Supporting Information

A biomass-derived metal-free catalyst doped with phosphorus for highly efficient and selective oxidation of furfural into maleic acid Huifa Zhang^a, Shaolin Wang^b, Huixian Zhang^c, James H. Clark^d, and

Fahai Cao^a*

^a Engineering Research Centre of Large Scale Reactor Engineering and Technology of Ministry of

Education, East China University of Science and Technology, Shanghai 200237, China.

^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and

Molecular Engineering, East China Normal University, Shanghai 200062, China

^c SINOPEC North China E&P Company, Zhengzhou 450006, China.

^d Green Chemistry Centre of Excellence, University of York, York YO105DD, UK.

*Corresponding author. E-mail: fhcao@ecust.edu.cn.

Catalyst characterization

Fig. S1. XPS C1 s spectra of P-CT carbon samples synthesized with different annealing temperature.

Fig. S2 Py-IR spectra of P-C-T catalysts

								5	
				Acid si	tes (mmo	l Py/gcat)			
Catalyst	Weak		Medium		Strong		Total		Total
	В	L	В	L	В	L	В	L	B+L
P-C-500	0.04	0.04	0.11	0.04	0.01	0.00	0.16	0.08	0.24
P-C-600	0.02	0.11	0.02	0.07	0.01	0.00	0.04	0.18	0.23
P-C-700	0.03	0.13	0.02	0.03	0.01	0.00	0.06	0.16	0.22
P-C-800	0.03	0.11	0.03	0.04	0.01	0.00	0.06	0.14	0.20

Table S1	Summarized	acid	distribution	on the	P-C-T	catalysts
	Summarized	aciu	uistiibution	on the	1-0-1	catarysis

Estimated by Py-IR spectra of pyridine adsorption analysis

Fig. S3 Cycle usage of P-C-600 catalyst Reaction conditions: 60 °C, 6 h The loading of catalyst is lower than the usage in the manuscript

Fig. S4. XPS scan spectra of the spent P-C-600

1 able 52 At 5 analysis on clement contents of the spent 1 -C-000	Table S2 XPS	analysis on	element	contents	of the	spent P-C-600
---	--------------	-------------	---------	----------	--------	---------------

Entry	Catalyst	Total%			Calculated %		
		C (at.%)	P (at.%)	O (at.%)	P-C (at.%)	P-O (at.%)	
1	The spent P-C-600	73.6	5.77	20.63	0.19	5.58	

Fig. S5. XPS high-resolution P 2p spectra of the spent P-C-600

*Corresponding author. E-mail: fhcao@ecust.edu.cn

Reaction Pathways for H2O2 Oxidation of Furfural to Maleic Acid

Scheme S1. The oxidation of furfural to maleic acid via four different routes (Lou, Y.; Marinkovic, S.; Estrine, B.; Qiang, W.; Enderlin, G., Oxidation of Furfural and Furan Derivatives to Maleic Acid in the Presence of a Simple Catalyst System Based on Acetic Acid and TS-1 and Hydrogen Peroxide. ACS Omega 2020, 5 (6), 2561-2568.).