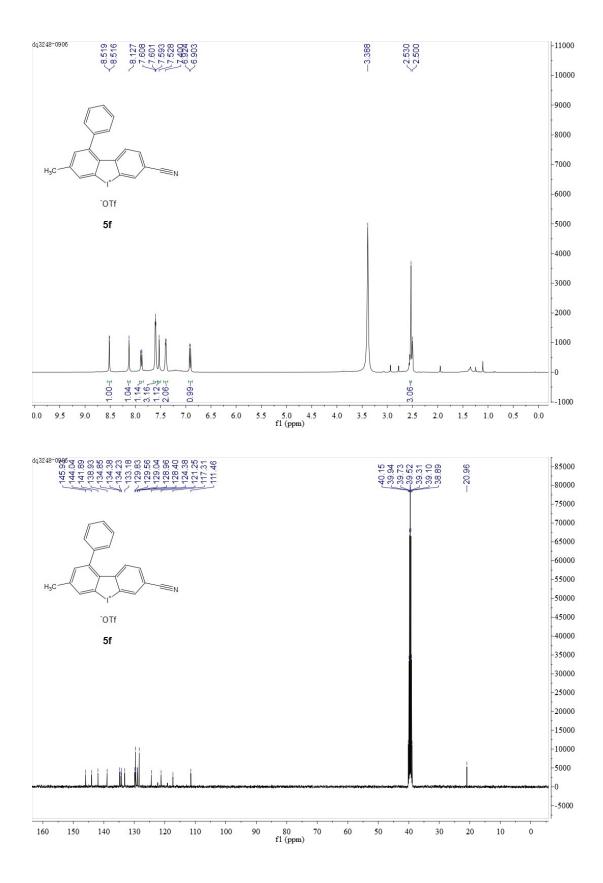


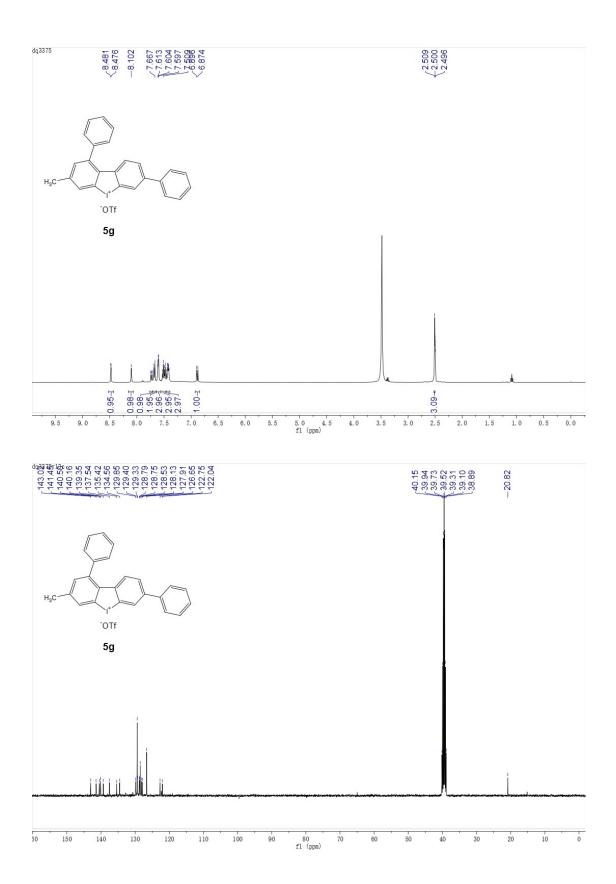




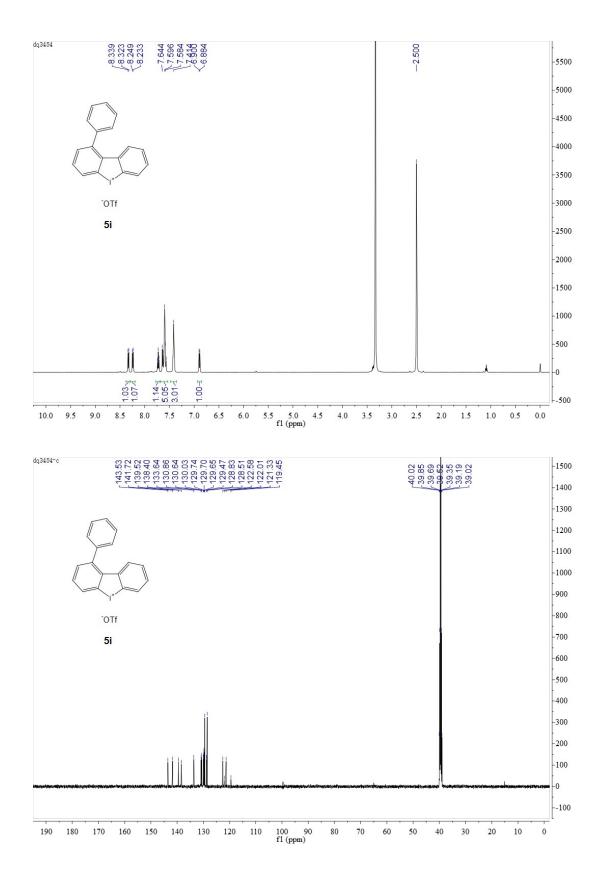


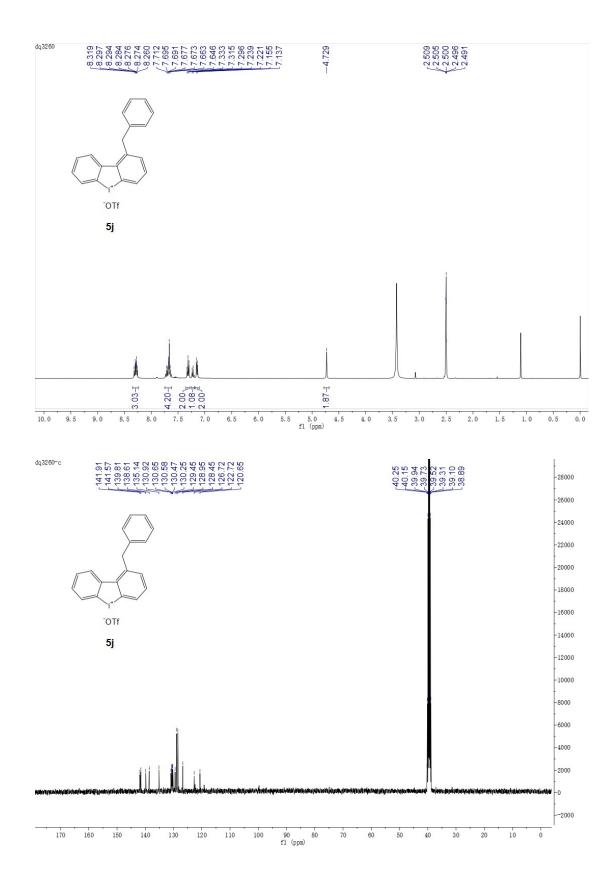


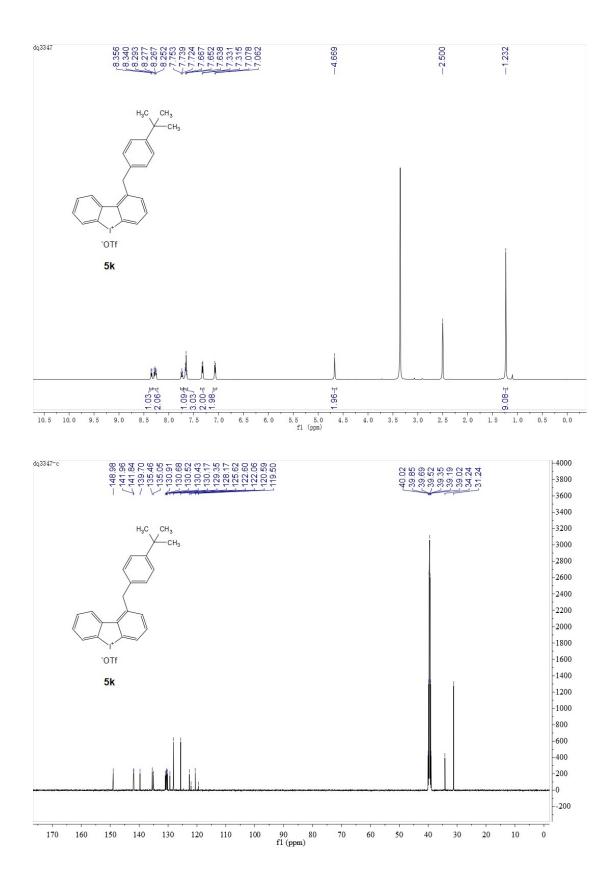

S75

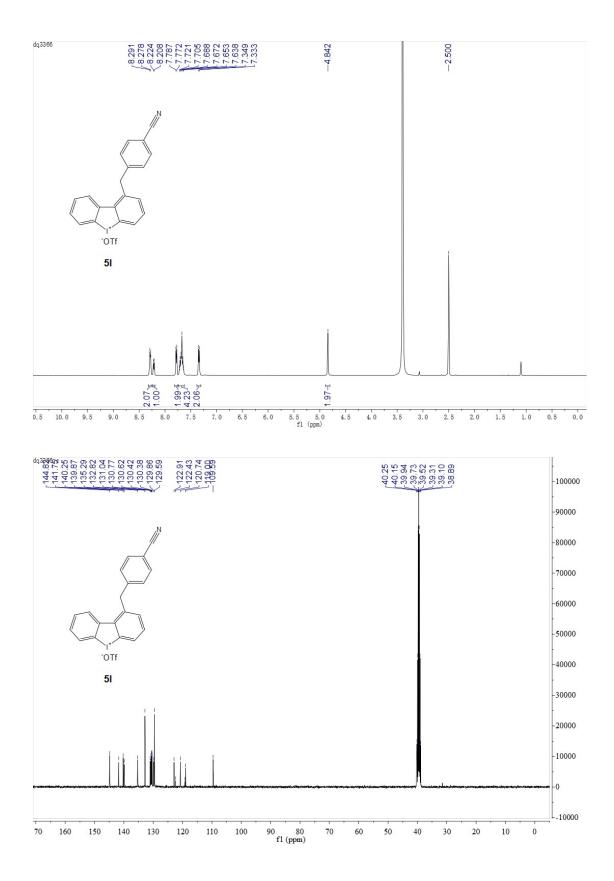


S76









S84