A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin-2(1H)-ones with ketones in water: A green and efficient access to (Z)-enaminones

Jun Xu, Lin Huang, Lei He, Zhigang Ni, Jiabin Shen, Xiaoling Li, Kaixian Chen, Wanmei Li,* and Pengfei Zhang*

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China. Email: liwanmei@hznu.edu.cn; pfzhang@ hznu.edu.cn.

Supporting Information

Table of contents

Ge	General Information	
1.	Experimental Section	2
2.	Mechanism Studies	5
3.	Characterization of Products	11
4.	X-ray Crystal Data for 20	30
5.	References	31
6.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	32

General Information

All reagents and deuterated solvents were commercially available and used without further purification. All products were separated by silica gel (200-300 mesh) column chromatography with petroleum ether (PE) (60-90°C) and ethyl acetate (EA). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance 500 spectrometer at ambient temperature with CDCl₃ or CD₃SOCD₃ as solvent and tetramethylsilane (TMS) as the internal standard. Melting points were determined on an X-5 Data microscopic melting point apparatus. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer. The ESR (Electron Spin Resonance) spectrum was recorded by a JES X320 (JEOL Co.).

1. Experimental Section

1.1 General procedure for the synthesis of (Z)-enaminones

To a 15 mL tube was added quinoxalin-2(1*H*)-ones (1) (0.2 mmol), ketones (2) (0.6 mmol), Amberlyst 15 (50 mg) and H₂O (3 mL). The above mixture was vigorous stirred under the irradiation of visible light (LEDs, 420 nm, 5 W) for 12 hours. After then, the resulting aqueous phase was extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford the target product.

1.2 General procedure for the gram-scale synthesis of (Z)-enaminone 3

To a 150 mL flask was added quinoxalin-2(1*H*)-one (1a) (8 mmol), acetone (2a) (24 mmol), Amberlyst 15 (2 g) and H₂O (90 mL). The above mixture was vigorous stirred under the irradiation of visible light (LEDs, 420 nm, 5 W) for 12 hours. After then, the catalyst was removed by filtration. The resulting aqueous phase was extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford target product **3**.

1.3 General procedure for the synthesis of compound 65 using (Z)-enaminone 3 as substrate

To a dried 15 mL tube was added (*Z*)-enaminone (**3**) (0.2 mmol), CH₃CN (1 mL) and TBN (1.2 equiv.). The mixture was stirred at ambient temperature for 1.5 h. After then, the reaction was quenched with saturated NaHCO₃. The mixture was extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 2:1) to afford product **65**.

1.4 General procedure for the synthesis of compound 66 using (Z)-enaminone 3 as substrate

To a dried 15 mL tube with a hydrogen balloon was added (*Z*)-enaminone (**3**) (0.2 mmol), Pd/C (10 mg) and CH₃OH (2 mL). The mixture was stirred at ambient temperature for 3 h. After then, the catalyst was removed by centrifugation. The solvent was removed directly under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford product **66**.

1.5 General procedure for the synthesis of compound 67 using (Z)-enaminone 3 as substrate

To a dried 15 mL tube was added (*Z*)-enaminone (**3**) (0.2 mmol), K_2CO_3 (0.4 mmol), CH_3I (0.4 mmol) and DMF (2 mL). The mixture was stirred at ambient temperature for 12 h. After then, the reaction was quenched with saturated NaHCO₃. The mixture was extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford product **67**.

1.6 General procedure for the synthesis of compound 68 using (Z)-enaminone 3 as substrate

To a dried 15 mL tube was added (*Z*)-enaminone (**3**) (0.2 mmol), Ag_2CO_3 (0.2 mmol), DBU (0.2 mmol) and DMSO (2 mL). The mixture was stirred at 80 °C for 6 h. After then, the reaction was quenched with saturated NaHCO₃. The mixture was extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford product **68**.

1.7 Testing of the recyclability of catalytic system.

To a 15 mL tube was added quinoxalin-2(1*H*)-one (1a) (0.2 mmol), acetone (2a) (0.6 mmol), Amberlyst 15 (50 mg) and H₂O (3 mL). The above mixture was vigorous stirred under the irradiation of visible light for 12 hours. After then, the reaction mixture was directly extracted with ethyl acetate and the collected organic layer was washed with brine, dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography (200-300 mesh silica gel, PE/EA = 3:1) to afford target product. The resulting aqueous solution containing Amberlyst 15 catalyst was reutilized to catalyse the transformation by directly adding starting materials.

1.8 The regeneration of Amberlyst 15 catalyst

After it was recycled for four times, Amberlyst 15 catalyst was first washed with ethanol, ethyl acetate and 1,2-dichloromethane continuously to remove the organic impurities. Then, the catalyst was washed with HCl (2 M), distilled water and NaOH (2 M) for three times to remove the water-soluble impurities. After that, the catalyst was immersed into HCl (2 M) for 12 h, and the resulting catalyst was washed with distilled water repeatedly until the pH value is about 7. Finally, it was dried under vacuum condition to give the regenerated Amberlyst 15 catalyst.

	N N O 1a	+ Open flask Amberlyst 15 visible light, rt solvent, air, 12 h 2a	NH O N O 3
-	entry	solvent	yield (%) ^b
	1	H ₂ O	83
	2	PEG 200	23
	3	EtOH	36
	4	MeOH	25
	5	acetone	88
	6	MeCN	85

1.9 Optimization of solvents^{*a,b*}

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Amberlyst 15 (50 mg), solvent (3 mL), visible light (LEDs, 420 nm, 5 W), open flask, rt, air, 12 h. ^b Isolated yields.

1.10 Unreactive substrates

2. Mechanism Studies

2.1 DFT calculations

	E_{T}	$\Delta E_{ m ST}$	
1a	246	1.02	
3	189	1.23	
66	324	0.63	

Table S1 $E_{\rm T}$ (kJ/mol) and $\Delta E_{\rm ST}$ (eV) of 1a, 3, and 66.

2.1.1 Computational details

The geometries of T_1 state were optimized using unrestricted M06-2X¹ (UM06-2X) with the 6-311G(d,p) basis set by setting the spin multiplicity as 3. The energies of the T_1 state were further calculated using time-dependent (TD) M06-2X. The geometries and energies of S_1 state were obtained using TD M06-2X with the 6-311G(d,p) basis set. The IEFPCM implicit solvation model² were employed in all calculations to account for the solvent effect of water.

Geometry optimizations of all intermediates were carried out at the M06-2X/6-311G(d,p) level. Vibrational frequency calculations were performed to confirm that each of the species was a local minimum (no imaginary frequencies). The solvent effect of water was considered with IEFPCM solvation model. All calculations were performed using the Gaussian 16 C.01 package.³

2.1.2 Cartesian coordinates of the optimized intermediates

Int1

broken-symmetry singlet

-			
С	4.08361600	-1.15178300	0.54997000
С	3.47629700	0.10029500	0.48220600
С	2.17444500	0.22417500	0.00560700
С	1.46507600	-0.92058600	-0.39680600
С	2.08091400	-2.16720000	-0.31959300
Ν	1.54738400	1.48390000	-0.13547400
С	0.19061100	1.60743200	-0.23983100
С	-0.59625700	0.29841200	-0.23663100
Ν	0.17813600	-0.74131600	-0.90493500
С	-1.93496800	0.49381200	-0.92742500
С	-2.86414300	-0.69150700	-0.77299900
0	-2.48364600	-1.74156600	-0.30173700
С	-4.28553400	-0.48415000	-1.22045500
0	-0.37194800	2.68602900	-0.29567900
С	3.38768200	-2.28313500	0.14402800
С	2.35707700	2.69504800	-0.05811600
Н	5.09784100	-1.23308000	0.91964000
Н	4.02354500	0.97804100	0.79927800
Н	1.52785800	-3.04494100	-0.63543000
Н	-0.77032800	0.04371200	0.82238400
Н	-0.35153800	-1.60546700	-0.93705500

Н	-2.42842500	1.38831800	-0.54194000
Н	-1.77769700	0.66336000	-1.99875200
Н	-4.77815300	0.18589300	-0.50991000
Н	-4.31348700	0.00070000	-2.19799200
Н	-4.81268600	-1.43532100	-1.24901000
Н	3.85348400	-3.25963800	0.19315900
Н	3.23330300	2.58652700	-0.69710000
Н	1.75141500	3.52770800	-0.40085900
Н	2.67916400	2.88505800	0.96842400
0	-3.30061800	0.39824200	1.88815100
0	-2.87151900	-0.49318500	2.54530200

Int2

broken-symmetry singlet

2			
С	4.34130900	-0.37038100	0.43432200
С	3.43356600	0.66636300	0.24618400
С	2.09483400	0.39116600	-0.03990900
С	1.68930300	-0.95311600	-0.14023200
С	2.60449000	-1.98699200	0.05288000
Ν	1.14561700	1.40584000	-0.21248300
С	-0.18036100	1.12883500	-0.50939700
С	-0.55606900	-0.22687000	-0.64518600
Ν	0.36730900	-1.21314700	-0.44358900
С	-1.93199300	-0.61885000	-1.05600600
С	-2.65934500	-1.51810800	-0.05791500
0	-2.04928300	-2.23142600	0.70364400
С	-4.16036300	-1.50353100	-0.13759600
0	-0.98914600	2.08401300	-0.66261300
С	3.92929300	-1.69626200	0.34159800
С	1.56347200	2.79450900	-0.06426600
Н	5.37420500	-0.13445800	0.65615100
Н	3.77234500	1.68934800	0.32650200
Н	2.26312800	-3.01220700	-0.03065900
Н	-2.28056700	2.05784800	0.06090000
Н	0.02960500	-2.16539300	-0.37866800
Н	-2.52639300	0.26822500	-1.26751600
Н	-1.89463600	-1.19796700	-1.99031700
Н	-4.51863200	-0.52965900	0.20430300
Н	-4.47933700	-1.62701100	-1.17525100
Н	-4.57690200	-2.29291600	0.48445900
Н	4.63623600	-2.50223900	0.49044500
Н	2.32314400	3.04038400	-0.80888500
Н	0.69364400	3.42393600	-0.21078600
Н	1.97184600	2.95750900	0.93501300
0	-2.88760000	0.93254500	1.40620000

0	-3 12234400	1 96926500	0 64651300
0	5.12251100	1.90920300	0.01051500

Int3

closed-shell singlet

crobed blieff blight			
С	4.26666200	-0.51408700	0.32112300
С	3.42144700	0.53550700	-0.01248800
С	2.04766600	0.31876500	-0.13250400
С	1.53815600	-0.96733500	0.08715600
С	2.39239200	-2.01717800	0.42244300
Ν	1.15560100	1.35565000	-0.46532700
С	-0.18570900	1.17362100	-0.59103600
С	-0.71302800	-0.21538500	-0.36609200
Ν	0.17598600	-1.17517900	-0.03728400
С	-2.05685900	-0.43686800	-0.50269100
С	-2.65037500	-1.74589900	-0.31505800
0	-1.98933300	-2.73999200	-0.00917700
С	-4.14296600	-1.84648400	-0.51269700
0	-0.95072000	2.08550600	-0.88290800
С	3.75395300	-1.79074100	0.53899200
С	1.69374300	2.69988000	-0.68112200
Н	5.32941000	-0.32991000	0.41020900
Н	3.83599700	1.51952500	-0.17768100
Н	1.97324700	-3.00267900	0.58730700
Н	-2.38502800	2.45337900	0.17501300
Н	-0.22527100	-2.10355000	0.10351900
Н	-2.39632000	0.74212000	1.65545400
Н	-2.68354700	0.39510700	-0.78792400
Н	-4.65500900	-1.14205100	0.14692800
Н	-4.39871700	-1.57575300	-1.53988800
Н	-4.47599200	-2.86102400	-0.30465800
Н	4.41364500	-2.60849000	0.79902600
Н	2.40204300	2.68358300	-1.50973600
Н	0.86765400	3.35986400	-0.91765900
Н	2.19411700	3.04394300	0.22427400
0	-2.21118800	1.66830600	1.86621400
0	-3.01223900	2.36116300	0.91561300

2.2 Determination of singlet oxygen in the reaction

Magnetic Field [mT]

Scheme S1 ESR spectra of ¹O₂ triggerred by starting material 1

Magnetic Field [mT]

Scheme S2 ESR spectra of ¹O₂ triggerred by product 3

Magnetic Field [mT]

Scheme S3 ESR spectra of ¹O₂ triggerred by intermediate 66

2.3 Determination of superoxide radical anion in the reaction

Scheme S4 ESR spectra of superoxide radical anion

A mixture of intermediate **66** (100 mM) and DMPO (50 mM) in acetone (40 uL) was transferred in a capillary tube, then the capillary tube was transferred to a ESR sample tube, the ESR signal was recorded in dark (**a**); then the tube was irradiated with a 420 nm LED (5 W), then the spectrum was recorded in 2 min (**b**) and 4 min (**c**) separately. A four signal was recorded, with g = 2.0034, $A_N = 1.36$ mT, $A_H = 1.28$ mT, which was coincident with superoxide radical.

2.4 UV-vis absorption spectroscopic measurements

The UV-vis absorption spectrum of **1a**, **3** and **66** was recorded respectively. The sample was prepared by mixing compounds **1a**, **3** or **66** with acetone. The reaction mixture was stirred for 10 min, and the reaction mixture was filtered with a filter. The resulted solution was stored in a light path quartz fluorescence cuvette, and UV-vis absorption spectrum was recorded.

Scheme S5 UV-vis absorption spectroscopy of 1a

Scheme S6 UV-vis absorption spectroscopy of 3

Scheme S7 UV-vis absorption spectroscopy of 66

3. Characterization of Products

(Z)-1-methyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (3)

Obtained as a yellow solid (36 mg, 83% yield); M.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.32 (s, 1H), 7.19 – 7.15 (m, 3H), 7.13 (dd, J = 5.3, 2.5 Hz, 1H), 6.27 (s, 1H), 3.63 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 156.2, 142.7, 128.0, 125.3, 124.3, 123.6, 116.2, 114.4, 94.5, 30.0, 29.8; HRMS (ESI+): Calculated for C₁₂H₁₂N₂O₂Na: [M + Na]⁺ 217.0972, Found 217.0973.

(Z)-1-ethyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (4)

Obtained as a yellow solid (39 mg, 85% yield); M.p. 158-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.26 (s, 1H), 7.08 (d, J = 10.5 Hz, 4H), 6.18 (s, 1H), 4.17 (dd, J = 13.7, 6.7 Hz, 2H), 2.19 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 155.7, 142.9, 126.8, 125.5, 124.1, 123.7, 116.6, 114.2, 94.2, 37.9, 30.0, 12.2; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O₂Na: [M + Na]⁺ 253.0947, Found 253.0951.

(Z)-1-butyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (5)

Obtained as a yellow solid (40 mg, 77% yield); M.p. 165-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.26 (s, 1H), 7.07 (s, 4H), 6.18 (s, 1H), 4.13 – 4.07 (m, 2H), 2.20 (s, 3H), 1.68 – 1.62 (m, 2H), 1.40 (dd, J = 15.0, 7.5 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.6, 155.9, 142.9, 127.2, 125.5, 124.1, 123.7, 116.6, 114.4, 94.3, 42.6, 29.9, 29.1, 20.2, 13.8; HRMS (ESI+): Calculated for C₁₅H₁₈N₂O₂Na: [M + Na]⁺ 281.1260, Found 281.1257.

(Z)-1-isobutyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (6)

Obtained as a yellow solid (41 mg, 79% yield); M.p. 149-150 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.27 (s, 1H), 7.05 (s, 4H), 6.18 (s, 1H), 3.99 (d, J = 7.0 Hz, 2H), 2.19 (s, 3H), 2.14 (dd, J = 13.7, 6.9 Hz, 1H), 0.92 (d, J = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 156.4, 142.8, 127.4, 125.4, 124.1,

123.5, 116.6, 114.8, 94.5, 49.3, 29.9, 27.0, 20.2; HRMS (ESI+): Calculated for $C_{15}H_{18}N_2O_2Na$: [M + Na]⁺ 281.1260, Found 281.1264.

(Z)-1-(cyclopropylmethyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (7)

Obtained as a yellow solid (40 mg, 78% yield); M.p. 189-190 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.37 (s, 1H), 7.31 – 7.28 (m, 1H), 7.16 (dd, J = 6.4, 3.3 Hz, 3H), 6.26 (s, 1H), 4.13 (d, J = 6.9 Hz, 2H), 2.27 (s, 3H), 1.28 (dd, J = 9.9, 4.2 Hz, 1H), 0.56 (dd, J = 4.4, 3.1 Hz, 2H), 0.54 (d, J = 2.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 156.3, 143.0, 127.4, 125.5, 124.1, 123.6, 116.6, 114.7, 94.4, 46.6, 30.0, 9.5, 4.1; HRMS (ESI+): Calculated for C₁₅H₁₆N₂O₂Na: [M + Na]⁺ 257.1285, Found 257.1288.

(Z)-1-(cyclohexylmethyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (8)

Obtained as a yellow solid (47 mg, 79% yield); M.p. 182-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.36 (s, 1H), 7.14 (s, 4H), 6.26 (s, 1H), 4.08 (d, J = 6.7 Hz, 2H), 2.26 (s, 3H), 1.89 – 1.84 (m, 1H), 1.74 (d, J = 2.7 Hz, 2H), 1.67 (d, J = 15.0 Hz, 3H), 1.20 – 1.15 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 156.4, 142.8, 127.5, 125.5, 124.0, 123.5, 116.6, 114.9, 94.4, 48.4, 36.3, 30.9, 30.0, 26.2, 25.8; HRMS (ESI+): Calculated for C₁₈H₂₂N₂O₂Na: [M + Na]⁺ 321.1573, Found 321.1571.

Methyl (Z)-2-(2-oxo-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-1(2H)-yl)acetate (9)

Obtained as a yellow solid (41 mg, 75% yield); M.p. 197-198 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.24 (s, 1H), 7.16 (dd, J = 12.6, 5.2 Hz, 2H), 7.11 (dd, J = 8.3, 6.5 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.28 (s, 1H), 4.96 (s, 2H), 3.78 (s, 3H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 167.7, 156.4, 142.1, 127.0, 125.5, 124.7, 123.7, 116.6, 113.8, 95.0, 52.9, 44.0, 30.0; HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₄Na: [M + Na]⁺ 297.0846, Found 297.0850.

Tert-butyl (Z)-2-(2-oxo-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-1(2H)-yl)acetate (10)

Obtained as a yellow solid (46 mg, 73% yield); M.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.25 (s, 1H), 7.15 (t, J = 4.8 Hz, 2H), 7.13 – 7.09 (m, 1H), 6.91 (d, J = 7.9 Hz, 1H), 6.28 (s, 1H), 4.85 (s, 2H), 2.27 (s, 3H), 1.46 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 166.2, 156.4, 142.3, 127.2, 125.4, 124.5, 123.6, 116.5, 113.9, 94.9, 83.1, 44.7, 30.1, 28.0; HRMS (ESI+): Calculated for C₁₇H₂₀N₂O₄Na: [M + Na]⁺ 339.1315, Found 339.1309.

(Z)-1-(3,3-dimethyl-2-oxobutyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (11)

Obtained as a yellow solid (44 mg, 73% yield); M.p. 162-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.28 (s, 1H), 7.13 (d, J = 4.2 Hz, 2H), 7.09 – 7.04 (m, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.22 (s, 1H), 5.17 (s, 2H), 2.26 (s, 3H), 1.35 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 206.6, 198.9, 156.4, 142.3, 127.4, 125.4, 124.4, 123.5, 116.6, 113.7, 94.6, 47.5, 43.8, 30.0, 26.5; HRMS (ESI+): Calculated for C₁₇H₂₀N₂O₃Na: [M + Na]⁺ 301.1547, Found 301.1543.

(Z)-1-(2-oxo-2-phenylethyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (12)

Obtained as a yellow solid (48 mg, 75% yield); M.p. 177-178 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.31 (s, 1H), 8.07 (d, J = 7.6 Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H), 7.14 (q, J = 7.8 Hz, 2H), 7.03 (t, J = 8.4 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.28 (s, 1H), 5.66 (s, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 191.1, 156.6, 142.3, 134.6, 134.3, 129.1, 128.2, 127.3, 125.5, 124.5, 123.6, 116.6, 114.2, 94.8, 49.0, 30.1; HRMS (ESI+): Calculated for C₁₉H₁₆N₂O₃Na: [M + Na]⁺ 343.1053, Found 343.1051.

(Z)-1-allyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (13)

Obtained as a yellow solid (34 mg, 70% yield); M.p. 163-164 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.32 (s, 1H), 7.19 – 7.19 (m, 4H), 6.28 (s, 1H), 6.00 – 5.84 (m, 1H), 5.25 (dd, J = 25.1, 13.8 Hz, 2H), 4.83 (d, J = 4.1 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 156.0, 142.6, 130.6, 127.1, 125.4, 124.3, 123.5, 118.0, 116.4, 115.0, 94.5, 45.1, 30.0; HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₂Na: [M + Na]⁺ 265.0947, Found 265.0934.

(Z)-3-(2-oxopropylidene)-1-phenyl-3,4-dihydroquinoxalin-2(1H)-one (14)

Obtained as a yellow solid (33 mg, 59% yield); M.p. 135-136 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.36 (s, 1H), 7.61 (t, J = 7.7 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.29 (d, J = 7.5 Hz, 2H), 7.18 – 7.11 (m, 2H), 6.93 (t, J = 7.7 Hz, 1H), 6.46 (d, J = 8.3 Hz, 1H), 6.30 (s, 1H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.1, 156.2, 143.1, 136.3, 130.3, 129.4, 129.2, 128.4, 125.2, 124.4, 123.2, 116.3, 116.0, 94.8, 30.1; HRMS (ESI+): Calculated for C₁₇H₁₄N₂O₂Na: [M + Na]⁺ 301.0947, Found 301.0925.

(Z)-1-benzyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (15)

Obtained as a yellow solid (44 mg, 75% yield); M.p. 132-133 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.27 (s, 1H), 7.23 (d, J = 7.1 Hz, 2H), 7.18 (t, J = 6.2 Hz, 3H), 7.02 (dd, J = 13.3, 7.2 Hz, 3H), 6.93 (dd, J = 10.6, 4.3 Hz, 1H), 6.26 (s, 1H), 5.34 (s, 2H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 156.6, 142.6, 135.2, 129.0, 127.7, 127.2, 126.7, 125.5, 124.4, 123.6, 116.4, 115.3, 94.8, 46.5, 30.0; HRMS (ESI+): Calculated for C₁₈H₁₆N₂O₂Na: [M + Na]⁺ 315.1104, Found 315.1108.

(Z)-1-(4-methylbenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (16)

Obtained as a yellow solid (47 mg, 77% yield); M.p. 139-140 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 7.13 (dt, *J* = 15.3, 7.7 Hz, 7H), 7.04 – 6.98 (m, 1H), 6.34 (s, 1H), 5.38 (s, 2H), 2.31 (s, 3H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 156.6, 142.7, 137.4, 132.2, 129.6, 127.3, 126.7, 125.5, 124.3, 123.6, 116.3, 115.3, 94.8, 46.3, 30.0, 21.1; HRMS (ESI+): Calculated for C₁₉H₁₈N₂O₂Na: [M + Na]⁺ 329.1260, Found 329.1263.

(Z)-1-(4-fluorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (17)

Obtained as a yellow solid (45 mg, 73% yield); M.p. 124-125 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.29 (s, 1H), 7.19 – 7.14 (m, 2H), 7.07 (s, 2H), 6.96 (dd, J = 22.6, 14.0 Hz, 4H), 6.26 (s, 1H), 5.32 (s, 2H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 162.2 (d, J = 250.0 Hz), 156.6, 142.5, 131.0

(d, J = 2.5 Hz), 128.5 (d, J = 7.6 Hz), 127.1, 125.6, 124.5, 123.6, 116.5, 115.9 (d, J = 21.4 Hz), 115.1, 94.9, 45.8, 30.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.72; HRMS (ESI+): Calculated for C₁₈H₁₅FN₂O₂Na: [M + Na]⁺ 333.1010, Found 333.1016.

(Z)-1-(4-chlorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (18)

Obtained as a yellow solid (44 mg, 67% yield); M.p. 171-172 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.33 (s, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.4 Hz, 2H), 7.03 (d, J = 3.4 Hz, 2H), 6.34 (s, 1H), 5.39 (s, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 156.6, 142.5, 133.7, 133.6, 129.2, 128.2, 127.0, 125.5, 124.6, 123.7, 116.5, 115.1, 94.9, 45.9, 30.0; HRMS (ESI+): Calculated for C₁₈H₁₅ClN₂O₂Na: [M + Na]⁺ 349.0714, Found 349.0718.

(Z)-1-(4-bromobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (19)

Obtained as a yellow solid (49 mg, 66% yield); M.p. 147-148 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.32 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.6 Hz, 4H), 7.04 – 7.01 (m, 2H), 6.33 (s, 1H), 5.37 (s, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 156.7, 142.4, 134.3, 132.1, 128.5, 127.0, 125.6, 124.6, 123.6, 121.6, 116.5, 115.1, 95.0, 45.9, 30.1; HRMS (ESI+): Calculated for C₁₈H₁₅BrN₂O₂Na: [M + Na]⁺ 393.0209, Found 393.0200.

(Z)-1-(3-methylbenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (20)

Obtained as a yellow solid (44 mg, 72% yield); M.p. 143-144 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 7.20 (t, J = 7.9 Hz, 1H), 7.10 (dd, J = 15.3, 8.6 Hz, 3H), 7.06 – 6.99 (m, 4H), 6.34 (s, 1H), 5.38 (s, 2H), 2.30 (s, 3H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.8, 156.6, 150.3, 142.7, 138.8, 135.2, 128.8, 128.5, 127.3, 125.5, 124.3, 123.7, 123.6, 116.3, 115.4, 94.8, 46.5, 30.0, 21.5; HRMS (ESI+): Calculated for C₁₉H₁₈N₂O₂Na: [M + Na]⁺ 329.1260, Found 329.1260.

(Z)-1-(3-fluorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (21)

Obtained as a yellow solid (40 mg, 64% yield); M.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.25 (s, 1H), 7.22 – 7.18 (m, 1H), 7.04 (s, 2H), 6.96 (d, J = 11.2 Hz, 3H), 6.86 (d, J = 8.9 Hz, 2H), 6.24 (s, 1H), 5.32 (s, 2H), 2.20 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 163.2 (d, J = 248.2 Hz), 156.60, 142.4, 137.8 (d, J = 6.3 Hz), 130.6 (d, J = 8.8 Hz), 127.0, 125.5, 124.5, 123.6, 122.3, 116.5, 115.1, 114.7 (d, J = 21.4 Hz), 113.8 (d, J = 21.4 Hz), 95.0, 46.0, 30.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -116.51; HRMS (ESI+): Calculated for C₁₈H₁₅FN₂O₂Na: [M + Na]⁺ 333.1010, Found 333.1006.

(Z)-1-(3-chlorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (22)

Obtained as a yellow solid (40 mg, 61% yield); M.p. 175-176 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.33 (s, 1H), 7.25 (t, *J* = 3.6 Hz, 3H), 7.16 – 7.12 (m, 3H), 7.05 – 7.00 (m, 2H), 6.34 (s, 1H), 5.39 (s, 2H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 156.7, 142.4, 137.3, 135.0, 130.3, 128.0, 127.0, 126.8, 125.6, 124.9, 124.6, 123.6, 116.5, 115.0, 95.0, 46.0, 30.1; HRMS (ESI+): Calculated for C₁₈H₁₅ClN₂O₂Na: [M + Na]⁺ 349.0714, Found 349.0716.

(Z)-1-(3-bromobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (23)

Obtained as a yellow solid (45 mg, 61% yield); M.p. 178-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.25 (s, 1H), 7.34 – 7.32 (m, 2H), 7.11 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 2.3 Hz, 2H), 6.99 – 6.94 (m, 2H), 6.26 (s, 1H), 5.31 (s, 2H), 2.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 155.6, 141.3, 136.6, 130

0, 129.5, 128.7, 125.9, 124.5, 124.3, 123.5, 122.6, 122.1, 115.5, 114.0, 94.0, 44.9, 29.0; HRMS (ESI+): Calculated for $C_{18}H_{15}BrN_2O_2Na$: [M + Na]⁺ 393.0209, Found 393.0211.

(Z)-1-(2-fluorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (24)

Obtained as a yellow solid (37 mg, 60% yield); M.p. 150-151 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.25 (s, 1H), 7.18 – 7.15 (m, 1H), 7.04 (dd, J = 6.5, 3.1 Hz, 3H), 6.97 (dd, J = 13.0, 7.3 Hz, 4H), 6.26 (s, 1H), 5.40 (s, 2H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 160.3 (d, J = 247.0 Hz), 156.8, 142.5, 129.4 (d, J = 7.6 Hz), 128.2 (d, J = 3.8 Hz), 126.9, 125.5, 124.7 (d, J = 3.8 Hz), 124.5, 123.7, 122.3 (d, J = 15.1 Hz), 116.4, 115.6 (d, J = 21.4 Hz), 114.9 (d, J = 2.5 Hz), 94.9, 40.0 (d, J = 5.0 Hz), 30.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -118.38; HRMS (ESI+): Calculated for C₁₈H₁₅FN₂O₂Na: [M + Na]⁺ 333.1010, Found 333.1009.

(Z)-1-(2-chlorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (25)

Obtained as a yellow solid (36 mg, 55% yield); M.p. 158-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 7.45 (dd, J = 8.0, 1.1 Hz, 1H), 7.22 (td, J = 7.9, 1.5 Hz, 1H), 7.14 (dd, J = 7.2, 1.7 Hz, 3H), 7.03 – 7.00 (m, 1H), 6.90 – 6.86 (m, 2H), 6.34 (s, 1H), 5.50 (s, 2H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 156.7, 142.4, 132.6, 132.2, 129.8, 128.9, 127.4, 126.9, 126.7, 125.5, 124.6, 123.8, 116.4, 115.2, 95.0, 44.2, 30.1; HRMS (ESI+): Calculated for C₁₈H₁₅ClN₂O₂Na: [M + Na]⁺ 349.0714, Found 349.0711.

(Z)-1-(2-bromobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (26)

Obtained as a yellow solid (42 mg, 57% yield); M.p. 183-184 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.15 (dd, J = 16.3, 7.8 Hz, 4H), 7.02 (t, J = 6.7 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 6.35 (s, 1H), 5.47 (s, 2H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 156.6, 142.4, 133.6, 133.1, 129.1, 128.0, 126.9, 126.8, 125.5, 124.6, 123.8, 122.5, 116.4, 115.3, 95.0, 46.9, 30.0; HRMS (ESI+): Calculated for C₁₈H₁₅BrN₂O₂Na: [M + Na]⁺ 393.0209, Found 393.0200.

(Z)-1-(2,6-difluorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (27)

Obtained as a yellow solid (34 mg, 52% yield); M.p. 143-144 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.27 (s, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.10 (d, J = 4.2 Hz, 2H), 7.05 (dd, J = 8.2, 4.1 Hz, 1H), 6.88 (t, J = 8.2 Hz, 2H), 6.34 (s, 1H), 5.56 (s, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.0, 161.3 (dd, J = 249.5, 7.6 Hz, 2C), 156.5, 142.4, 129.8 (t, J = 10.7 Hz), 126.8, 125.6, 124.3, 123.5, 116.5, 114.4, 111.9 (dd, J = 20.2, 5.0 Hz), 94.9, 35.5, 30.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.01; HRMS (ESI+): Calculated for C₁₈H₁₄F₂N₂O₂Na: [M + Na]⁺ 351.0916, Found 351.0924.

(Z)-1-(2,6-dichlorobenzyl)-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (28)

Obtained as a yellow solid (35 mg, 48% yield); M.p. 157-158 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.23 (s, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 8.0 Hz, 1H), 7.09 (t, J = 7.2 Hz, 2H), 7.02 – 6.97 (m, 2H), 6.31 (s, 1H), 5.74 (s, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 157.2, 142.5, 135.4, 130.6, 129.5, 129.4, 126.8, 125.7, 124.2, 123.3, 116.5, 115.1, 94.9, 42.6, 30.0; HRMS (ESI+): Calculated for C₁₈H₁₄Cl₂N₂O₂Na: [M + Na]⁺ 383.0325, Found 383.0341.

(Z)-1,5-dimethyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (29)

Obtained as a yellow solid (36 mg, 78% yield); M.p. 161-162 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.66 (s, 1H), 7.07 (q, J = 5.6 Hz, 3H), 6.31 (s, 1H), 3.64 (s, 3H), 2.48 (s, 3H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 156.1, 142.8, 128.1, 125.7, 124.4, 123.9, 123.3, 112.3, 94.5, 29.9, 29.9, 16.8; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O₂Na: [M + Na]⁺ 253.0947, Found 253.0963.

(Z)-5-chloro-1-methyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (30)

Obtained as a yellow solid (36 mg, 72% yield); M.p. 167-168 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.56 (s, 1H), 7.23 (dd, J = 5.8, 3.4 Hz, 1H), 7.08 – 7.06 (m, 2H), 6.35 (s, 1H), 3.62 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.2, 156.1, 141.5, 129.0, 124.4, 123.1, 120.6, 112.8, 96.0, 30.1, 30.0; HRMS (ESI+): Calculated for C₁₂H₁₁ClN₂O₂Na: [M + Na]⁺ 273.0401, Found 273.0405.

(Z)-6-methoxy-1-methyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (31)

Obtained as a yellow solid (34 mg, 69% yield); M.p. 169-170 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.32 (s, 1H), 7.06 (d, J = 9.0 Hz, 1H), 6.72 (dd, J = 9.0, 2.6 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 6.27 (s, 1H), 3.82 (s, 3H), 3.60 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 198.9, 156.6, 155.7, 142.9, 126.1, 122.0, 115.4, 110.3, 100.7, 94.7, 55.7, 30.0, 29.8; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O₃Na: [M + Na]⁺ 269.0897, Found 269.0898.

(Z)-7-(*tert*-butyl)-1-methyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1*H*)-one (32)

Obtained as a yellow solid (40 mg, 73% yield); M.p. 156-157 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.29 (s, 1H), 7.12 (d, J = 8.7 Hz, 1H), 7.06 – 7.01 (m, 2H), 6.19 (s, 1H), 3.55 (s, 3H), 2.20 (s, 3H), 1.26 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 198.7, 156.2, 148.00 142.9, 125.8, 124.9, 120.9, 114.1, 113.3, 94.3, 34.5, 31.3, 30.0, 29.7; HRMS (ESI+): Calculated for C₁₆H₂₀N₂O₂Na: [M + Na]⁺ 295.1417, Found 295.1416.

(Z)-1-methyl-2-oxo-3-(2-oxopropylidene)-1,2,3,4-tetrahydroquinoxaline-7-carboxylate (33)

Obtained as a yellow solid (41 mg, 75% yield); M.p. 178-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.12 (s, 1H), 7.79 – 7.76 (m, 2H), 7.05 (d, J = 8.7 Hz, 1H), 6.28 (s, 1H), 3.87 (s, 3H), 3.60 (s, 3H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 200.0, 166.2, 156.1, 141.7, 129.1, 127.7, 125.9, 124.9, 116.0, 115.6, 96.4, 52.4, 30.4, 30.0; HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₄Na: [M + Na]⁺ 297.0846, Found 297.0848.

(Z)-1,6,7-trimethyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (34)

Obtained as a yellow solid (36 mg, 74% yield); M.p. 166-167 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.36 (s, 1H), 6.93 (s, 2H), 6.23 (s, 1H), 3.61 (s, 3H), 2.31 (s, 3H), 2.26 (d, J = 2.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 198.0, 156.1, 143.1, 133.0, 132.5, 126.0, 123.1, 117.2, 115.3, 93.8, 29.8, 29.7, 19.8, 19.2; HRMS (ESI+): Calculated for C₁₄H₁₆N₂O₂Na: [M + Na]⁺ 267.1104, Found 267.1109.

(Z)-6,7-dichloro-1-methyl-3-(2-oxopropylidene)-3,4-dihydroquinoxalin-2(1H)-one (35)

Obtained as a yellow solid (40 mg, 70% yield); M.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.18 (s, 1H), 7.21 (s, 2H), 6.30 (s, 1H), 3.58 (s, 3H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 199.2, 155.8, 141.8, 127.8, 127.6, 126.8, 125.0, 117.1, 115.9, 96.0, 30.1, 30.0; HRMS (ESI+): Calculated for C₁₂H₁₀Cl₂N₂O₂Na: [M + Na]⁺ 307.0012, Found 307.0035.

(Z)-1-methyl-3-(2-oxobutylidene)-3,4-dihydroquinoxalin-2(1H)-one (36)

Obtained as a yellow solid (38 mg, 83% yield); M.p. 164-165 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.25 (s, 1H), 7.08 (s, 3H), 7.04 (d, J = 2.5 Hz, 1H), 6.21 (s, 1H), 3.56 (s, 3H), 2.49 (q, J = 7.5 Hz, 2H), 1.11 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.5, 156.3, 142.8, 128.0, 125.4, 124.3, 123.5, 116.1, 114.4, 93.6, 36.0, 29.7, 9.4; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O₂Na: [M + Na]⁺ 253.0947, Found 253.0940.

(Z)-1-methyl-3-(2-oxopentylidene)-3,4-dihydroquinoxalin-2(1H)-one (37)

Obtained as a yellow solid (39 mg, 80% yield); M.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.37 (s, 1H), 7.15 (d, J = 2.7 Hz, 3H), 7.11 – 7.08 (m, 1H), 6.26 (s, 1H), 3.62 (s, 3H), 2.49 (t, J = 7.5 Hz, 2H), 1.71 (dd, J = 14.8, 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.9, 156.3, 142.7, 128.0, 125.4, 124.3, 123.5, 116.1, 114.4, 94.1, 44.9, 29.7, 19.0, 13.9; HRMS (ESI+): Calculated for C₁₄H₁₆N₂O₂Na: [M + Na]⁺ 267.1104, Found 267.1104.

(Z)-1-methyl-3-(2-oxohexylidene)-3,4-dihydroquinoxalin-2(1H)-one (38)

Obtained as a yellow solid (39 mg, 75% yield); M.p. 177-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.37 (s, 1H), 7.15 (s, 3H), 7.13 – 7.09 (m, 1H), 6.27 (s, 1H), 3.63 (s, 3H), 2.52 (t, *J* = 7.6 Hz, 2H), 1.69 – 1.64 (m, 2H), 1.38 (dd, *J* = 15.0, 7.5 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 156.3, 142.7, 128.0, 125.4, 124.3, 123.5, 116.1, 114.4, 94.1, 42.8, 29.7, 27.8, 22.5, 13.9; HRMS (ESI+): Calculated for C₁₅H₁₈N₂O₂Na: [M + Na]⁺ 281.1260, Found 281.1253.

(Z)-1-methyl-3-(2-oxoheptylidene)-3,4-dihydroquinoxalin-2(1H)-one (39)

Obtained as a yellow solid (40 mg, 73% yield); M.p. 185-186 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.38 (s, 1H), 7.18 – 7.15 (m, 3H), 7.12 (d, J = 2.8 Hz, 1H), 6.28 (s, 1H), 3.63 (s, 3H), 2.51 (t, J = 7.5 Hz, 2H), 1.71 – 1.66 (m, 2H), 1.34 (dd, J = 6.8, 3.4 Hz, 4H), 0.90 (t, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 156.3, 142.8, 128.0, 125.4, 124.3, 123.5, 116.2, 114.4, 94.1, 43.0, 31.6, 29.8, 25.4, 22.5, 14.0; HRMS (ESI+): Calculated for C₁₆H₂₀N₂O₂Na: [M + Na]⁺ 295.1417, Found 295.1411.

(Z)-1-methyl-3-(2-oxooctylidene)-3,4-dihydroquinoxalin-2(1H)-one (40)

Obtained as a yellow solid (44 mg, 77% yield); M.p. 189-190 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.38 (s, 1H), 7.16 – 7.12 (m, 4H), 6.28 (s, 1H), 3.63 (s, 3H), 2.51 (t, J = 7.5 Hz, 2H), 1.69 – 1.65 (m, 2H), 1.36 – 1.30 (m, 6H), 0.89 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 156.3, 142.8, 128.0, 125.4, 124.3, 123.6, 116.2, 114.4, 94.1, 43.0, 31.7, 29.8, 29.1, 25.7, 22.6, 14.1; HRMS (ESI+): Calculated for C₁₇H₂₂N₂O₂Na: [M + Na]⁺ 309.1573, Found 309.1567.

(Z)-1-methyl-3-(2-oxononylidene)-3,4-dihydroquinoxalin-2(1H)-one (41)

Obtained as a yellow solid (41 mg, 68% yield); M.p. 184-185 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.31 (s, 1H), 7.10 – 7.07 (m, 3H), 7.06 – 7.02 (m, 1H), 6.20 (s, 1H), 3.56 (s, 3H), 2.46 – 2.42 (m, 2H), 1.63 – 1.59 (m, 2H), 1.27 – 1.21 (m, 8H), 0.81 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 156.4, 142.8, 128.0, 125.4, 124.3, 123.5, 116.2, 114.4, 94.1, 43.1, 31.7, 29.8, 29.4, 29.2, 25.7, 22.6, 14.1; HRMS (ESI+): Calculated for C₁₈H₂₄N₂O₂Na: [M + Na]⁺ 323.1730, Found 323.1718.

(Z)-1-methyl-3-(2-oxoundecylidene)-3,4-dihydroquinoxalin-2(1H)-one (42)

Obtained as a yellow solid (47 mg, 72% yield); M.p. 198-199 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.37 (s, 1H), 7.17 – 7.14 (m, 3H), 7.11 (dd, J = 5.5, 2.4 Hz, 1H), 6.27 (s, 1H), 3.63 (s, 3H), 2.52 – 2.49 (m, 2H), 1.69 – 1.65 (m, 2H), 1.30 (dd, J = 18.1, 10.8 Hz, 12H), 0.87 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.2, 156.3, 142.8, 128.0, 125.4, 124.3, 123.5, 116.2, 114.4, 94.1, 43.1,

31.9, 29.7, 29.5, 29.5, 29.4, 29.3, 25.7, 22.7, 14.1; HRMS (ESI+): Calculated for $C_{20}H_{28}N_2O_2Na$: [M + Na]⁺ 351.2043, Found 351.2047.

(Z)-1-methyl-3-(3-methyl-2-oxobutylidene)-3,4-dihydroquinoxalin-2(1H)-one (43)

Obtained as a yellow solid (39 mg, 80% yield); M.p. 163-164 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.38 (s, 1H), 7.16 – 7.13 (m, 3H), 7.11 – 7.07 (m, 1H), 6.31 (s, 1H), 3.62 (s, 3H), 2.72 (dt, *J* = 13.8, 6.9 Hz, 1H), 1.19 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 205.9, 156.4, 143.3, 128.0, 125.4, 124.3, 123.5, 116.1, 114.4, 92.6, 40.6, 29.7, 19.4; HRMS (ESI+): Calculated for C₁₄H₁₆N₂O₂Na: [M + Na]⁺ 267.1104, Found 267.1103.

(Z)-1-methyl-3-(5-methyl-2-oxohexylidene)-3,4-dihydroquinoxalin-2(1H)-one (44)

Obtained as a yellow solid (39 mg, 72% yield); M.p. 174-175 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.37 (s, 1H), 7.24 – 7.07 (m, 4H), 6.28 (s, 1H), 3.63 (s, 3H), 2.59 – 2.43 (m, 2H), 1.64 – 1.55 (m, 3H), 0.93 (d, J = 5.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 202.3, 156.3, 142.7, 128.0, 125.4, 124.3, 123.5, 116.1, 114.4, 94.1, 41.1, 34.6, 29.7, 27.9, 22.4; HRMS (ESI+): Calculated for C₁₆H₂₀N₂O₂Na: [M + Na]⁺ 295.1417, Found 295.1410.

(Z)-3-(2-cyclopropyl-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (45)

Obtained as a yellow solid (31 mg, 65% yield); M.p. 155-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.28 (s, 1H), 7.16 – 7.12 (m, 3H), 7.08 – 7.05 (m, 1H), 6.41 (s, 1H), 3.63 (s, 3H), 1.98 (td, J = 7.9, 4.0 Hz, 1H), 1.12 – 1.09 (m, 2H), 0.92 (dd, J = 7.7, 3.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 201.2, 156.4, 141.8, 127.9, 125.4, 124.3, 123.3, 115.9, 114.4, 94.3, 29.8, 21.5, 10.6; HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₂Na: [M + Na]⁺ 265.0947, Found 265.0938.

(Z)-3-(2-cyclopentyl-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (46)

Obtained as a yellow solid (39 mg, 72% yield); M.p. 173-174 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.34 (s, 1H), 7.14 (dd, J = 5.2, 3.0 Hz, 3H), 7.10 – 7.06 (m, 1H), 6.30 (s, 1H), 3.62 (s, 3H), 2.97 (p, J = 8.1 Hz, 1H), 1.94 – 1.88 (m, 2H), 1.85 – 1.79 (m, 2H), 1.73 (dd, J = 9.3, 5.5 Hz, 2H), 1.63 (dd, J = 7.1, 4.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 204.9, 156.4, 142.8, 127.9, 125.4, 124.3, 123.4, 116.0, 114.4, 93.7, 51.6, 30.2, 29.7, 26.2; HRMS (ESI+): Calculated for C₁₆H₁₈N₂O₂Na: [M + Na]⁺ 293.1260, Found 293.1264.

(Z)-3-(2-cyclohexyl-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (47)

Obtained as a yellow solid (39 mg, 69% yield); M.p. 190-191 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.33 (s, 1H), 7.05 (d, J = 26.4 Hz, 4H), 6.22 (s, 1H), 3.55 (s, 3H), 2.37 (t, J = 10.8 Hz, 1H), 1.84 (d, J = 12.1 Hz, 2H), 1.76 – 1.72 (m, 2H), 1.63 (d, J = 12.5 Hz, 1H), 1.41 – 1.33 (m, 2H), 1.29 – 1.23 (m, 2H), 1.17 (d, J = 4.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 205.1, 156.4, 143.3, 128.0, 125.43 124.3, 123.5, 116.1, 114.3, 93.0, 50.8, 29.7, 29.5, 26.0, 25.9; HRMS (ESI+): Calculated for C₁₇H₂₀N₂O₂Na: [M + Na]⁺ 307.1417, Found 307.1410.

(Z)-1-methyl-3-(2-oxo-2-(thiophen-3-yl)ethylidene)-3,4-dihydroquinoxalin-2(1H)-one (48)

Obtained as a yellow solid (32 mg, 56% yield); M.p. 183-184 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.74 (s, 1H), 8.03 (d, J = 2.8 Hz, 1H), 7.56 (d, J = 5.0 Hz, 1H), 7.28 (dd, J = 5.0, 3.0 Hz, 1H), 7.12 (s, 4H), 6.76 (s, 1H), 3.60 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 185.1, 156.3, 144.4, 143.6, 129.7, 128.3, 126.7, 126.2, 125.4, 124.5, 123.9, 116.5, 114.5, 92.1, 29.8; HRMS (ESI+): Calculated for C₁₅H₁₂N₂O₂SNa: [M + Na]⁺ 307.0512, Found 307.0505.

(Z)-1-methyl-3-(2-oxo-2-phenylethylidene)-3,4-dihydroquinoxalin-2(1H)-one (49)

Obtained as a yellow solid (39 mg, 70% yield); M.p. 182-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 14.03 (s, 1H), 8.06 – 8.01 (m, 2H), 7.52 (dd, J = 8.2, 6.1 Hz, 1H), 7.47 (t, J = 7.3 Hz, 2H), 7.20 (dd, J = 8.8, 2.4 Hz, 4H), 7.03 (s, 1H), 3.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 190.2, 156.3, 144.7, 139.0, 131.9, 128.5, 128.4, 127.5, 125.3, 124.4, 124.0, 116.7, 114.4, 91.1, 29.8; HRMS (ESI+): Calculated for C₁₇H₁₄N₂O₂Na: [M+Na]⁺ 301.0947, Found 301.0930.

(Z)-1-methyl-3-(2-oxo-2-(p-tolyl)ethylidene)-3,4-dihydroquinoxalin-2(1H)-one (50)

Obtained as a yellow solid (42 mg, 72% yield); M.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.99 (s, 1H), 7.95 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.20 (dd, J = 9.8, 3.7 Hz, 4H), 7.01 (s, 1H), 3.67 (s, 3H), 2.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 190.2, 156.5, 144.4, 142.6, 136.4, 129.3, 128.3, 127.6, 125.4, 124.4, 123.8, 116.6, 114.4, 91.0, 29.8, 21.6; HRMS (ESI+): Calculated for C₁₈H₁₆N₂O₂Na: [M + Na]⁺ 315.1104, Found 315.1100.

(Z)-3-(2-(4-fluorophenyl)-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (51)

Obtained as a yellow solid (40 mg, 67% yield); M.p. 162-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.97 (s, 1H), 8.05 (dd, J = 8.8, 5.5 Hz, 2H), 7.21 (t, J = 3.4 Hz, 4H), 7.15 (t, J = 8.6 Hz, 2H), 6.97 (s, 1H), 3.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 188.9, 165.1 (d, J = 253.3 Hz), 156.3, 144.7, 135.3 (d, J = 3.8 Hz), 129.9 (d, J = 8.8 Hz), 128.4, 125.2, 124.5, 124.1, 116.7, 115.6 (d, J = 21.4 Hz), 114.5, 90.7, 29.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.57; HRMS (ESI+): Calculated for C₁₇H₁₃FN₂O₂Na: [M + Na]⁺ 319.0853, Found 319.0851.

(Z)-3-(2-(4-chlorophenyl)-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (52)

Obtained as a yellow solid (37 mg, 59% yield); M.p. 188-189 °C. ¹H NMR (500 MHz, CDCl₃) δ 14.02 (s, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 7.22 (dd, J = 5.2, 2.6 Hz, 4H), 6.97 (s, 1H), 3.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 188.7, 156.2, 144.9, 138.1, 137.3, 128.8, 128.5, 125.2, 124.5, 124.3, 116.8, 114.5, 90.7, 29.9; HRMS (ESI+): Calculated for C₁₇H₁₃ClN₂O₂Na: [M + Na]⁺ 335.0558, Found 335.0552.

(Z)-3-(2-(4-bromophenyl)-2-oxoethylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (53)

Obtained as a yellow solid (36 mg, 50% yield); M.p. 194-195 °C. ¹H NMR (500 MHz, CDCl₃) δ 14.04 (s, 1H), 7.90 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.23 (dd, J = 8.5, 2.9 Hz, 4H), 6.97 (s, 1H), 3.69 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 188.8, 156.1, 145.0, 137.8, 136.8, 131.8, 129.0, 128.5, 125.2, 124.5, 124.3, 116.9, 114.5, 90.7, 29.9; HRMS (ESI+): Calculated for C₁₇H₁₃BrN₂O₂Na: [M + Na]⁺ 379.0053, Found 379.0046.

(Z)-4-(2-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2(1H)-ylidene)acetyl)benzonitrile (54)

Obtained as a yellow solid (33 mg, 54% yield); M.p. 206-207 °C. ¹H NMR (500 MHz, CDCl₃) δ 14.19 (s, 1H), 8.11 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.28 – 7.21 (m, 4H), 7.00 (s, 1H), 3.71 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 155.9, 153.4, 145.8, 142.5, 132.4, 128.8, 127.8, 125.0, 124.6, 118.4, 117.4, 114.9, 114.6, 91.0, 30.0; HRMS (ESI+): Calculated for C₁₈H₁₃N₃O₂Na: [M + Na]⁺ 326.0900, Found 326.0906.

(*Z*)-1-methyl-3-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethylidene)-3,4-dihydroquinoxalin-2(1*H*)-one (55)

Obtained as a yellow solid (34 mg, 49% yield); M.p. 177-178 °C. ¹H NMR (500 MHz, CDCl₃) δ 14.14 (s, 1H), 8.13 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.25 (dd, J = 7.2, 3.6 Hz, 4H), 7.02 (s, 1H), 3.70 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 188.3, 156.0, 153.7, 145.5, 128.7, 128.7, 127.7, 125.6 (q, J = 3.8 Hz), 125.1, 124.6, 124.6, 122.8 (q, J = 253.3 Hz), 117.1, 114.5, 91.0, 29.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -70.0; HRMS (ESI+): Calculated for C₁₈H₁₃F₃N₂O₂Na: [M + Na]⁺ 369.0821, Found 369.0803.

(Z)-1-methyl-3-(2-oxo-2-(o-tolyl)ethylidene)-3,4-dihydroquinoxalin-2(1H)-one (56)

Obtained as a yellow solid (40 mg, 68% yield); M.p. 179-180 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.70 (s, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.08 (dd, J =

10.6, 4.0 Hz, 4H), 6.57 (s, 1H), 3.53 (s, 3H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 195.2, 156.2, 144.0, 140.4, 136.6, 131.3, 130.1, 128.4, 128.2, 125.7, 125.2, 124.3, 123.9, 116.6, 114.4, 94.9, 29.8, 20.7; HRMS (ESI+): Calculated for C₁₈H₁₆N₂O₂Na: [M + Na]⁺ 315.1104, Found 315.1105.

(Z)-1-methyl-3-(2-oxocyclopentylidene)-3,4-dihydroquinoxalin-2(1*H*)-one (57)

Obtained as a yellow solid (29 mg, 60% yield); M.p. 150-151 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.23 (s, 1H), 7.11 – 7.02 (m, 4H), 3.55 (s, 3H), 3.27 (t, J = 7.3 Hz, 2H), 2.44 (t, J = 7.9 Hz, 2H), 1.97 – 1.91 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 208.9, 157.5, 130.0, 128.3, 126.2, 124.1, 122.7, 115.4, 114.0, 108.0, 38.9, 29.3, 29.2, 20.5; HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₂Na: [M + Na]⁺ 265.0947, Found 265.0938.

(Z)-1-methyl-3-(2-oxo-[1,1'-bi(cyclopentan)]-3-ylidene)-3,4-dihydroquinoxalin-2(1H)-one (58)

Obtained as a yellow solid (34 mg, 55% yield); M.p. 165-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.29 (s, 1H), 7.11 – 7.03 (m, 3H), 7.00 (d, J = 7.2 Hz, 1H), 3.54 (s, 3H), 3.33 (ddd, J = 17.2, 8.5, 3.8 Hz, 1H), 3.06 – 2.98 (m, 1H), 2.48 – 2.40 (m, 1H), 2.15 – 2.06 (m, 2H), 1.98 – 1.91 (m, 1H), 1.73 (d, J = 4.3 Hz, 2H), 1.61 (d, J = 8.3 Hz, 2H), 1.53 (d, J = 6.3 Hz, 2H), 1.42 – 1.35 (m, 1H), 1.24 (d, J = 20.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 210.3, 157.6, 136.7, 128.3, 126.3, 124.1, 122.5, 115.3, 114.0, 108.6, 53.2, 41.1, 30.9, 29.7, 27.4, 25.3, 25.0; HRMS (ESI+): Calculated for C₁₉H₂₂N₂O₂Na: [M + Na]⁺ 333.1573, Found 333.1578.

(Z)-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-3,4-dihydroquinoxalin-2(1H)-one (59)⁴

Obtained as a yellow solid (33 mg, 56% yield); ¹H NMR (500 MHz, DMSO) δ 13.60 (s, 1H), 11.99 (s, 1H), 7.99 (d, J = 8.8 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.14 (d, J = 4.4 Hz, 3H), 7.07 (d, J = 8.8 Hz, 2H), 6.79 (s, 1H), 3.86 (s, 3H).

(Z)-3-(2-oxo-2-(thiophen-2-yl)ethylidene)-3,4-dihydroquinoxalin-2(1H)-one (60)⁴

Obtained as a yellow solid (28 mg, 52% yield); ¹H NMR (500 MHz, DMSO) δ 13.27 (s, 1H), 12.04 (s, 1H), 7.90 (dd, J = 8.9, 4.1 Hz, 2H), 7.50 – 7.45 (m, 1H), 7.25 – 7.21 (m, 1H), 7.13 (dd, J = 7.6, 4.3 Hz, 3H), 6.68 (s, 1H).

(Z)-3-(4-(6-methoxynaphthalen-2-yl)-2-oxobutylidene)-1-methyl-3,4-dihydroquinoxalin-2(1*H*)-one (61)

Obtained as a yellow solid (50 mg, 65% yield); M.p. 170-171 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.29 (s, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.52 (s, 1H), 7.27 (d, J = 8.2 Hz, 1H), 7.10 – 7.02 (m, 6H), 6.25 (s, 1H), 3.83 (s, 3H), 3.55 (s, 3H), 3.09 – 3.04 (m, 2H), 2.86 (t, J = 7.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 200.5, 157.2, 156.3, 143.0, 136.4, 133.1, 129.1, 129.0, 128.1, 127.6, 126.9, 126.2, 125.3, 124.4, 123.6, 118.7, 116.2, 114.4, 105.7, 94.0, 55.3, 44.3, 31.3, 29.8; HRMS (ESI+): Calculated for C₂₄H₂₂N₂O₃Na: [M + Na]⁺ 409.1523, Found 409.1520.

(*Z*)-3-(4-(4-hydroxy-3-methoxyphenyl)-2-oxobutylidene)-1-methyl-3,4-dihydroquinoxalin-2(1*H*)one (62)

Obtained as a yellow solid (42 mg, 60% yield); M.p. 171-172 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.35 (s, 1H), 7.18 – 7.15 (m, 3H), 7.13 – 7.10 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.74 – 6.71 (m, 2H), 6.29 (s, 1H), 3.87 (s, 3H), 3.62 (s, 3H), 2.95 – 2.92 (m, 2H), 2.83 – 2.80 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 200.6, 156.2, 146.5, 143.9, 143.0, 133.1, 128.0, 125.3, 124.4, 123.7, 120.8, 116.2, 114.4, 114.3, 111.0, 94.0, 55.9, 44.7, 31.2, 29.8; HRMS (ESI+): Calculated for C₂₀H₂₀N₂O₄Na: [M + Na]⁺ 375.1315, Found 375.1316.

(Z)-3-(4-(4-methoxyphenyl)-2-oxobutylidene)-1-methyl-3,4-dihydroquinoxalin-2(1H)-one (63)

Obtained as a yellow solid (48 mg, 71% yield); M.p. 158-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.31 (s, 1H), 7.13 (dd, J = 10.1, 5.6 Hz, 5H), 7.07 (dt, J = 5.0, 2.3 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 6.26 (s, 1H), 3.76 (s, 3H), 3.58 (s, 3H), 2.96 – 2.92 (m, 2H), 2.82 – 2.78 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 200.5, 157.9, 156.2, 142.9, 133.3, 129.2, 128.0, 125.3, 124.3, 123.6, 116.2, 114.4, 113.9, 94.0, 55.2, 44.6, 30.5, 29.7; HRMS (ESI+): Calculated for C₂₀H₂₀N₂O₃Na: [M + Na]⁺ 359.1366, Found 359.1374.

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*)-10,13-dimethyl-17-(2-((*Z*)-4-methyl-3-oxo-3,4-dihydroquinoxalin-2(1*H*)-ylidene)acetyl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate (64)

Obtained as a yellow solid (44 mg, 50% yield); M.p. 216-217 °C. ¹H NMR (500 MHz, CDCl₃) δ 13.49 (s, 1H), 7.18 – 7.13 (m, 3H), 7.11 (d, J = 2.4 Hz, 1H), 6.24 (s, 1H), 5.38 (d, J = 4.8 Hz, 1H), 4.62 (dt, J = 16.5, 5.4 Hz, 1H), 3.63 (s, 3H), 2.65 (t, J = 8.9 Hz, 1H), 2.32 (t, J = 7.7 Hz, 4H), 2.05 (d, J = 11.5 Hz, 4H), 1.87 (d, J = 10.2 Hz, 2H), 1.74 (d, J = 8.2 Hz, 2H), 1.59 (d, J = 15.0 Hz, 3H), 1.48 (d, J = 18.5 Hz, 4H), 1.25 (d, J = 7.0 Hz, 2H), 1.04 – 1.00 (m, 4H), 0.65 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.7, 170.6, 156.5, 142.0, 139.7, 128.0, 125.5, 124.3, 123.4, 122.4, 116.1, 114.3, 95.4, 73.9, 62.9, 56.8, 50.0, 45.2, 38.7, 38.1, 37.0, 36.7, 32.0, 31.9, 29.7, 27.7, 24.7, 22.6, 21.4, 20.9, 19.3, 13.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₄₀N₂O₄H 517.3061; Found 517.3018.

(E)-3-(1-(hydroxyimino)-2-oxopropyl)-1-methylquinoxalin-2(1H)-one (65)

Obtained as a yellow solid (44 mg, 90% yield); M.p. 223-224 °C. ¹H NMR (500 MHz, DMSO) δ 12.92 (s, 1H), 7.86 (dd, J = 8.0, 1.0 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 3.65 (s, 3H), 2.48 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 195.9, 153.4, 152.7, 152.4, 133.6, 132.3, 132.1, 130.1, 124.4, 115.6, 29.4, 25.9; HRMS (ESI+): Calculated for C₁₂H₁₁N₃O₃Na: [M + Na]⁺ 268.0693, Found 268.0703.

1-Methyl-3-(2-oxopropyl)-3,4-dihydroquinoxalin-2(1H)-one (66)⁵

Obtained as a yellow liquid (39 mg, 89% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.94 – 6.89 (m, 2H), 6.87 – 6.83 (m, 1H), 6.72 (dd, J = 7.7, 1.3 Hz, 1H), 4.28 (dd, J = 10.2, 2.3 Hz, 1H), 3.34 (s, 3H), 3.34 – 3.29 (m, 1H), 2.81 (dd, J = 18.5, 10.2 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 207.8, 166.9, 134.4, 128.7, 123.8, 119.9, 114.8, 114.7, 52.6, 44.7, 30.4, 29.2.

1-Methyl-3-(3-oxobutan-2-yl)quinoxalin-2(1H)-one (67)

Obtained as a white solid (44 mg, 96% yield); M.p. 134-135 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.3 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 4.39 (q, J = 7.1 Hz, 1H), 3.70 (s, 3H), 2.34 (s, 3H), 1.53 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 207.5, 158.9, 154.5, 133.1, 132.7, 130.3, 123.8, 123.6, 113.7, 50.8, 29.2, 29.2, 13.7; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O₂Na: [M + Na]⁺ 253.0947, Found 253.0955.

1,3-Dimethylquinoxalin-2(1*H*)-one (68)⁶

Obtained as a white solid (29 mg, 83% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, J = 8.0, 1.2 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.26 (dd, J = 11.1, 4.1 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 3.64 (s, 3H), 2.53 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.5, 155.2, 133.3, 132.5, 129.7, 129.4, 123.7, 113.6, 29.1, 21.6; HRMS (ESI+): Calculated for C₁₀H₁₀N₂ONa: [M + Na]⁺ 197.0685, Found 197.0678.

4. X-ray Crystal Data for 20

Figure S2 Single-crystal X-Ray structure of 19. Ellipsoids are represented at 30% Probability.

CCDC	2042085
Empirical formula	$C_{19}H_{18}N_2O_2$
Formula weight	306.35
Temperature, K	296.15
Wavelength, Å	0.71073
Crystal system	monoclinic
Space group	P2 ₁ /n
<i>a</i> , <i>b</i> , <i>c</i> , Å	10.6894 (13), 10.6948 (14), 13.7194 (17)
$\alpha, \beta, \gamma, \circ$	90, 91.046 (2), 90
Volume, Å ³	1568.2 (3)
Ζ	4
Calculated density, Mg/m ³	1.298
Absorption coefficient, mm ⁻¹	0.085
F (000)	648
Theta range for data collection, °	5.388 to 50.014
Limiting indices	-12≦h≤6, -11≦k≤12, -15≦l≤16
Reflections collected / unique	7788 / 2767 [R(int) = 0.0175]
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2767/0/210
Goodness of fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.1010
R indices (all data)	R1 = 0.0533, $wR2 = 0.1121$

Table S1. Crystallographic Data and Structure Refinement for 20

5. References

- (1) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- (2) J. Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct.: THEOCHEM, 1999, 464, 211.
- (3) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01., 2016.
- (4) E. E. Stepanova, D. N. Lukmanova, S. O. Kasatkina, M. V. Dmitriev and A. N. Maslivets, *ChemistrySelect*, 2019, 4, 12774.
- (5) J. Rostoll-Berenguer, G. Blay, M. C. Muñoz, J. R. Pedro and C. Vila, Org. Lett., 2019, 21, 6011.
- (6) L.-Y. Xie, L.-L. Jiang, J.-X. Tan, Y. Wang, X.-Q. Xu, B. Zhang, Z. Cao and W.-M. He, ACS Sustain. Chem. Eng., 2019, 7, 14153.

6. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

¹³C{¹H} NMR Spectrum of Compound 3

-13.26

¹³C{¹H} NMR Spectrum of Compound 4

-13.26

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 5

¹³C{¹H} NMR Spectrum of Compound 6

-13.37

¹³C{¹H} NMR Spectrum of Compound 7

¹³C{¹H} NMR Spectrum of Compound 8

¹³C{¹H} NMR Spectrum of Compound 9

¹³C{¹H} NMR Spectrum of Compound 10

¹³C{¹H} NMR Spectrum of Compound 11

8.08 8.06 8.06 77.70 77.57 77.57 77.57 77.15 77.

-2.28

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 12

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 13

$\begin{array}{c} 7.62\\ 7.61\\ 7.59\\ 7.756\\ 7.756\\ 7.753\\ 7.753\\ 7.730\\ 7.715\\ 7.715\\ 7.715\\ 7.715\\ 7.715\\ 7.715\\ 7.715\\ 7.711\\ 6.94\\ 6.91\\ 6.93$

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 14

¹³C{¹H} NMR Spectrum of Compound 15

¹³C{¹H} NMR Spectrum of Compound 16

7.13 7.17 7.17 7.16 7.07 7.00 6.96 6.94 6.92 6.92 6.92 6.92 6.26 5.32

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 17

¹H NMR Spectrum of Compound 18

¹H NMR Spectrum of Compound 20

¹³C{¹H} NMR Spectrum of Compound 20

-2.20

¹H NMR (CDCl₃, 500 MHz)

¹H NMR Spectrum of Compound 21

¹⁹F{¹H} NMR Spectrum of Compound 21

¹³C{¹H} NMR Spectrum of Compound 22

¹³C{¹H} NMR Spectrum of Compound 23

¹³C{¹H} NMR Spectrum of Compound 24

¹H NMR Spectrum of Compound 25

¹³C{¹H} NMR Spectrum of Compound 25

¹H NMR Spectrum of Compound 26

¹H NMR Spectrum of Compound 27

¹³C{¹H} NMR Spectrum of Compound 27

¹⁹F{¹H} NMR Spectrum of Compound 27

-2.28

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 28

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 29

¹³C{¹H} NMR Spectrum of Compound 30

¹³C{¹H} NMR Spectrum of Compound 31

¹³C{¹H} NMR Spectrum of Compound 32

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 33

¹³C{¹H} NMR Spectrum of Compound 34

¹³C{¹H} NMR Spectrum of Compound 35

¹³C{¹H} NMR Spectrum of Compound 36

¹³C{¹H} NMR Spectrum of Compound 37

¹³C{¹H} NMR Spectrum of Compound 38

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 39

 $\int_{7.12}^{7.26}$

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 40

¹³C{¹H} NMR Spectrum of Compound 41

¹³C{¹H} NMR Spectrum of Compound 42

¹³C{¹H} NMR Spectrum of Compound 43

7.26 7.15 7.11 7.11 -6.28

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 44

¹³C{¹H} NMR Spectrum of Compound 45

¹³C{¹H} NMR Spectrum of Compound 46

¹³C{¹H} NMR Spectrum of Compound 47

¹³C{¹H} NMR Spectrum of Compound 48

¹³C{¹H} NMR Spectrum of Compound 49

¹³C{¹H} NMR Spectrum of Compound 50

¹³C{¹H} NMR Spectrum of Compound 51

¹H NMR Spectrum of Compound 52

¹³C{¹H} NMR Spectrum of Compound 52

¹H NMR Spectrum of Compound 53

¹³C{¹H} NMR Spectrum of Compound 53

¹H NMR Spectrum of Compound 54

¹³C{¹H} NMR Spectrum of Compound 54

¹³C{¹H} NMR Spectrum of Compound 55

¹⁹F{¹H} NMR Spectrum of Compound 55

¹³C{¹H} NMR Spectrum of Compound 56

¹³C{¹H} NMR Spectrum of Compound 57

¹³C{¹H} NMR Spectrum of Compound 58

¹H NMR Spectrum of Compound 60

¹³C{¹H} NMR Spectrum of Compound 61

¹H NMR (CDCl₃, 500 MHz)

¹³C{¹H} NMR Spectrum of Compound 62

¹³C{¹H} NMR Spectrum of Compound 63

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 Chemical shift (ppm)

¹³C{¹H} NMR Spectrum of Compound 64

¹³C{¹H} NMR Spectrum of Compound 65

 $\begin{array}{c} 6694\\ 6594\\ 6592\\$

7.89 7.87 7.87 7.87 7.87 7.587 7.57 7.57 7.554 7.554 7.57 7.57 7.57 7.534 7.316 7.32 7.32 7.336 7.3377.33

¹³C{¹H} NMR Spectrum of Compound 67

¹³C{¹H} NMR Spectrum of Compound 68