## Supporting Information

# Redox-Neutral Functionalization of $\alpha$ - Csp $^{3}-\mathbf{H}$ Bond of Secondary Cyclic Amines: Highly AtomEconomic Strategy for N-Arylative/Formal Cross-Dehydrogenative Couplings 

Priyankar Jha, ${ }^{\dagger}$ Saddam Husen, ${ }^{\text {t }}$ and Ravindra Kumar ${ }^{*}{ }^{\text {it }}$<br>${ }^{\dagger}$ Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow226031, U.P., India<br>${ }^{ \pm}$Chemical Sciences Division, Academy of Scientific \& Innovative Research (AcSIR), Ghaziabad201002, India<br>E-mail: ravindra.kumar1@cdri.res.in

## TABLE OF CONTENTS

[1] General ..... S1
[2] Preparation of starting materials ..... S2
[3] Evaluation of redox-neutral conditions for CDC reactions with Indole (Table 1) ..... S3
[4] Synthesis and spectral data for indole addition products (4) ..... S3
[5] Synthesis and spectral data for phenol addition products (5) ..... S13
[6] Synthesis and spectral data for ketone addition products (6) ..... S21
[7] Mechanistic studies ..... S24
[8] Calculations of Green Chemistry Metrics ..... S26
[9] References ..... S30
[10] ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ..... S31

## [1] General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance spectra were recorded on Bruker Avance III 400 spectrometer at 25 ${ }^{\circ} \mathrm{C}$. The chemical shifts in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard; ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}\right)$, ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3} \delta 77.16\right)$. Coupling constants ( $J$ ) are quoted in Hz . Splitting patterns are denoted as "s" for singlet; "d" for doublet; "t" for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m"for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets, and "app" for apparent. Assignment of proton signals was assisted by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, HSQC and HMBC experiments. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz using a Bruker AVANCE 400. High Resolution Mass Spectra (HRMS) were recorded on Q-TOF mass spectrometer at SAIF department in CSIR-CDRI, Lucknow, India. Reactions were performed using borosil sealed tube vial or Schlenk tube. Temperature mentioned for any reaction is corresponding to the oil bath temperature. Column chromatography was done in $60-120 \AA$ or 100-200 $\AA$ mesh silica gel of Merck Company. All solvents were distilled for purification in column chromatography. Reagents and starting materials were used as received from company. THF and toluene were distilled from sodium benzophenone ketyl and other solvents were distilled under standard procedures. Starting materials, $p$-quinols were synthesized with the procedures that reported in literature. ${ }^{1}$

## [2] Preparation of starting materials

Oxidative dearomatization of phenol to p-quinol was reported with many oxidizing agents; such as Oxone, Hypervalent iodine (III) reagents (most common are PIDA and PIFA), dimethyldioxirane (DMDO), $\mathrm{H}_{2} \mathrm{O}_{2}$, $m$ - $\mathrm{CPBA}, \mathrm{O}_{2} / \mathrm{P}(\mathrm{OEt})_{3}$, and molecular oxygen in the presence of photosensitizer. Considering all these methods, photo catalyzed oxidation with singlet oxygen seems to be attractive. However, it requires reductive work up with dimethylsulphide or $\mathrm{PPh}_{3}$, generate eventual DMSO or triphenylphosphineoxide as by-products. Among all, PIDA has been commonly employed for this particular transformation due to the quick reaction time and user friendly. PIFA is relatively more reactive, however costlier. We used PIDA for the synthesis of $p$-quinols.


The general experimental procedures for the preparation of $p$-quinol were followed as reported previously. (Diacetoxyiodo)benzene (PIDA; 1.1 equiv.) was added portion wise to a stirred solution of 4 -substituted phenol ( $1-10 \mathrm{mmol} ; 1.0$ equiv.) in acetonitrile and water $(2: 1 ; 10 \mathrm{~mL} / \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature for $2-4 \mathrm{~h}$. After the completion of reaction (monitored by TLC), reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}$ solution to neutralize the acidic reaction mixture and extracted with EtOAc for three times. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ( $20-30 \% \mathrm{EtOAc}$ in hexane) to give pure $p$-quinol 1. Spectral data for $p$-quinols matched that provided in the literature. ${ }^{1}$

## [3] Evaluation of redox-neutral conditions for CDC reactions with Indole (Table 1)

General Procedure for optimization (Table 1): To the reaction vial/Schlenk tube, a mixture of p-quinol ( $1 \mathbf{1 a}, 0.5 \mathrm{mmol})$, THIQ $(0.6 \mathrm{mmol})$, and indole $(0.5-0.6 \mathrm{mmol})$ was taken in different solvents $(0.4 \mathrm{M})$. It was degassed and refilled with nitrogen and then heated at $70^{\circ} \mathrm{C}$ with/without an additive $\left(\mathrm{RCO}_{2} \mathrm{H} ; 10-20 \mathrm{~mol} \%\right)$ in the presence of an internal standard, 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one ( 0.25 mmol ). After the completion of reaction as monitored by TLC with reference to $p$-quinol, solvent was evaporated and yields were calculated on the basis of ${ }^{1} \mathrm{H}$ NMR. The product 4 a was purified by silica gel column chromatography and isolated yield was mentioned in parentheses (entries 12 and 13). $\mathrm{R}_{\mathrm{f}} 0.5 ; 20 \%$ EtOAc in hexane; eluted with $10 \%$ EtOAc in hexane.

Entry 14; Reaction mixture was heated at $70^{\circ} \mathrm{C}$ in toluene in open air.

## Table 1.

|  <br> 1a ( 0.5 mmol ) |  <br> 2a (1.2 equiv) |  <br> con <br> (0 <br> 70 <br> 3a <br> (1.2 equiv) | itions $25 \mathrm{M})$ <br> ${ }^{\circ} \mathrm{C}$ |  <br> 4a |
| :---: | :---: | :---: | :---: | :---: |
| run | solvent | additive (mol\%) | time (h) | yield (4a, \%) ${ }^{\text {a }}$ |
| 1 | Neat | - | 24 | 39 |
| 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | - | 36 | 62 |
| 3 | THF | - | 48 | 36 |
| 4 | HFIP | - | 36 | nd |
| 5 | DCE | - | 36 | nd |
| 6 | MeOH | - | 18 | 49 |
| 7 | Dioxane | - | 48 | nd |
| 8 | Toluene | - | 12 | 60 |
| $9{ }^{\text {b }}$ | Toluene | - | 12 | 59 |
| 10 | Toluene | $\mathrm{PhCO}_{2} \mathrm{H}(20)$ | 6 | 77 |
| 11 | Toluene | AcOH (20) | 6 | 98 |
| $12^{\text {b }}$ | Toluene | AcOH (20) | 6 | 98 (81) ${ }^{\text {c }}$ |
| $13^{\text {b }}$ | Toluene | AcOH (10) | 9 | 94 (78) ${ }^{\text {c }}$ |
| $14^{\text {b,d }}$ | Toluene | AcOH (20) | 10 | 83 (72) ${ }^{\text {c }}$ |

${ }^{\text {a }}$ NMR yield was calculated using 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one as an internal standard. ${ }^{\mathrm{b}} 1.0$ eqiv indol was used. ${ }^{\mathrm{c}}$ Isolated yields are mentioned in parentheses. ${ }^{\mathrm{d}}$ Open air reaction. $\mathrm{nd}=$ not determined due to complex reaction mixture.
[4] Synthesis and spectral data for indole addition products (4)

## General Procedure (run 12, Table 1):

To the Schlenk tube, a mixture of $p$-quinol ( $\mathbf{1 a}, 0.8 \mathrm{mmol}$ ), THIQ/amine ( 0.96 mmol ), indole ( 0.8 mmol ) and acetic acid $(0.16 \mathrm{mmol})$ was taken in toluene $(2.0 \mathrm{~mL})$. Reaction tube was degassed and refilled with nitrogen and then heated at $70^{\circ} \mathrm{C}$ for specified reaction time as mentioned for different entities. After the completion of reaction with reference to $p$-quinol, (monitored by TLC under UV or $\mathrm{I}_{2}$ ), toluene was evaporated under reduced pressure and loaded to the pad of silica gel for purification. Yields are calculated with respect to corresponding $p$-quinols (1).

1-(1H-Indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4a): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$ for 6 h to furnish 4 a as a white solid ( $222.0 \mathrm{mg}, 0.66 \mathrm{mmol}, 81 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 4\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.5$ ( $10 \%$ EtOAc in hexane)


4a

The spectral data was completely in match with previously reported data. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.73(\mathrm{bs}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$, $7.16-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.57-$ $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=16.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 147.8,137.4,136.6,135.6,129.7,128.9,128.1,127.7,126.7,126.6,125.6$,
124.2, 122.1, 120.2, 119.6, 119.5, 116.6, 111.0, 56.9, 42.7, 26.5, 20.4.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2}: 339.1861$, found 339.1848

1-(5-Methoxy-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4b): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 5-m e t h o x y-$ 1 H -indole ( $119.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 b}$ as a white solid ( $232.0 \mathrm{mg}, 0.63 \mathrm{mmol}, 78 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $70 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $80 \% \mathrm{CHCl}_{3}$ in hexane).


4b

The spectral data was completely in match with previously reported data. ${ }^{2}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{H}_{3}$ ): $\delta 7.81(\mathrm{bs}, 1 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.67$ (s, 3H), 3.60-3.53 (m, 2H), 3.14-3.02 (m, 1H), 2.80 (dt, $J=16.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 153.9,148.2,137.7,135.5,131.6,129.7,128.9,128.1,128.1,127.1,126.6$, 125.7, 125.2, 118.7, 117.3, 112.3, 111.6, 102.0, 57.4, 55.7, 42.5, 27.0, 20.5.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 369.1967$, found 369.1955

1-(6-Fluoro-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4c): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, $\mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 6-$ fluoro-1Hindole ( $109.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 c}$ as a white solid ( $201.0 \mathrm{mg}, 0.57 \mathrm{mmol}, 70 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $45 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $70 \% \mathrm{CHCl}_{3}$ in hexane).


Melting Point: $183-185^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=9.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.74$ (m, $1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=16.4,4.1 \mathrm{~Hz}$, 1H), 2.27 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 159.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=237.2 \mathrm{~Hz}\right), 147.8,137.2,136.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.4 \mathrm{~Hz}\right), 135.5$, $129.7,129.0,128.1,126.7,125.7,124.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 123.3,121.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.7 \mathrm{~Hz}\right), 119.6,116.9$, $108.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.3 \mathrm{~Hz}\right), 97.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.8 \mathrm{~Hz}\right), 56.9,42.7,26.4,20.4$.
${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta-121.11$
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~F}: 357.1767$, found 357.1763.

1-(6-Chloro-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4d): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, $\mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 6$-chloro- 1 H -indole $(123.0 \mathrm{mg}, 0.81$ $\mathrm{mmol})$, and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 d}$ as a white solid $(229.0 \mathrm{mg}$, $0.61 \mathrm{mmol}, 76 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $50 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $70 \% \mathrm{CHCl}_{3}$ in hexane).


The spectral data was completely in match with previously reported data. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 7.89(\mathrm{bs}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=16.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 147.8,137.1,136.9,135.5,129.7,129.0,128.2,128.1,128.0,126.7,125.7$, $125.3,124.8,121.2,120.3,119.6,117.0,110.9,56.9,42.8,26.6,20.4$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Cl}: 373.1472$, found 373.1468 .

1-(5-Bromo-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4e): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 5$-bromo-1Hindole ( $159.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) at $120^{\circ} \mathrm{C}$ for 12 h to furnish 4 e as a white solid ( $252.7 \mathrm{mg}, 0.61 \mathrm{mmol}, 75 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $70 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $80 \% \mathrm{CHCl}_{3}$ in hexane).


The spectral data was completely in match with previously reported data. ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.94(\mathrm{bs}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 1 \mathrm{H})$, $2.78(\mathrm{dt}, J=16.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $101 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 148.0,137.1,135.4,135.1,129.7,129.0,128.7,128.4,128.0,126.7,125.7$, $125.5,125.0,122.9,119.2,117.6,113.0,112.3,57.2,42.9,26.6,20.4$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Br}: 417.0966$, found 417.0967, 419.0942

3-(2-(3,4-Dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indole-5-carbonitrile (4f): General procedure was followed with 4-hydroxy-3,4-dimethylcyclohexa-2,5-dien-1-one $(112.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), 1 H -indole-5-carbonitrile $(115.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 f}$ as a white solid ( $198.5 \mathrm{mg}, 0.53 \mathrm{mmol}, 65 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $1 \%$ in EtOAc in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{R}_{\mathrm{f}} 0.40\left(5 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Melting Point: $195-197{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 2.5,1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}$, $1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=16.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$,
2.20 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$ ): $\delta 148.2,138.2,137.3,136.7,135.4,130.3,129.1,128.0,126.9,126.5,126.4$, $126.3,125.8,125.0,120.8,120.3,119.4,115.1,111.8,102.6,57.1,42.9,26.7,20.3,18.8$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3}: 378.1970$, found 378.1955.

1-(5-Nitro-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4g): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 5$-nitro1 H -indole ( $162.0 \mathrm{mg}, 0.97 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 g}$ as a white solid ( $222.0 \mathrm{mg}, 0.58 \mathrm{mmol}, 72 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $100 \%$ in $\mathrm{CHCl}_{3}$ $\mathrm{R}_{\mathrm{f}} 0.40\left(100 \%\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

$4 g$

Melting Point: $205-207{ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 8.36(\mathrm{bs}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=16.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3 ): $\delta 147.9,141.8,139.4,136.7,135.4,129.8,129.4,129.0,127.9,127.1,127.0$, 126.0, 125.9, 121.7, 118.1, 117.8, 110.9, 57.4, 43.4, 27.1, 20.4.

HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: 384.1712$, found 384.1705 .

Methyl 3-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indole-6-carboxylate (4h): General procedure was followed $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$, methyl 1 H -indole-6-carboxylate ( $175.0 \mathrm{mg}, 0.97 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}$, $0.16 \mathrm{mmol})$ to furnish $\mathbf{4 h}$ as a white solid ( $198.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 62 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $1 \%$ in EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $\mathrm{R}_{\mathrm{f}} 0.50\left(5 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Melting Point: 203-205 ${ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.28(\mathrm{bs}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J$ $=16.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$ ): $\delta 168.2,147.8,137.1,135.9,135.5,130.2,129.7,129.0,128.3,128.0,127.5$, $126.7,125.8,123.7,120.6,119.8,117.1,113.4,56.9,51.9,42.9,26.7,20.4$.
HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}: 397.1916$, found 397.1901.

1-(1H-Pyrrolo[2,3-b]pyridin-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4i): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}), 1 \mathrm{H}-$ pyrrolo[2,3-b]pyridine ( $118.0 \mathrm{mg}, 0.97 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) at $100{ }^{\circ} \mathrm{C}$ for 13 h to furnish 4 i as a white solid ( $170.0 \mathrm{mg}, 0.50 \mathrm{~mol}, 62 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $25 \% \mathrm{EtOAc}$ in $\mathrm{CHCl}_{3}$ $\mathrm{R}_{\mathrm{f}} 0.50\left(50 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.


Melting Point: $218-220^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 10.16(\mathrm{bs}, 1 \mathrm{H}), 8.31-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 3.16-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=16.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3}$ : $\delta 149.0,147.9,142.6,136.9,135.5,129.7,129.0,128.8,128.3,128.0,126.8$, 125.7, 124.7, 119.5, 117.5, 117.1, 115.6, 57.4, 42.7, 26.8, 20.4.

HRMS (ESI ${ }^{+}$): $m / z$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3}: 340.1814$, found 340.1804.

2-(4-Ethylphenyl)-1-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4j): General procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one ( $112.0 \mathrm{mg}, 0.81$ mmol ), THIQ ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), 2-methyl- 1 H -indole ( $106.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 j}$ as a white solid $(187.0 \mathrm{mg}, 0.51$ mmol, $63 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $50 \% \mathrm{CHCl}_{3}$ in hexane


4j $\mathrm{R}_{\mathrm{f}} 0.20$ ( $50 \% \mathrm{CHCl}_{3}$ in hexane).

Melting Point: $128-130{ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 7.65(\mathrm{bs}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.53$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 149.1,138.3,136.4,135.3,134.9,133.4,128.7,128.6,128.2,128.1,126.2$, 126.0, 120.7, 120.1, 119.4, 119.3, 113.5, 110.0, 57.6, 46.6, 28.2, 28.0, 15.7, 12.2.

HRMS (ESI ${ }^{+}$): $m / z$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2}: 367.2174$, found 367.2159.

1-(1H-Indol-3-yl)-2-(4-isopropylphenyl)-1,2,3,4-tetrahydroisoquinoline (4k): General procedure was followed with 4-hydroxy-4-isopropylcyclohexa-2,5-dien-1-one ( $123.0 \mathrm{mg}, 0.81$ mmol ), 2a ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( 9 $\mu \mathrm{L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 k}$ as a white solid ( $160.0 \mathrm{mg}, 0.44 \mathrm{mmol} 54 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $70 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.20$ ( $80 \% \mathrm{CHCl}_{3}$ in hexane).


Melting Point: $137-139{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.83(\mathrm{bs}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}$, $6 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}$, $2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 148.0,138.8,137.6,136.6,135.6,128.9,128.1,127.1,126.6,125.6,124.3$, $122.1,120.2,119.6,119.5,116.3,111.0,57.0,42.5,33.1,26.6,24.2$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2}: 367.2174$, found 367.2170.

2-(4-Cyclohexylphenyl)-1-(1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4I): General procedure was followed with 1-hydroxy-[1,1'-bi(cyclohexane)]-2,5-dien-4-one ( $155.5 \mathrm{mg}, 0.81$ $\mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$, indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish 41 as a white solid ( $187 \mathrm{mg}, 0.46 \mathrm{mmol}, 57 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 6\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ (5\% EtOAc in hexane).


41

Melting Point: $170-172{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 7.85(\mathrm{bs}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=16.3$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{t}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 148.0,138.2,137.6,136.6,135.6,128.9,128.1,127.4,126.6,125.6,124.3$, $122.0,120.2,119.6,119.5,116.2,111.0,57.1,43.6,42.4,34.7,27.0,26.6,26.3$.

HRMS (ESI ${ }^{+}$): $m / z: ~[M+H]^{+}$Calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2}: 407.2487$, found 407.2468.

2-(3,4-dimethylphenyl)-1-(1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4m): General procedure was followed with 4-hydroxy-3,4-dimethylcyclohexa-2,5-dien-1-one ( $112.0 \mathrm{mg}, 0.81$ $\mathrm{mmol})$, THIQ ( $123.0 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 m}$ as a white solid ( $162 \mathrm{mg}, 0.46,57 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 5\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.30$ ( $5 \%$ EtOAc in hexane).


Melting Point: $108-110{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.75(\mathrm{bs}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.08$ (m, $4 \mathrm{H}), 7.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=16.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, 3 H ).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 148.2,137.6,137.2,136.6,135.7,130.3,129.0,128.2,126.7,126.6,126.5$, 125.7, 124.4, 122.1, 120.3, 119.6, 119.5, 118.1, 113.9, 111.1, 56.8, 42.6, 26.5, 20.4, 18.8.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2}: 353.2018$, found 353.2002.

Reaction with 5-hydroxyindole: Under the optimized conditions, a mixture of CDC products was obtained at C3 (4n and $\mathbf{4 0}$ ) and C4 positions ( $\mathbf{4 n} \mathbf{n}^{\prime}$ and $\mathbf{4 o}{ }^{\prime}$ ).


3-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indol-5-ol (4n): General procedure was followed with $\mathbf{1 a}(112.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, THIQ ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), 1 H -indol-5-ol $(108.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 n}$ as a white solid ( $173.0 \mathrm{mg}, 0.49 \mathrm{mmol}, 60 \%$ yield).
The minor regio-isomer $\mathbf{4 n}$ ' was isolated as a white solid ( $19.0 \mathrm{mg}, 0.053$ mmol, ca 6\% yield).


4n

Purification: Silica gel Flash chromatography, both the regioisomers were eluted with $12 \%$ EtOAc in hexane

Major isomer (4n): $\mathrm{R}_{\mathrm{f}} 0.30$ (30\% EtOAc in hexane).
Melting Point: $136-138^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.81$ (bs, 1 H ), 7.25 (like d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.20-7.17 (m, 2H), 7.16-7.12 $(\mathrm{m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=\mathrm{Hz} 1.6,1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{bs}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.74$ (dt, $J=16.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 149.4,147.8,137.3,135.5,131.8,129.8,129.0,128.2,127.9,127.3,126.6$, $125.6,125.4,118.8,116.8,111.9,111.7,104.6,56.8,42.6,26.3,20.4$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 355.1810$, found 355.1805 .
Minor isomer ( $\mathbf{4} \mathbf{n}^{\prime}$ ): $\mathrm{R}_{\mathrm{f}} 0.40$ ( $30 \%$ EtOAc in hexane).
Melting Point: $198-200{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 9.72(\mathrm{bs}, 1 \mathrm{H}), 8.0(\mathrm{bs}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{dd}, J=2.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=11.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dt}, J=15.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.17 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 149.5,147.9,137.0,134.3,133.4,130.1,129.6,128.3,127.7,126.4,125.0$, $122.7,117.0,113.4110 .8,99.8,61.5,54.9,30.6,20.7$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 355.1810$, found 355.1805 .

3-(2-(4-Ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indol-5-ol (4o): General procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one ( 112.0 mg , 0.81 mmol ), THIQ ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), 1 H -indol-5-ol ( $108.0 \mathrm{mg}, 0.81$ $\mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 o}$ as a white solid ( $188 \mathrm{mg}, 0.51 \mathrm{mmol}, 63 \%$ yield).
The minor regio-isomer 4o' was isolated as ( $18 \mathrm{mg}, 0.050 \mathrm{mmol}, 6 \%$ yield).


Purification: Silica gel Flash chromatography, both the regioisomers were eluted with $12 \% \mathrm{EtOAc}$ in hexane

Major isomer (40): $\mathrm{R}_{\mathrm{f}} 0.30$ (30\% EtOAc in hexane).
Melting Point: $143-145{ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 7.80(\mathrm{bs}, 1 \mathrm{H}), 7.25$ (like d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2.1,1 \mathrm{H}), 6.54(\mathrm{bs}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dt}, J=16.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{q}, J=7.5, \mathrm{~Hz} 2 \mathrm{H})$, $1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 149.4,148.0,131.8,129.0,128.6,128.2,127.2,126.6,125.7,125.5,118.8$, 116.7, 111.9, 111.7, 104.6, 56.8, 42.5, 27.9, 26.3, 15.8.

HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 369.1967$, found 369.1967.

Minor isomer (40'): $\mathrm{R}_{\mathrm{f}} 0.40$ ( $30 \%$ EtOAc in hexane).
Melting Point: 201-203 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 9.73(\mathrm{bs}, 1 \mathrm{H}), 8.02(\mathrm{bs}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 3 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.67$ $(\mathrm{dd}, J=11.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{td}, J=16.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, J=11.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 149.6,148.0,140.4,137.0,133.5,130.1,128.9,128.3,128.3,127.7,126.4$, $126.4,125.0,122.6,117.0,113.4,110.7,99.9,61.4,54.9,30.6,28.1,15.1$.
HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 369.1967$, found 369.1962.

1-(1H-Indol-3-yl)-6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4p): General procedure was followed with $1 \mathbf{a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), 6,7$-dimethoxy-1,2,3,4tetrahydroisoquinoline ( $187.6 \mathrm{mg}, 0.97 \mathrm{mmol}$ ), indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{4 p}$ as a white solid $(257.8 \mathrm{mg}$, $0.65 \mathrm{mmol}, 80 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 20\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.60$ ( $30 \%$ EtOAc in hexane).


Melting Point: $186-188^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.98$ (bs, 1 H$), 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.07 .1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.1,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ $(\mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 2 \mathrm{H})$, $3.05-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dt}, J=16.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 147.9,147.7,147.0,136.6,129.7,129.1,128.0,127.5,126.8,124.4,122.1$, $120.2,119.6,117.2,111.6,111.1,111.0,56.4,56.0,55.9,42.4,25.6,20.4$.
HRMS (ESI' ${ }^{+}$: $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 399.2073$, found 399.2064.

1-(1H-Indol-3-yl)-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (4q): General procedure was followed with 1a ( $100.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), Triptoline ( $172.2 \mathrm{mg}, 0.97 \mathrm{mmol}$ ), indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{4 q}$ as a white solid ( $155 \mathrm{mg}, 0.41 \mathrm{mmol}, 51 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 4\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $10 \%$ EtOAc in hexane).


Melting Point: $213-215^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.95(\mathrm{bs}, 1 \mathrm{H}), 7.70(\mathrm{bs}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.75$ $-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=15.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 148.1,136.5,136.0,134.6,129.4,128.2,126.9,126.6,124.8,121.3,120.8$, $119.3,119.0,118.4,118.0,117.7,115.7,111.3,111.1,108.3,52.9,43.4,20.3,19.6$.
HRMS (ESI' ${ }^{+}$: $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3}: 378.1970$, found 378.1956.

1-(1H-indol-3-yl)-9-methyl-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (4r): General procedure was followed with $\mathbf{1 a}(100 \mathrm{mg}, 0.81 \mathrm{mmol})$, N -methyl Triptoline $(223.0 \mathrm{mg}, 1.2 \mathrm{mmol})$, indole ( $95.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}$, 0.16 mmol ) to furnish $\mathbf{4 r}$ as a white solid ( $155.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 49 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $10 \%$ EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $20 \% \mathrm{EtOAc}$ in hexane).


Melting Point: $218-220^{\circ} \mathrm{C}$
4r
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 7.83(\mathrm{bs}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, \mathrm{J}=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H})$, $6.15(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.64$ (dd, $J=15.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 148.2,137.1,136.5,135.3,129.8,129.1,127.1,126.6,124.6,122.3,121.2$, 119.9, 119.7, 118.9, 118.4, 118.4, 116.2, 111.2, 109.0, 108.9, 52.0, 42.4, 29.6, 20.5, 19.2.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3}: 392.2127$, found 392.2114.

1-(1H-Indol-3-yl)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (4s): General procedure was followed with $p$-quinone dimethyl monoketal ( $100.0 \mathrm{mg}, 0.65 \mathrm{mmol}$ ), 2a ( 99 $\mu \mathrm{L}, 0.78 \mathrm{mmol}$ ), indole ( $76 \mathrm{mg}, 0.65 \mathrm{mmol}$ ), and acetic acid ( $7 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$ ) at $70^{\circ} \mathrm{C}$ to furnish $\mathbf{4 s}$ as a white solid ( $182.0 \mathrm{mg}, 0.51 \mathrm{mmol}, 79 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $10 \%$ EtOAc in hexane


4s
$\mathrm{R}_{\mathrm{f}} 0.5$ ( $20 \%$ EtOAc in hexane)

Melting Point: $173-175{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.13$ (m, $5 \mathrm{H}), 7.01(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.14-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=16.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 153.4,144.8,137.6,136.5,135.4,128.9,128.2,126.9,126.5,125.7,124.3$, $122.0,120.3,119.7,119.6,119.2,114.5,111.0,58.0,55.6,43.8,26.9$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 355.1810$, found 339.1802

1-(1-methyl-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline: General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), 1-methyl-1H-indole $(101.2 \mu \mathrm{~L}, 0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$ for 14 h to furnish $\mathbf{4 t}$ as a white solid ( $133.9 \mathrm{mg}, 0.38 \mathrm{mmol}, 47 \%$ yield).

Purification Silica gel Flash chromatography, eluted with $4 \%$ EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.5$ (10\% EtOAc in hexane)


## Melting Point: $86-88^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65-$ $3.53(\mathrm{~m}, 2 \mathrm{H}), 3.14-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{td}, J=16.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 147.9,137.8,137.5,135.7,129.8,129.0,129.0,128.3,127.6,127.2,126.6$,
125.7, 121.7, 120.4, 119.2, 118.0, 116.5, 109.2, 56.9, 42.6, 32.8, 26.5, 20.5.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2}: 353.2018$, found 353.2002.

## Reaction with pyrrol



1-(1H-pyrrol-2-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4u): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$, 1H-pyrrole ( $67 \mu \mathrm{~L}, 0.97$ $\mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$ for 12 h to furnish mono addition product at $\mathrm{C} 2(4 \mathbf{u} ; 25 \mathrm{mg}, 0.0 .087 \mathrm{mmol}, 11 \%$ yield) along with C 2 and C 5 bis addition product ( $4 \mathbf{u}, ; 12 \mathrm{mg}, 0.023 \mathrm{mmol}, 3 \%$ yield) as a thick oil.


Purification: Both the compounds were isolated with silica gel Flash chromatography, eluted at 4-5 \% EtOAc in hexane
$4 \mathrm{u}: \mathrm{R}_{\mathrm{f}} 0.5$ (10\% EtOAc in hexane)
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 8.13(\mathrm{bs}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.11-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.73-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{td}, J=16.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 147.5,135.6,135.0,133.3,129.6,128.6,128.3,127.7,126.8,125.6,116.8$, 116.2, 107.9, 107.5, 57.7, 42.9, 26.8, 20.2.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2}: 289.1705$, found 289.1691.

## 2,5-bis(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-pyrrole (4u'):

$\mathrm{R}_{\mathrm{f}} 0.6$ ( $10 \% \mathrm{EtOAc}$ in hexane)
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.83(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.18(\mathrm{~m}, 4 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.14(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 147.9,147.8,139.2,135.6,134.9,132.7,132.5$,
 $129.7,129.6,128.6,128.6,127.9,127.9,126.7,126.7,125.6,125.5,123.4,117.0,116.9,114.0,107.6,107.5$, 58.1, 58.1 42.9, 42.5, 27.0, 27.0, 20.4, 20.4.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{3}: 510.2909$, found 510.2902.

## [5] Synthesis and spectral data for phenol addition products (5)

Table S1: Optimization of reaction parameters for phenols (Table S1)

${ }^{a}$ NMR yield was calculated using 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one as an internal standard. ${ }^{\mathrm{b}}$ Isolated yields are mentioned in parenthesis. ${ }^{\mathrm{c}}$ Open air reaction

Entry 7: Reaction was conducted at $70^{\circ} \mathrm{C}$ in toluene in open air flask. Some minor by-products were also detected as below. Yields were calculated based on ${ }^{1} \mathrm{H}$ NMR.


General Procedure: To the reaction vial/Schlenk tube, a mixture of $p$-quinol (1a, 0.5 mmol ), THIQ/amine $(0.6 \mathrm{mmol})$, and 2-naphthol ( 0.5 mmol ) was dissolved in toluene $(1.2 \mathrm{~mL})$, degassed and refilled with nitrogen. The flask was heated in an oil bath at $70{ }^{\circ} \mathrm{C}$ with/without an additive $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} ; 20 \mathrm{~mol} \%\right)$ in the presence of an internal standard, 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one ( 0.25 mmol ). The progress of reaction was monitored by TLC with reference to $p$-quinol (monitored by TLC) and NMR yields was primarily checked by ${ }^{1} \mathrm{H}$ NMR and isolated yields were calculated after column chromatography. Yields are calculated with respect to corresponding p-quinols. $\left(\mathrm{R}_{\mathrm{f}} 0.5 ; 20 \% \mathrm{EtOAc}\right.$ in hexane, eluted at $\left.10 \%\right)$. The best result (Table S1, entry 6) was employed for substrate scope (5).

1-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol (5a): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}), \beta$-naphthol $(117.0 \mathrm{mg}$, $0.81 \mathrm{mmol})$, and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{5 a}$ as a white solid ( $193.0 \mathrm{mg}, 0.53 \mathrm{mmol}, 65 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 2\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ (5\% EtOAc in hexane).

Melting Point: $148-150{ }^{\circ} \mathrm{C}$


5a
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 11.19(\mathrm{bs}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.16 \mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.67$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.95$ (pseudo d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.09 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 154.8,147.5,136.5,135.2,133.7,133.4,129.7,129.5,129.0,128.4,128.3$, $127.5,127.1,126.6,126.5,123.0,122.4,121.1,119.7,118.5,59.7,55.4,30.6,20.7$.
HRMS (ESI ${ }^{+}$): $m / z$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO} 366.1858$, found 366.1852

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl) naphthalen-1-ol (5b): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}), \boldsymbol{\alpha}$-naphthol ( 117.0 mg , $0.81 \mathrm{mmol})$, and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{5 b}$ as a white solid ( $201.0 \mathrm{mg}, 0.55 \mathrm{mmol}, 68 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 2\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ (5\% EtOAc in hexane).

Melting Point: $128-130^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 10.76(\mathrm{bs}, 1 \mathrm{H}), 8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{dt}, J=12.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=$ $16.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 152.1,146.9,135.5,134.0,133.9,129.8,128.9,128.5,127.6,127.2,126.9$, 126.2, 126.1, 125.4, 124.8, 122.4, 122.2, 120.0, 118.3, 115.9, 64.7, 51.1, 28.2, 20.7.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}: 366.1858$, found 366.1848 .

6-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)benzo[d][1,3]dioxol-5-ol (5c): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$ ), benzo[d][1,3]dioxol-5-ol ( $112.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $5 \mathbf{c}$ as a white solid ( $180 \mathrm{mg}, 0.50 \mathrm{mmol}, 62 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $2 \%$ EtOAc in hexane $\mathrm{R}_{\mathrm{f}}$ 0.40 ( $5 \% \mathrm{EtOAc}$ in hexane).


Melting Point: $198-200{ }^{\circ} \mathrm{C}$
5c
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$ ): $\delta 9.69(\mathrm{bs}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 5 \mathrm{H})$, $6.36(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{ABq}, J=4.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}$, $1 \mathrm{H}), 2.98(\mathrm{dt}, \mathrm{J}=17.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}, J=17.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $101 \mathbf{M H z}, \mathbf{C D C l}_{3}$ and 3 drops DMSO-d $\mathbf{d}_{6}$ : $\delta 151.1,147.3,146.6,140.1,135.2,134.1,132.9$, 129.7, 128.8, 128.3, 126.8, 126.1, 121.2, 119.2, 109.2, 100.7, 99.0, 63.0, 49.1, 27.4, 20.6.

HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{3}: 360.1600$, found 360.1593 .

4-Methyl-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5d): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, $\mathrm{p}-\mathrm{Cresol}(87.5 \mathrm{mg}, 0.81$ $\mathbf{m m o l})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 d}$ as a white solid (148.0 $\mathrm{mg}, 0.45 \mathrm{mmol}, 55 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 1\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $5 \%$ EtOAc in hexane).


Melting Point: $132-134{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$ ): $\delta 9.66(\mathrm{bs}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.07$ (s, 1H) $7.03(\mathrm{dd}, J=9.0,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.55$ $(\mathrm{s}, 1 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.0(\mathrm{dt}, J=16.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}, J=17.2,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22 (s, 3H), 2.17 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 154.0,146.8,134.8,134.2,133.5,130.4,129.8,129.4,129.1,128.6,128.2$, 126.9, 126.9, 126.2, 121.9, 116.7, 64.1, 49.7, 27.5, 20.7, 20.7.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1858$, found 330.1848.

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5e): General procedure was followed with 1a ( $100.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), 2a ( $154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}$ ), phenol ( $76.0 \mathrm{mg}, 1.2 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 e}$ as a white solid $(123.0 \mathrm{mg}, 0.39$ mmol, 48\% yield).

Purification: Silica gel Flash chromatography, eluted with 1\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $5 \%$ EtOAc in hexane).


Melting Point: $138-140{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 9.96(\mathrm{bs}, 1 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{dd}, J=7.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{ddd}, J=7.6,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 1 \mathrm{H})$, $3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dt}, J=16.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dt}, J=17.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 156.4,146.6,134.7,134.2,133.7,129.9,129.8,129.1,128.9,128.6,127.2$, 127.0, 126.2, 122.0, 119.2, 117.0, 64.1, 49.7, 27.4, 20.7.

HRMS (ESI ${ }^{+}$: $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}: 316.1701$, found 316.1690.

4-Methoxy-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5f): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}$ ), 4methoxyphenol ( $100.5 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 f}$ as a white solid ( $159 \mathrm{mg}, 0.46 \mathrm{mmol}, 57 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $10 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $20 \% \mathrm{CHCl}_{3}$ in hexane).

$5 f$
Melting Point: $120-122{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$ ): $\delta 9.37(\mathrm{bs}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 152.5,150.2,146.6,134.4,134.2,133.5,129.8,129.1,128.5,128.2,127.1$, $126.2,121.7,117.1,116.5,113.0,63.8,55.6,49.4,27.1,20.7$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}: 346.1807$, found 346.1814.

1-(2-([1,1'-Biphenyl]-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol (5g): General procedure was followed with 1-hydroxy-[1,1'-biphenyl]-4(1H)-one ( $150.6 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), $\mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}), \beta$ naphthol ( $117.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( 9 $\mu \mathrm{L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{5 g}$ as a white solid ( $209 \mathrm{mg}, 0.49 \mathrm{mmol}, 60 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $50 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.30\left(70 \% \mathrm{CHCl}_{3}\right.$ in hexane).


Melting Point: $193-195^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 10.98(\mathrm{bs}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}$, $J=8.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{td}, J=12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=16.4$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 154.7,149.3,140.2,138.1,136.3,133.7,133.4,129.6,129.1,128.6,128.5$, $128.4,127.7,127.6,127.3,127.1,126.8,126.7,126.6,123.3,122.6,121.1,119.7,118.4,59.3,55.5,30.7$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{NO}: 428.2014$, found 428.2011.

1-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalene-2,7-diol (5h): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, naphthalene-2,7-diol ( $129.7 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}, 0.16$ mmol ) to furnish $\mathbf{5 h}$ as a white solid ( $179 \mathrm{mg}, 0.47 \mathrm{mmol}, 58 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $10 \%$ EtOAc in hexane
$\mathrm{R}_{\mathrm{f}} 0.50$ ( $30 \%$ EtOAc in hexane).


Melting Point: $150-152{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.{ }_{3}\right): \delta 7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{td}, J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00($ like d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.14 (s, 3H). [2 H missing]
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 155.4,155.0,147.4,136.4,135.1,135.1,133.4,130.8,129.7,129.3,128.3$, $127.5,126.7,126.5,123.8,122.8,117.5,117.1,114.2,103.9,59.8,55.5,30.6,20.7$.
HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{2}: 382.1807$, found 382.1793.

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-5,6,7,8-tetrahydronaphthalen-1-ol (5i): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, $5,6,7,8$-tetrahydronaphthalen-1-ol ( $120.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}$, 0.16 mmol ) to furnish $\mathbf{5 i}$ as a white solid ( $182.3 \mathrm{mg}, 0.49 \mathrm{mmol}, 61 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 2\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ (5\% EtOAc in hexane).


Melting Point: $154-156{ }^{\circ} \mathrm{C}$
$5 i$
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 10.02(\mathrm{bs}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5, \mathrm{~Hz}$, $2 \mathrm{H}), 6.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.02-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=6.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=6.2,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.74$ ( $\mathrm{m}, 4 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta$ 154.1, 146.6, 138.0, 134.9, 134.3, 133.1, 129.8, 129.1 128.8, 126.9, 126.4, 126.0, 125.2, 123.2, 121.6, 119.4, 63.4, 48.9, 29.6, 26.8, 22.9, 22.9, 20.7.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}: 370.2171$, found 370.2164 .

2,6-Dimethyl-4-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5j): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, 2a ( $154 \mu \mathrm{~L}, 1.21 \mathrm{mmol}$ ), 2,6dimethylphenol ( $99.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{5 j}$ as a white solid ( $127 \mathrm{mg}, 0.37 \mathrm{mmol}, 46 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $70 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $70 \% \mathrm{CHCl}_{3}$ in hexane).


Melting Point: $138-140{ }^{\circ} \mathrm{C}$
5
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 7.25-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, 2.17 (s, 6H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 151.0,147.7,138.1,135.6,135.2,129.6,128.2,127.9,127.8,126.9,126.7$, $126.0,122.6,114.7,62.8,43.7,27.8,20.3,16.1$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 344.2014$, found 344.1998 .

6-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)benzo[d][1,3]dioxol-5-ol (5k): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), 6,7$-dimethoxy-1,2,3,4-tetrahydroisoquinoline $\quad(234 \mathrm{mg}, \quad 1.21 \mathrm{mmol})$, benzo[d][1,3]dioxol-5-ol ( $112.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid $(9 \mu \mathrm{~L}$, 0.16 mmol ) to furnish $\mathbf{5 k}$ as a white solid ( $230.8 \mathrm{mg}, 0.55 \mathrm{mmol}, 68 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 10\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $20 \% \mathrm{EtOAc}$ in hexane).


Melting Point: $140-142{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 9.62(\mathrm{bs}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 4 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}$, $1 \mathrm{H}), 5.84(\mathrm{AB} \mathrm{q}, J=3.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.73$ (m, 2H), 2.27 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 151.7,148.4,147.7,146.6,140.5,133.5,130.0,126.7,126.5,121.9,119.2$, $111.8,111.3,109.3,101.0,99.5,63.0,56.2,56.0,48.8,26.4,20.9$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{5}$ : 420.1811, found 420.1798 .

2-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol
(51): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), 6,7$-dimethoxy-1,2,3,4-tetrahydroisoquinoline ( $234 \mathrm{mg}, 1.21 \mathrm{mmol}$ ), $\alpha$-naphthol ( 117.0 mg , $0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 1}$ as a white solid ( $244.4 \mathrm{mg}, 0.58 \mathrm{mmol}, 71 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $6 \%$ EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ ( $10 \%$ EtOAc in hexane).


5

Melting Point: $168-170{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 10.69(\mathrm{bs}, 1 \mathrm{H}), 8.18$ (like d, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.80-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.36$ (m, 2H), $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J$ $=16.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=16.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 152.2,148.1,147.5,146.7,133.9,133.7,129.8,127.2,127.0,126.3,126.1$, $125.4,124.8,122.4,122.0,120.1,118.4,111.4,111.2,63.9,55.9,55.8,50.4,27.2,20.7$
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{3}: 426.2069$, found 426.2084.

1-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol: (5m): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), 6,7$-dimethoxy-1,2,3,4-tetrahydroisoquinoline ( $234.0 \mathrm{mg}, 1.21 \mathrm{mmol}$ ), $\beta$-naphthol ( 117.0 $\mathrm{mg}, 0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 m}$ as a white solid ( $234.1 \mathrm{mg}, 0.55 \mathrm{~mol}, 68 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 6\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ ( $10 \%$ EtOAc in hexane).


Melting Point: $183-185^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 11.32(\mathrm{bs}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55($ like d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-$ $6.89(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.35(\mathrm{td}, J=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 154.8,147.9,147.6,147.5,135.1,133.5,129.7,129.4,129.0,128.4,128.3$, $127.0,125.7,122.9,122.4,120.9,119.7,118.4,110.7,110.5,59.3,55.8,55.5,30.2,20.7$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{3}: 426.2069$, found 426.2057.

2-(7-Bromo-2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol (5n): General procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one ( $100.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline ( 256 mg , $1.21 \mathrm{mmol}), \alpha$-naphthol $(117.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, and acetic acid ( $9 \mu \mathrm{~L}, 0.16$ mmol ) to furnish $\mathbf{5 n}$ as a white solid ( $224.6 \mathrm{mg}, 0.49 \mathrm{mmol}, 60 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $6 \%$ EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ ( $10 \%$ EtOAc in hexane) .


5n

Melting Point: $200-202{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 10.60(\mathrm{bs}, 1 \mathrm{H}), 8.19$ (like d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.74 (like d, $J=7.7,1 \mathrm{H}$ ), $7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 4 \mathrm{H})$, $5.71(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=16.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 152.1,146.6,140.4,137.7,134.0,133.0,131.2,130.6,130.1,128.6,127.3$, 126.2, 125.4, 124.9, 122.4, 122.1, 119.9, 119.3, 118.7, 64.1, 50.6, 28.1, 27.6, 15.3.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrNO}: 458.1120$ found 458.1112, 460.1088

3-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)quinolin-4-ol (50): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, quinolin- $4-\mathrm{ol}(117.6 \mathrm{mg}$, $0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 0}$ as a white solid (130.0 $\mathrm{mg}, 0.36 \mathrm{mmol}, 44 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $4 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in EtOAc $\mathrm{R}_{\mathrm{f}}$ $0.50\left(10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in EtOAc$)$.

Melting Point: 233-235 ${ }^{\circ} \mathrm{C}$

${ }^{\mathbf{1}} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and 3 Drops DMSO-d $\mathbf{d}_{6}$ : $\delta 11.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=8.3,8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ and 3 Drops DMSO-d $\mathbf{d}_{6}$ : $\delta 176.7,147.1,139.4,137.9,136.8,134.7,131.2$, 129.4, 128.2, 127.7, 126.7, 126.2, 126.0, 125.8, 124.4, 123.1, 117.8, 114.8, 55.7, 44.9, 28.4, 20.1.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 367.1810$, found 367.1797 .
(8R,13S)-3-Hydroxy-13-methyl-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-
$\mathbf{6 , 7 , 8 , 9}, 11,12,13,14,15,16$-decahydro-17H-cyclopenta[a]phenanthren-17-one (5p): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, estrone $(219.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ to furnish $\mathbf{5 p}(\mathrm{dr}$ $1: 1)$ as a white solid ( $159.0 \mathrm{mg}, 0.32 \mathrm{mmol}, 40 \%$ yield).

Purification: Silica gel Flash chromatography, both diastereomers was eluted together with $50 \% \mathrm{CHCl}_{3}$ in hexane $\mathrm{R}_{\mathrm{f}} 0.60$ ( $80 \% \mathrm{CHCl}_{3}$ in hexane).

Melting Point: $196-198^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.26-7.02(\mathrm{~m}, 18 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H})$,
$5.65(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.98-2.79(\mathrm{~m}, 8 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.24-$ $1.87(\mathrm{~m}, 14 \mathrm{H}), 1.69-1.36(\mathrm{~m}, 14 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$. (mixture of two diastereomers; dr 1:1).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 221.1,154.2,154.0,146.4,137.1,137.0,135.0,134.4,134.2,134.0,133.6$, $133.0,130.3,129.8,129.2,129.0,128.7,128.4,127.0,126.8,126.7,126.1,126.0,124.5,122.1,121.5,116.7$, $64.4,63.1,50.4,50.3,48.8,48.0,44.1,43.9,38.4,35.9,31.6,29.2,27.8,26.5,26.0$. (some carbon peaks overlap)
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{2}: 492.2903$ found 492.2898 .

4-Allyl-2-(2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-6-methoxyphenol (5q): General procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one (112.0 $\mathrm{mg}, 0.81 \mathrm{mmol}), \mathbf{2 a}(154 \mu \mathrm{~L}, 1.21 \mathrm{mmol})$, 4-allyl-2-methoxyphenol ( $126.0 \mu \mathrm{~L}$, $0.81 \mathrm{mmol})$, and acetic acid ( $9 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$ ) to furnish $\mathbf{5 q}$ as a yellow liquid ( $184.0 \mathrm{mg}, 0.46 \mathrm{mmol}, 57 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 6\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.40$ ( $10 \%$ EtOAc in hexane).


5q
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$ ): $\delta 8.99(\mathrm{bs}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.58(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.04-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.60$ $(\mathrm{m}, 1 \mathrm{H}), 3.51-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 147.8,147.0,143.2,138.2,137.9,135.6,134.4,130.3,128.7,128.5,128.0$, $126.7,126.1,121.5,120.1,115.4,111.1,62.4,55.9,48.6,39.9,28.0,27.7,15.5$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{2}: 400.2277$ found 400.2267

1-(2-(p-Tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)naphthalen-2-ol (5r): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, triptoline ( $208 \mathrm{mg}, 1.21$ $\mathrm{mmol}), \beta$-naphthol ( $117.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), and acetic acid ( $9 \mu \mathrm{~L}, 0.16$ mmol ) to furnish 5 r as a white solid $(167.0 \mathrm{mg}, 0.41 \mathrm{mmol}, 51 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 2\% EtOAc in hexane
$\mathrm{R}_{\mathrm{f}} 0.40$ (5\% EtOAc in hexane).


5r

Melting Point: $188-190{ }^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 11.45(\mathrm{bs}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56$ (m, 2H), 7.51 (like d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.10-7.01(\mathrm{~m}$, $3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.27(\mathrm{~m}, 2 \mathrm{H})$, $3.00(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 155.9,146.9,136.4,135.1,132.6,132.4,130.0,129.9$ 129.5, 128.7, 127.6, $126.8,122.8,122.0,119.9,119.6,118.3,113.8,111.0,108.6,56.6,56.5,22.7,20.8$.
HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 405.1967$, found 405.1954 .

2-(2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol (5s): General procedure was followed with $p$-quinone dimethyl monoketal ( $100.0 \mathrm{mg}, 0.65 \mathrm{mmol}$ ), 2a ( $99 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$ ), $\alpha$-naphthol ( $93.6 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) , and acetic acid ( $7 \mu \mathrm{~L}$, 0.13 mmol ) to furnish 5 s as a white solid ( $165.4 \mathrm{mg}, 0.43 \mathrm{mmol}, 67 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 5\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $10 \% \mathrm{EtOAc}$ in hexane).


Melting Point: $168-170{ }^{\circ} \mathrm{C}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$ ): $\delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.92$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$ )
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 156.8,152.1,142.8,135.8,133.9,133.7,128.8,128.3,127.7,127.2,126.8$, 126.3, 126.1, 125.4, 124.7, 124.0, 122.4, 120.1, 118.3, 114.4, 65.9, 55.3, 52.1, 28.8.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{2}: 382.1807$, found 339.1784

## [6] Synthesis and spectral data for ketone addition products (6)

1-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (6a): General procedure was followed with $\mathbf{1 a}(100.0 \mathrm{mg}, 0.81 \mathrm{mmol})$, $\mathbf{2 a}(123 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$, acetone ( $600 \mu \mathrm{~L}, 8.1$ $\mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ in toluene at $70^{\circ} \mathrm{C}$ for 12 h to furnish $\mathbf{6 a}$ as a yellowish liquid ( $128 \mathrm{mg}, 0.46 \mathrm{mmol}, 57 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 2\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.5$ (5\% EtOAc in hexane).


The spectral data was completely in match with previously reported data. ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.35$ $(\mathrm{t}, J=6 . \mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{dt}, J=12.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H})$, 2.30 (s, 3H), 2.10 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 207.4,147.0,138.4,134.5,129.9,128.9,128.0,126.9,126.8,126.2,115.7$, 55.2, 50.1, 42.2, 31.0, 27.1, 20.4.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}: 280.1701$ found 280.1687.

1-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-2-one (6b): General procedure was followed with 1a ( $100.0 \mathrm{mg}, 0.81 \mathrm{mmol}$ ), 2a ( $123 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$ ), butanone ( $724 \mu \mathrm{~L}, 8.1$ $\mathrm{mmol})$, and acetic acid $(9 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ in toluene at $70^{\circ} \mathrm{C}$ for 12 h to furnish $\mathbf{6 b}$ as a yellowish liquid ( $141 \mathrm{mg}, 0.48 \mathrm{mmol}, 60 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with $3 \%$ acetone in hexane $\mathrm{R}_{\mathrm{f}} 0.30$ (5\% acetone in hexane).

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ): $\delta 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.37$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.28$ (m, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 210.0,146.9,138.4,134.4,129.8,128.8,127.8,126.9,126.7,126.2,115.5$,
55.5, 48.8, 42.1, 37.2, 27.1, 20.3, 7.5.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}: 294.1858$ found 294.1849.

1-(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (6c): General procedure was followed with $p$-quinonedimethyl monoketal ( $100.0 \mathrm{mg}, 0.65 \mathrm{mmol}$ ), 2a (99 $\mu \mathrm{L}, 0.78 \mathrm{mmol}$ ), acetone ( $390 \mu \mathrm{~L}, 8.1 \mathrm{mmol}$ ), and acetic acid ( $7 \mu \mathrm{~L}, 0.13$ mmol ) to furnish $\mathbf{6 c}$ as a yellowish liquid ( $140.0 \mathrm{mg}, 0.47 \mathrm{mmol}, 73 \%$ yield).

Purification: Silica gel Flash chromatography, eluted with 6\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $10 \% \mathrm{EtOAc}$ in hexane).

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDC1 ${ }_{3}$ ): $\delta 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.94(\mathrm{~m}$, $2 \mathrm{H}), 2.80-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 207.4,153.3,143.7,138.3,134.3,129.0,126.8,126.6,126.2,118.4,114.7$, 56.0, 55.6, 50.0, 42.9, 30.9, 26.8.

HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}: 296.1651$ found 296.1637.

2-(4-methoxyphenyl)-1-(1-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline: Compound 4s (100 $\mathrm{mg}, 0.28 \mathrm{mmol}$ ) was dissolved in 1 mL DMF and $\mathrm{NaH}(13.5 \mathrm{mg}, 0.56 \mathrm{mmol}$, $60 \%$ suspension in mineral oil) was added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then warmed to room temperature and stirred for 30 min . After cooling again to $0^{\circ} \mathrm{C}$, iodomethane ( $52 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$ ) was added dropwise. The reaction mixture was warmed to room temperature and stirred overnight to afford methylated product as a white solid ( $85 \mathrm{mg}, 0.23 \mathrm{mmol} 82 \%$ yield).


Purification: Silica gel Flash chromatography, eluted with 8\% EtOAc in hexane
$\mathrm{R}_{\mathrm{f}} 0.5$ ( $20 \%$ EtOAc in hexane)
Melting Point: $123-125^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.63-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 153.2,144.7,137.8,137.3,135.4,129.0,128.9,128.3,127.3,126.5,125.7$, 121.6, 120.3, 119.4, 119.1, 117.1, 114.5, 109.1, 57.8, 55.7, 43.6, 32.7, 26.8.

HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 369.1967$ observed 369.1961

1-(1-methoxynaphthalen-2-yl)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline: A mixture of compound 5s ( $100 \mathrm{mg}, 0.26 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(72 \mathrm{mg}, 0.52 \mathrm{mmol})$, and iodomethane ( $32.83 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$ ) in 1 mL DMF was stirred at room temperature for overnight to furnish the corresponding O-methylated product as a yellow solid ( $83 \mathrm{mg}, 0.21 \mathrm{mmol}, 81 \%$ ).

Purification: Silica gel Flash chromatography, eluted with 4\% EtOAc in hexane $\mathrm{R}_{\mathrm{f}} 0.50$ ( $10 \%$ EtOAc in hexane).


Melting Point: $98-100^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C D}_{3}\right): \delta 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.46(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.16(\mathrm{dt}, J=16.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=16.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 154.5,153.9,145.2,138.0,135.4,135.4,133.1,128.7,128.7,128.1,127.9$, $127.9,126.3,126.1,126.0,125.8,123.8,122.6,121.9,114.2,62.3,59.8,55.5,47.4,28.2$.
HRMS (ESI ${ }^{+}$): $m / z:[M+H]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2}: 396.1964$ observed 396.1953

Attempts for the Oxidative cleavage of PMP group from 4s and 5s: Various oxidative conditions were examined to deprotect PMP group from 4 s and $\mathbf{5 s}$ (eq 1 and 2). A complex reaction mixture was obtained in all of our attempts (See Table below).


[^0]

1-(1,2,3,4-Tetrahydroisoquinolin-1-yl)propan-2-one (7): Compound $\mathbf{6 c}(59 \mathrm{mg}, 0.2 \mathrm{mmol})$ was dissolved in acetonitrile $(2 \mathrm{~mL})$ and was added dropwise a solution of CAN ( $328 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) in water $(0.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 2 h . After the completion of reaction, 50 ml water added and reaction mixture was washed with diethylether $(2 \times 20 \mathrm{~mL})$. The pH of the aqueous layer was adjusted to 9 with 1 M NaOH and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed once with saturated aq $\mathrm{NaCl}(40 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the residue in pure form of free amine $(7 ; 32 \mathrm{mg}, 0.17 \mathrm{mmol}, 85.0 \%$ yield $)$ as yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=12.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{dt}, J=16.3,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ): $\delta 208.3,137.9,135.5,129.5,126.2,125.9,125.6,51.9,50.5,41.1,30.7,29.8$. HRMS (ESI ${ }^{+}$): $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}: 190.1232$, found: 190.1226 .

## [7] Mechanistic studies

Some controlled experiments were conducted to rule out the any possibility of radical pathway under the standard (degassed) reaction conditions.

Eq 1: A control experiment was conducted with $\mathbf{1 a}(0.5 \mathrm{mmol}), 6,7$-dimethoxy-THIQ (1.2 equiv), 2-naphthol (1.0 equiv) and a stable free radical TEMPO ( 1.5 equiv) in toluene in the absence or presence of AcOH ( 20 $\mathrm{mol} \%)$. The reaction mixture was degassed and refilled with the stream of nitrogen and heated the tube at $70-100{ }^{\circ} \mathrm{C}$. The aliquot was subjected for mass spectrometry at different intervals for analysis. There was no peak corresponding to TEMPO adduct (6). The desired CDC product 5 m was isolated in $60 \%$ yield after column chromatography.



Eq 2: Another control experiment was performed in the absence of any nucleophile. A mixture of 1a ( 0.5 mmol ), THIQ ( 1.2 equiv) and $\mathrm{AcOH}(20 \mathrm{~mol} \%)$ in toluene was degassed and refilled with the stream of nitrogen and heated the tube at $70-100{ }^{\circ} \mathrm{C}$. The aliquot was subjected for mass spectrometry at different intervals for analysis. A mass peak corresponding peak for $N$-aryliminium was observed in HRMS ( $\mathrm{m} / \mathrm{z}$ 222.1273; calculated 222.1277).


There is no detection of cyclic amide product (6) in mass spectra, it rules out the possibility of any radical pathway.


Eq 3: A mixture of $\mathbf{1 a}(0.5 \mathrm{mmol})$, THIQ ( 1.2 equiv), indole ( 0.5 mmol ) and $\mathrm{AcOH}(20 \mathrm{~mol} \%)$ in toluene was degassed and refilled with the stream of nitrogen. The aliquot was subjected for mass spectrometry at different intervals for analysis. The spectrum showed the mass peaks corresponding to hemiaminal (A) and N -aryliminium ( $\mathbf{C}$ ) intermediates along with an indole addition product $\mathbf{4 a}(c a 20 \%)$ at room temperature. Reaction was completed in 6 h when heated to $70^{\circ} \mathrm{C}$. The desired product $\mathbf{4 a}$ was isolated in $75 \%$ yield (eq. 3, see chart below).

[8] Calculations of Green Chemistry Metrics
Previous report [Selected from the literature reports ${ }^{5}$ of maximum yield for each steps; based on Scifinder search]


## Steps involved in this process are:



The reactants and reagents efficiently participate in product formation excluding intermediates. The Green Chemistry Metrics ${ }^{4}$ were calculated based on general formula as below:

1. No. of steps $=$ No. of steps involved in the process
2. Atom Economy $=[(M . W$. of product $\mathbf{J}) /(\mathrm{M} . \mathrm{W}$. of $\mathbf{A}+$ M.W. of $\mathbf{B}+$ M.W. of $\mathbf{E}+\mathrm{M} . \mathrm{W}$. of I)] x 100
3. \% yield $=($ Observed yield $/$ Calculated yield $) \times 100$
4. Atom Efficiency $=\%$ yield (over two steps) $\times$ Atom economy
5. Process Mass Intensity $(\mathbf{P M I})=($ Total mass used in the process $/$ Mass of the product)
6. Mass Productivity $=(1 /$ Mass intensity $) \times 100$
7. $\mathbf{E}$-factor $=($ Mass intensity -1$)$

## Green Metrics Calculation for J (4a), starting from 1-bromo-4-methylbenzene (B):

1. No. of steps $=2$
2. Atom Economy $=[(338.45) /(133.19+171.04+117.15+96)]$ x $100=65.42 \%$
[Contribution from catalysts was excluded]
3. \% yield $=(95 \times 88) / 100=83.60 \%$
4. Atom efficiency $=(83.6 / 100) \times 65.42=54.69$
5. Process Mass Intensity $=\{(15.98+17.1+2.74+3.28+13.44+2.07+2.31+23.43) / 29.78\}=$ $(80.35 / 29.78)=2.70 \mathrm{~kg} / \mathrm{kg}$
[Contribution of catalysts was included]
6. Mass Productivity $=(1 / 2.70) \times 100=37.03 \%$
7. $\mathbf{E}$ - factor $=(2.70-1)=1.70 \mathrm{~kg} / \mathrm{kg}$

Basic Green Chemistry metrics were calculated for some representative examples of synthesized compounds ( $\mathbf{4 a}$ and 5 m ).

## Our methodology:



Steps involved in this process are:


1. No. of steps $=1$
2. Atom Economy $=[(338.45) /(124.0+133.19+117.15)] \times 100=90.41 \%$
3. \% yield $=(0.66 / 0.81) \times 100=81 \%$
4. Atom Efficiency $=(81 / 100) \times 90.41=73.23$
5. Process Mass Intensity $=(100.0+129.46+94.89+9.6 / 222)=1.50 \mathrm{~kg} / \mathrm{kg}$
6. Mass Productivity $=(1 / 1.50) \times 100=66.66 \%$
7. $\mathbf{E}$-factor $=(1.50-1)=0.50 \mathrm{~kg} / \mathrm{kg}$

Green Metrics Calculation for $\mathbf{E}$ (51), starting from p-quinol (1a)

(A)

1.2 eq
(B)

(C)

(E)

1. No. of steps $=1$
2. Atom Economy $=[(425.52) /(124+193+144)] \times 100=[(425.52 / 461)] \times 100=92.30 \%$
3. \% yield $=(0.58 / 0.81) \times 100=71 \%$
4. Atom Efficiency $=(71 / 100) \times 92.30=65.53$.
5. Process Mass Intensity (PMI) $=[(100+234+117+9.6) / 244]=(460.6 / 244)=1.89 \mathrm{~kg} / \mathrm{kg}$
6. Mass Productivity $=(1 / 1.89) \times 100=52.91 \%$
7. $\mathbf{E}$-factor $=(1.89-1)=0.89 \mathrm{~kg} / \mathrm{kg}$

Green Metrics Calculation for E (4a), starting from p-cresol

(B)

(C)

AcOH (20 mole\%) (F)

(G)

Steps involved in this process are:


Green Metrics Calculation for E (4a), starting from p-quinol (1a)

1. No. of steps $=2$
2. Atom Economy $=[(338.45) /(108.0+322+133.19+117.15)] \times 100=49.75 \%$
3. \% yield $=(75 \times 81) / 100=60 \%$
4. Atom Efficiency $=(60 / 100) \times 49.75=29.85$
5. Process Mass Intensity $=(116.60+382.40+129.46+94.89+9.6 / 222)=3.30 \mathrm{~kg} / \mathrm{kg}$
6. Mass Productivity $=(1 / 3.30) \times 100=30.3 \%$
7. $\mathbf{E}$-factor $=(3.30-1)=2.30 \mathrm{~kg} / \mathrm{kg}$


Green Metrics Calculation for E (5a), starting from p-quinol (1a)

1. No. of steps $=2$
2. Atom Economy $=[(425.52) /(108+322+193+144)] \times 100=[(425.52 / 767)] \times 100=55.48 \%$
3. \% yield $=(75 \times 71) / 100=53.25 \%$
4. Atom Efficiency $=(53.25 / 100) \times 55.48=29.54$
5. Process Mass Intensity (PMI) $=[(116.6+382.4+234+117+9.6) / 244]=(859.6 / 244)=3.52 \mathrm{~kg} / \mathrm{kg}$
6. Mass Productivity $=(1 / 3.52) \times 100=28.41 \%$
7. $\mathbf{E}$-factor $=(3.52-1)=2.52 \mathrm{~kg} / \mathrm{kg}$

Attempts for $\mathbf{s p}^{3}$ functionalization with pyrrolidine and piperdines: We investigated three types of dienones with pyrrolidine and indole (NH) as well as 2-naphthol in the presence of AcOH (20-40\%). Indole and 2-naphthol were majorly recovered and there was decomposition of p-quinol in all of our attempts.


## [9] References:

1. a) Novak, M.; Glover, S. A. J. Am. Chem. Soc. 2004, 126, 7748-7749; b) Green, N. J.; Connolly, C. A.; Rietdijk, K. P. W.; Nichol, G. S.; Duarte, F.; Lawrence, A. L.
2. Dutta, B.; Sharma, V.; Sassu, N.; Dang, Y.; Weerakkody, C.; Macharia, J.; Miao, R.; Howell, A. R.; Suib, S. L. Green Chem., 2017, 19, 5350-5355.
3. Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A.V. J. Org. Chem. 2018, 83, 4477-4490.
4. a) David J. C. Constable, Alan D. Curzons and Virginia L. Cunningham, Green Chem., 2002, 4, 521-527;
b) Alan D. Curzons, David J. C. Constable, David N. Mortimer and Virginia L. Cunningham, Green Chem., 2001, 3, 1-6.
5. a) for $N$-arylation step; C. Mudithanapelli, L. P. Dhorma and M. Kim, Org. Lett. 2019, 21, 3098-3102; b) for Cross Dehydrogenative Coupling step; J.-J. Zhong, Q.-Y. Meng, B. Liu, X.-B. Li, X.-W. Gao, T. Lei, C.J. Wu, Z.-J. Li, C.-H. Tung and L.-Z. Wu, Org. lett. 2014, 16, 1988-1991.
[10] ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) for 4a


## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) for $\mathbf{4 b}$



CN

$4 b$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4b




## ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 c}$

 m.

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 c}$


${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 c}$


## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ for $\mathbf{4 d}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 d



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 e}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 e



4e

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 f



${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 4 f




## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 g}$



Cllos,



${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for $\mathbf{4 g}$




## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 h}$




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 h


$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 i}$
6
$\cdots$
0
0
1
1





${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 i

${ }^{1} \mathbf{H ~ N M R ~ ( 4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$ ) for $\mathbf{4 j}$





4j

${ }^{13} \mathbf{C ~ N M R ~ ( 1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$ ) for $\mathbf{4 j}$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 k}$



4k

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 k



${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for $\mathbf{4 1}$




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 41



4I

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 m}$




${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 m}$




## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 n}$




4n

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 n}$

$\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 n}$ '




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 n}$,

$\begin{array}{cc}n & 0 \\ -i & \pi \\ 6 & 0 \\ 1 & 1\end{array}$
-30.6
-20.7

$4 n^{\prime}$

## 

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 o}$





${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 40

${ }^{1} \mathrm{H}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) for $\mathbf{4 o}^{\prime}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $4 \mathbf{o}^{\text {, }}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 p}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 p}$






## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) for $\mathbf{4 q}$




4q

 M $\qquad$ N

$\omega$ $\qquad$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 q}$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 r}$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 r}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 s}$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 s

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 t}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 4 t



| $n$ |
| :--- |
| 0 |
| 0 |
| -1 |
| -1 |
| -1 |


$4 s$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 u}$



4u

${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 u}$



4u


${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) for $\mathbf{4 u}{ }^{\mathbf{\prime}}$

## 



${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $4 \mathrm{u}{ }^{\prime}$

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 5



5a


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5a



5a
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 b}$


5b





## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 c




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and 3 drops DMSO-d $\mathrm{d}_{6}$ ) for 5 c


5c

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) for $\mathbf{5 d}$



5d

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5d



5d


## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 5 e




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 e


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 5 f


$5 f$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 f



${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) for $\mathbf{5 g}$



5g

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 g}$


5 g


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 h}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 h}$


## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 i}$




$5 i$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 i



${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) for $\mathbf{5 j}$

riririririribi $\dot{\sim}$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ for $\mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 51


51
${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 51



5

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

## ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ) for $\mathbf{5 m}$

$$
\begin{aligned}
& -11.32
\end{aligned}
$$



5m

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 m


5m


## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 n}$

$$
\begin{aligned}
& \text { \&... }
\end{aligned}
$$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 n}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and 3 Drops DMSO-d $)_{6}$ for 50




50


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ and 3 Drops DMSO-d ) for 50



50


| 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | ppm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 p}$




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5p



5p

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 q}$
 riririr $\dot{\sim}$

${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 q}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 r}$



5r

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{5 r}$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 s

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 5 s

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for $\mathbf{6 a}$




6a



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{6 b}$



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 6b
$-210.0$




6b

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for $\mathbf{6 c}$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 6 c

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ )



## ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ )

$\underbrace{\prime \prime \prime}$


${ }^{13}$ C NMR (101 MHz, $\mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 7


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for 7



7


[^0]:    ${ }^{\text {a }}$ Treament of complex reaction mixture with Boc anhydride didn't give any isolable product

