Supporting Information

Redox-Neutral Functionalization of α-Csp³-H Bond of Secondary Cyclic Amines: Highly Atom-Economic Strategy for N-Arylative/Formal Cross-Dehydrogenative Couplings

Priyankar Jha,[†] Saddam Husen,^{†±} and Ravindra Kumar*,^{†±}

[†]Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India

[±] Chemical Sciences Division, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India

E-mail: ravindra.kumar1@cdri.res.in

PAGE

TABLE OF CONTENTS

[1] General S1 [2] Preparation of starting materials *S2* [3] Evaluation of redox-neutral conditions for CDC reactions with Indole (Table 1) *S3* [4] Synthesis and spectral data for indole addition products (4) *S3* [5] Synthesis and spectral data for phenol addition products (5) *S13* [6] Synthesis and spectral data for ketone addition products (6) S21 [7] Mechanistic studies S24 [8] Calculations of Green Chemistry Metrics *S26* [9] References *S30* [10] ¹H and ¹³C NMR spectra S31

[1] General

¹H and ¹³C nuclear magnetic resonance spectra were recorded on Bruker Avance III 400 spectrometer at 25 °C. The chemical shifts in ¹H NMR and ¹³C{¹H} NMR spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard; ¹H NMR spectra (CDCl₃ δ 7.26 ppm), ¹³C (CDCl₃ δ 77.16). Coupling constants (*J*) are quoted in Hz. Splitting patterns are denoted as "s" for singlet; "d" for doublet; "t" for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m"for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets, and "app" for apparent. Assignment of proton signals was assisted by ¹H, ¹H COSY, HSQC and HMBC experiments. ¹³C NMR spectra were recorded at 100 MHz using a Bruker AVANCE 400. High Resolution Mass Spectra (HRMS) were recorded on Q-TOF mass spectrometer at SAIF department in CSIR-CDRI, Lucknow, India. Reactions were performed using borosil sealed tube vial or Schlenk tube. Temperature mentioned for any reaction is corresponding to the oil bath temperature. Column chromatography was done in 60-120 Å or 100-200 Å mesh silica gel of Merck Company. All solvents were distilled for purification in column chromatography. Reagents and starting materials were used as received from company. THF and toluene were distilled from sodium benzophenone ketyl and other solvents were distilled under standard procedures. Starting materials, *p*-quinols were synthesized with the procedures that reported in literature.¹

[2] Preparation of starting materials

Oxidative dearomatization of phenol to p-quinol was reported with many oxidizing agents; such as Oxone, Hypervalent iodine (III) reagents (most common are PIDA and PIFA), dimethyldioxirane (DMDO), H_2O_2 , *m*-CPBA, $O_2/P(OEt)_3$, and molecular oxygen in the presence of photosensitizer. Considering all these methods, photo catalyzed oxidation with singlet oxygen seems to be attractive. However, it requires reductive work up with dimethylsulphide or PPh₃, generate eventual DMSO or triphenylphosphineoxide as by-products. Among all, PIDA has been commonly employed for this particular transformation due to the quick reaction time and user friendly. PIFA is relatively more reactive, however costlier. We used PIDA for the synthesis of *p*-quinols.

The general experimental procedures for the preparation of *p*-quinol were followed as reported previously. (Diacetoxyiodo)benzene (PIDA; 1.1 equiv.) was added portion wise to a stirred solution of 4-substituted phenol (1-10 mmol; 1.0 equiv.) in acetonitrile and water (2:1; 10 mL/mmol) at 0 °C. The solution was allowed to warm to room temperature for 2-4 h. After the completion of reaction (monitored by TLC), reaction mixture was quenched with saturated aqueous NaHCO₃ solution to neutralize the acidic reaction mixture and extracted with EtOAc for three times. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (20-30% EtOAc in hexane) to give pure *p*-quinol **1**. Spectral data for *p*-quinols matched that provided in the literature.¹

[3] Evaluation of redox-neutral conditions for CDC reactions with Indole (Table 1)

General Procedure for optimization (Table 1): To the reaction vial/Schlenk tube, a mixture of *p*-quinol (**1a**, 0.5 mmol), THIQ (0.6 mmol), and indole (0.5-0.6 mmol) was taken in different solvents (0.4 M). It was degassed and refilled with nitrogen and then heated at 70 °C with/without an additive (RCO₂H; 10-20 mol%) in the presence of an internal standard, 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one (0.25 mmol). After the completion of reaction as monitored by TLC with reference to *p*-quinol, solvent was evaporated and yields were calculated on the basis of ¹H NMR. The product **4a** was purified by silica gel column chromatography and isolated yield was mentioned in parentheses (entries 12 and 13). R_f 0.5; 20% EtOAc in hexane; eluted with 10% EtOAc in hexane.

Entry 14; Reaction mixture was heated at 70 °C in toluene in open air.

Table 1.

€ (NH	$ \begin{array}{c} $	litions 25 M) °C		-
1a (0.5 mmol)	2a (1.2 equiv)	3a (1.2 equiv)		4a	
run	solvent	additive (mol%)	time (h)	yield (4a, %) ^a	
1	Neat	-	24	39	
2	CH₃CN	-	36	62	
3	THF	-	48	36	
4	HFIP	-	36	nd	
5	DCE	-	36	nd	
6	MeOH	-	18	49	
7	Dioxane	-	48	nd	
8	Toluene	-	12	60	
9 ^b	Toluene	-	12	59	
10	Toluene	PhCO ₂ H (20)	6	77	
11	Toluene	AcOH (20)	6	98	
12 ^b	Toluene	AcOH (20)	6	98 (81) ^c	
13 ^b	Toluene	AcOH (10)	9	94 (78) ^c	
14 ^{b,d}	Toluene	AcOH (20)	10	83 (72) ^c	

^aNMR yield was calculated using 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one as an internal standard. ^b1.0eqiv indol was used. ^cIsolated yields are mentioned in parentheses. ^dOpen air reaction. nd = not determined due to complex reaction mixture.

[4] Synthesis and spectral data for indole addition products (4)

General Procedure (run 12, Table 1):

To the Schlenk tube, a mixture of *p*-quinol (1a, 0.8 mmol), THIQ/amine (0.96 mmol), indole (0.8 mmol) and acetic acid (0.16 mmol) was taken in toluene (2.0 mL). Reaction tube was degassed and refilled with nitrogen and then heated at 70 °C for specified reaction time as mentioned for different entities. After the completion of reaction with reference to *p*-quinol, (monitored by TLC under UV or I₂), toluene was evaporated under reduced pressure and loaded to the pad of silica gel for purification. Yields are calculated with respect to corresponding *p*-quinols (1).

1-(1H-Indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4a): General procedure was followed with

1a (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) at 70 °C for 6 h to furnish **4a** as a white solid (222.0 mg, 0.66 mmol, 81% yield).

Purification: Silica gel Flash chromatography, eluted with 4% EtOAc in hexane $R_f 0.5$ (10% EtOAc in hexane)

The spectral data was completely in match with previously reported data.²

¹**H** NMR (400 MHz, CDCl₃): δ 7.73 (bs, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.23–7.18 (m, 1H), 7.17 (s, 1H), 7.16–7.07 (m, 4H), 7.05–6.94 (m, 3H), 6.90 (d, J = 7.2 Hz, 2H), 6.45 (d, J = 2.3 Hz, 1H), 6.07 (s, 1H), 3.57–3.49 (m, 2H), 3.07–2.95 (m, 1H), 2.72 (dd, J = 16.2, 3.7 Hz, 1H), 2.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.8, 137.4, 136.6, 135.6, 129.7, 128.9, 128.1, 127.7, 126.7, 126.6, 125.6,

124.2, 122.1, 120.2, 119.6, 119.5, 116.6, 111.0, 56.9, 42.7, 26.5, 20.4. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₄H₂₃N₂: 339.1861, found 339.1848

1-(5-Methoxy-1H-indol-3-yl)-2-(*p*-tolyl)-1,2,3,4-tetrahydroisoquinoline (4b): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (123 μ L, 0.97 mmol), 5-methoxy-1H-indole (119.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish 4b as a white solid (232.0 mg, 0.63 mmol, 78% yield).

Purification: Silica gel Flash chromatography, eluted with 70% CHCl₃ in hexane $R_f 0.50$ (80% CHCl₃ in hexane).

The spectral data was completely in match with previously reported data.² ¹H NMR (400 MHz, CDCl₃): δ 7.81 (bs, 1H), 7.26–7.14 (m, 5H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.80 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.56 (d, *J* = 2.1 Hz, 1H), 6.08 (s, 1H), 3.67 (s, 3H), 3.60–3.53 (m, 2H), 3.14–3.02 (m, 1H), 2.80 (dt, *J* = 16.3, 4.0 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.9, 148.2, 137.7, 135.5, 131.6, 129.7, 128.9,128.1, 128.1, 127.1, 126.6, 125.7, 125.2, 118.7, 117.3, 112.3, 111.6, 102.0, 57.4, 55.7, 42.5, 27.0, 20.5. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₅H₂₅N₂O: 369.1967, found 369.1955

1-(6-Fluoro-1H-indol-3-yl)-2-(*p***-tolyl)-1,2,3,4-tetrahydroisoquinoline (4c):** General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 6-fluoro-1H-indole (109.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4c** as a white solid (201.0 mg, 0.57 mmol, 70% yield).

Purification: Silica gel Flash chromatography, eluted with 45% CHCl₃ in hexane R_f0.50 (70% CHCl₃ in hexane).

4b

Melting Point: 183-185 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (s, 1H), 7.45–7.39 (m, 1H), 7.24 (dd, J = 7.9, 2.0 Hz, 1H), 7.23–7.14 (m, 3H), 7.06 (d, J = 8.4 Hz, 2H), 6.98 (dd, J = 9.6, 2.3 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.83–6.74 (m, 1H), 6.56 (d, J = 1.5 Hz, 1H), 6.07 (s, 1H), 3.62–3.51 (m, 2H), 3.12–3.01 (m, 1H), 2.76 (dt, J = 16.4, 4.1 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 159.9 (d, ¹*J*_{C-F} = 237.2 Hz), 147.8, 137.2, 136.5 (d, ³*J*_{C-F} = 12.4 Hz), 135.5, 129.7, 129.0, 128.1, 126.7, 125.7, 124.5 (d, ⁴*J*_{C-F} = 3.4 Hz), 123.3, 121.0 (d, ³*J*_{C-F} = 10.7 Hz), 119.6, 116.9, 108.3 (d, ²*J*_{C-F} = 24.3 Hz), 97.2 (d, ²*J*_{C-F} = 25.8 Hz), 56.9, 42.7, 26.4, 20.4.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.11

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₄H₂₂N₂F: 357.1767, found 357.1763.

1-(6-Chloro-1H-indol-3-yl)-2-(*p***-tolyl)-1,2,3,4-tetrahydroisoquinoline (4d):** General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 6-chloro-1H-indole (123.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4d** as a white solid (229.0 mg, 0.61 mmol, 76% yield).

Purification: Silica gel Flash chromatography, eluted with 50% CHCl₃ in hexane $R_f 0.50$ (70% CHCl₃ in hexane).

The spectral data was completely in match with previously reported data.²

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (bs, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 1.6 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.22–7.14 (m, 3H), 7.06 (d, J = 8.3 Hz, 2H), 6.98 (dd, J = 8.5, 1.8 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 6.57 (d, J = 1.6 Hz, 1H), 6.06 (s, 1H), 3.60–3.52 (m, 2H), 3.12–3.01 (m, 1H), 2.78 (dt, J = 16.3, 4.0 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.8, 137.1, 136.9, 135.5, 129.7, 129.0, 128.2, 128.1, 128.0, 126.7, 125.7, 125.3, 124.8, 121.2, 120.3, 119.6, 117.0, 110.9, 56.9, 42.8, 26.6, 20.4.

HRMS (ESI⁺): m/z: [M+H]⁺ Calculated for C₂₄H₂₂N₂Cl: 373.1472, found 373.1468.

1-(5-Bromo-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4e): General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 5-bromo-1H-indole (159.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) at 120 °C for 12 h to furnish **4e** as a white solid (252.7 mg, 0.61 mmol, 75% yield).

Purification: Silica gel Flash chromatography, eluted with 70% $CHCl_3$ in hexane $R_f 0.50$ (80% $CHCl_3$ in hexane).

The spectral data was completely in match with previously reported data.³

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 (bs, 1H), 7.54 (d, *J* =1.8 Hz, 1H), 7.26–7.13 (m, 6H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.60–6.54 (m, 1H), 6.01 (s, 1H), 3.58–3.51 (m, 2H), 3.11–3.06 (m, 1H), 2.78 (dt, *J* = 16.3, 4.0 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 148.0, 137.1, 135.4, 135.1, 129.7, 129.0, 128.7, 128.4, 128.0, 126.7, 125.7, 125.5, 125.0, 122.9, 119.2, 117.6, 113.0, 112.3, 57.2, 42.9, 26.6, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₄H₂₂N₂Br: 417.0966, found 417.0967, 419.0942

3-(2-(3,4-Dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indole-5-carbonitrile (4f): General

procedure was followed with 4-hydroxy-3,4-dimethylcyclohexa-2,5-dien-1-one (112.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 1H-indole-5-carbonitrile (115.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4f** as a white solid (198.5 mg, 0.53 mmol, 65% yield).

Purification: Silica gel Flash chromatography, eluted with 1% in EtOAc in CH_2Cl_2

 $R_f 0.40$ (5% EtOAc in CH₂Cl₂).

Melting Point: 195-197 °C

¹**H NMR (400 MHz, CDCl₃):** δ 8.23 (s, 1H), 7.73 (s, 1H), 7.37–7.33 (m, 2H), 7.23–7.15 (m, 4H), 7.00 (d, J = 8.2 Hz, 1H), 6.84 (d, J = 2.5 Hz, 1H), 6.73 (dd, J = 8.1 Hz, 2.5, 1H), 6.70 (d, J = 2.3 Hz, 1H), 6.05 (s, 1H), 3.60–3.52 (m, 1H), 3.50–3.41 (m, 1H), 3.13–3.02 (m, 1H), 2.77 (d, J = 16.5, 4.1 Hz, 1H), 2.23 (s, 3H),

2.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 148.2, 138.2, 137.3, 136.7, 135.4, 130.3, 129.1, 128.0, 126.9, 126.5, 126.4, 126.3, 125.8, 125.0, 120.8, 120.3, 119.4, 115.1, 111.8, 102.6, 57.1, 42.9, 26.7, 20.3, 18.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄N₃: 378.1970, found 378.1955.

1-(5-Nitro-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4g): General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 5-nitro-1H-indole (162.0 mg, 0.97 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4g** as a white solid (222.0 mg, 0.58 mmol, 72% yield).

Purification: Silica gel Flash chromatography, eluted with 100% in CHCl₃ $R_f 0.40$ (100% in CHCl₃).

MeO₂C

4h

Melting Point: 205-207 °C

¹**H** NMR (400 MHz, CDCl₃): δ 8.36 (bs, 1H), 8.33 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.7, 2.4 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.24–7.18 (m, 4H), 7.05 (d, J = 8.2 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 1.8 Hz, 1H), 6.07 (s, 1H), 3.54–3.48 (m, 2H), 3.13–3.04 (m, 1H), 2.86 (dt, J = 16.4, 4.2 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 147.9, 141.8, 139.4, 136.7, 135.4, 129.8, 129.4, 129.0, 127.9, 127.1, 127.0, 126.0, 125.9, 121.7, 118.1, 117.8, 110.9, 57.4, 43.4, 27.1, 20.4. HRMS (ESI⁺): m/z: [M+H]⁺ Calculated for C₂₄H₂₂N₃O₂: 384.1712, found 384.1705.

Methyl 3-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indole-6-carboxylate (4h): General procedure was followed 1a (100.0 mg, 0.81 mmol), 2a (123 μ L, 0.97 mmol), methyl 1H-indole-6-carboxylate (175.0 mg, 0.97mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish 4h as a white solid (198.0 mg, 0.50 mmol, 62% yield).

Purification: Silica gel Flash chromatography, eluted with 1% in EtOAc in $\rm CH_2Cl_2$

 $R_{\rm f}0.50$ (5% EtOAc in CH₂Cl₂).

Melting Point: 203-205 °C

¹**H NMR (400 MHz, CDCl₃):** δ 8.28 (bs, 1H), 8.07 (d, *J* = 0.8 Hz, 1H), 7.69 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.26–7.22 (m, 1H), 7.22–7.14 (m, 3H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.76 (d, *J* = 1.8 Hz, 1H), 6.09 (s, 1H), 3.92 (s, 3H), 3.60–3.50 (m, 2H), 3.14–3.00 (m, 1H), 2.89 (dt, *J* = 16.5, 4.0 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.2, 147.8, 137.1, 135.9, 135.5, 130.2, 129.7, 129.0, 128.3, 128.0, 127.5, 126.7, 125.8, 123.7, 120.6, 119.8, 117.1, 113.4, 56.9, 51.9, 42.9, 26.7, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₅N₂O₂: 397.1916, found 397.1901.

1-(1H-Pyrrolo[2,3-b]pyridin-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4i): General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), 1H-pyrrolo[2,3-b]pyridine (118.0 mg, 0.97 mmol), and acetic acid (9 μ L, 0.16 mmol) at 100 °C for 13 h to furnish **4i** as a white solid (170.0 mg, 0.50 mol, 62% yield).

Purification: Silica gel Flash chromatography, eluted with 25% EtOAc in CHCl₃ $R_f 0.50$ (50% EtOAc in CHCl₃).

Melting Point: 218-220 °C

¹**H NMR (400 MHz, CDCl₃):** δ 10.16 (bs, 1H), 8.31–8.21 (m, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.26–7.22 (m, 1H), 7.21–7.16 (m, 3H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.96–6.88 (m, 3H), 6.75 (s, 1H), 6.08 (s, 1H), 3.58–3.51 (m, 2H), 3.16–2.92 (m, 1H), 2.80 (dt, *J* = 16.3, 3.6 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.0, 147.9, 142.6, 136.9, 135.5, 129.7, 129.0, 128.8, 128.3, 128.0, 126.8, 125.7, 124.7, 119.5, 117.5, 117.1, 115.6, 57.4, 42.7, 26.8, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₃H₂₂N₃: 340.1814, found 340.1804.

2-(4-Ethylphenyl)-1-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4j): General procedure

was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one (112.0 mg, 0.81 mmol), THIQ (123 μ L, 0.97 mmol), 2-methyl-1H-indole (106.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4j** as a white solid (187.0 mg, 0.51 mmol, 63% yield).

Purification: Silica gel Flash chromatography, eluted with 50% CHCl₃ in hexane $R_f 0.20$ (50% CHCl₃ in hexane).

Melting Point: 128-130 °C

¹H NMR (400 MHz, CDCl₃): δ 7.65 (bs, 1H), 7.20 (s, 2H), 7.17 (s, 1H), 7.12–7.04 (m, 4H), 7.02 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 7.6 Hz, 1H), 5.90 (s, 1H), 3.73–3.63 (m, 1H), 3.62–3.53 (m, 1H), 3.13–3.03 (m, 2H), 2.57 (q, J = 7.6 Hz, 2H), 2.00 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.1, 138.3, 136.4, 135.3, 134.9, 133.4, 128.7, 128.6, 128.2, 128.1, 126.2, 126.0, 120.7, 120.1, 119.4, 119.3, 113.5, 110.0, 57.6, 46.6, 28.2, 28.0, 15.7, 12.2. HRMS (ESI⁺): m/z: [M+H]⁺ Calculated for C₂₆H₂₇N₂: 367.2174, found 367.2159.

1-(1H-Indol-3-yl)-2-(4-isopropylphenyl)-1,2,3,4-tetrahydroisoquinoline (4k): General procedure was followed with 4-hydroxy-4-isopropylcyclohexa-2,5-dien-1-one (123.0 mg, 0.81

mmol), **2a** (123 μ L, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4k** as a white solid (160.0 mg, 0.44 mmol 54% yield).

Purification: Silica gel Flash chromatography, eluted with 70% CHCl₃ in hexane $R_f 0.20$ (80% CHCl₃ in hexane).

Melting Point: 137-139 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (bs, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.31–7.21 (m, 2H), 7.20–7.05 (m, 6H), 7.04–6.91 (m, 3H), 6.56 (s, 1H), 6.11(s, 1H), 3.65–3.50 (m, 2H), 3.14–2.96 (m, 1H), 2.89–2.69 (m, 2H), 1.21 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 148.0, 138.8, 137.6, 136.6, 135.6, 128.9, 128.1, 127.1, 126.6, 125.6, 124.3, 122.1, 120.2, 119.6, 119.5, 116.3, 111.0, 57.0, 42.5, 33.1, 26.6, 24.2.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₇N₂: 367.2174, found 367.2170.

2-(4-Cyclohexylphenyl)-1-(1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4l): General procedure was

followed with 1-hydroxy-[1,1'-bi(cyclohexane)]-2,5-dien-4-one (155.5 mg, 0.81 mmol), **2a** (123 μ L, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4l** as a white solid (187 mg, 0.46 mmol, 57% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane $R_f 0.40$ (5% EtOAc in hexane).

Melting Point: 170-172 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (bs, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.25–7.23 (m, 1H), 7.18–7.14 (m, 2H), 7.14–7.11 (m, 2H), 7.06 (d, J = 8.6 Hz, 2H), 7.02–6.98 (m, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.55 (d, J = 1.7 Hz, 1H), 6.10 (s, 1H), 3.60–3.54 (m, 2H), 3.15–2.97 (m, 1H), 2.76 (dt, J = 16.3, 4.3 Hz, 1H), 2.48–2.31 (m, 1H), 1.89–1.66 (m, 6H), 1.36 (t, J = 9.6 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 148.0, 138.2, 137.6, 136.6, 135.6, 128.9, 128.1, 127.4, 126.6, 125.6, 124.3, 122.0, 120.2, 119.6, 119.5, 116.2, 111.0, 57.1, 43.6, 42.4, 34.7, 27.0, 26.6, 26.3.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₉H₃₁N₂: 407.2487, found 407.2468.

2-(3,4-dimethylphenyl)-1-(1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline (4m): General procedure was

followed with 4-hydroxy-3,4-dimethylcyclohexa-2,5-dien-1-one (112.0 mg, 0.81 mmol), THIQ (123.0 μ L, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4m** as a white solid (162 mg, 0.46, 57% yield).

Purification: Silica gel Flash chromatography, eluted with 5% EtOAc in hexane $R_f 0.30$ (5% EtOAc in hexane).

Melting Point: 108-110 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.75 (bs, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.25–7.18 (m, 2H), 7.18–7.08 (m, 4H), 7.0 (d, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 6.85 (s, 1H), 6.76 (d, *J* = 7.7 Hz, 1H), 6.48 (s, 1H), 6.10 (s, 1H), 3.62–3.49 (m, 2H), 3.11–2.95 (m, 1H), 2.71 (dt, *J* = 16.3, 3.7 Hz, 1H), 2.19 (s, 3H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 148.2, 137.6, 137.2, 136.6, 135.7, 130.3, 129.0, 128.2, 126.7, 126.6, 126.5, 125.7, 124.4, 122.1, 120.3, 119.6, 119.5, 118.1, 113.9, 111.1, 56.8, 42.6, 26.5, 20.4, 18.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₅H₂₅N₂: 353.2018, found 353.2002.

Reaction with 5-hydroxyindole: Under the optimized conditions, a mixture of CDC products was obtained at C3 (**4n** and **4o**) and C4 positions (**4n**' and **4o**').

3-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indol-5-ol (4n): General procedure was followed

with **1a** (112.0 mg, 0.81 mmol), THIQ (123 μ L, 0.97 mmol), 1H-indol-5-ol (108.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4n** as a white solid (173.0 mg, 0.49 mmol, 60% yield).

The minor regio-isomer **4n'** was isolated as a white solid (19.0 mg, 0.053 mmol, ca 6% yield).

Purification: Silica gel Flash chromatography, both the regioisomers were eluted with 12% EtOAc in hexane

Major isomer (4n): R_f 0.30 (30% EtOAc in hexane).

Melting Point: 136-138 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.81 (bs, 1H), 7.25 (like d, J = 7.8 Hz, 1H), 7.20–7.17 (m, 2H), 7.16–7.12 (m, 2H), 7.06 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.90 (d, J = Hz 1.6, 1H), 6.74 (dd, J = 8.6, 2.2 Hz, 1H), 6.54 (d, J = 1.6 Hz, 1H), 6.03 (s, 1H), 4.61 (bs,1H), 3.63–3.56 (m, 2H), 3.12–2.99 (m, 1H), 2.74 (dt, J = 16.4, 3.9 Hz, 1H), 2.27(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ149.4, 147.8, 137.3, 135.5, 131.8, 129.8, 129.0, 128.2, 127.9, 127.3, 126.6, 125.6, 125.4, 118.8, 116.8, 111.9, 111.7, 104.6, 56.8, 42.6, 26.3, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₄H₂₃N₂O: 355.1810, found 355.1805.

Minor isomer (4n'): R_f0.40 (30% EtOAc in hexane).

Melting Point: 198-200 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.72 (bs, 1H), 8.0 (bs, 1H), 7.21 (d, *J* = 8.3 Hz, 3H), 7.18–7.09 (m, 2H), 7.06 (d, *J* = 8.6 Hz, 1H), 6.98–6.91 (m, 4H), 6.65 (dd, *J* = 2.5, 2.4 Hz, 1H), 6.61 (d, *J* = 8.6 Hz, 1H), 6.00 (s, 1H), 3.70–3.63 (m, 1H), 3.59–3.48 (m, 1H), 3.32 (td, *J* = 11.8, 3.1 Hz, 1H), 2.96 (dt, *J* = 15.9, 3.0 Hz, 1H), 2.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 149.5, 147.9, 137.0, 134.3, 133.4, 130.1, 129.6, 128.3, 127.7, 126.4, 125.0, 122.7, 117.0, 113.4 110.8, 99.8, 61.5, 54.9, 30.6, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₄H₂₃N₂O: 355.1810, found 355.1805.

3-(2-(4-Ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-indol-5-ol (40): General procedure was

followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one (112.0 mg, 0.81 mmol), THIQ (123 μ L, 0.97 mmol), 1H-indol-5-ol (108.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **40** as a white solid (188 mg, 0.51 mmol, 63% yield).

The minor regio-isomer **40'** was isolated as (18 mg, 0.050 mmol, 6% yield).

Purification: Silica gel Flash chromatography, both the regioisomers were eluted with 12% EtOAc in hexane

Major isomer (40): R_f0.30 (30% EtOAc in hexane).

Melting Point: 143-145 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.80 (bs, 1H), 7.25 (like d, J = 7.6 Hz, 1H), 7.21–7.13 (m, 4H), 7.09 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 1.9 Hz, 1H), 6.74 (dd, J = 8.6 Hz, 2.1, 1H), 6.54 (bs, 1H), 6.05 (s, 1H), 3.64–3.57 (m, 2H), 3.12–3.01 (m, 1H), 2.74 (dt, J = 16.3, 4.0 Hz, 1H), 2.58 (q, J = 7.5, Hz 2H), 1.22(t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 149.4, 148.0, 131.8, 129.0, 128.6, 128.2, 127.2, 126.6, 125.7, 125.5, 118.8, 116.7, 111.9, 111.7, 104.6, 56.8, 42.5, 27.9, 26.3, 15.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₅H₂₅N₂O: 369.1967, found 369.1967.

Minor isomer (4o'): R_f0.40 (30% EtOAc in hexane). Melting Point: 201-203 °C ¹H NMR (400 MHz, CDCl₃): δ 9.73 (bs, 1H), 8.02 (bs, 1H), 7.23 (d, *J* = 7.8 Hz, 3H), 7.18–7.06 (m, 3H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.95 (d, *J* = 5.9 Hz, 2H), 6.66 (s, 1H), 6.60 (d, *J* = 8.5 Hz, 1H), 6.00 (s, 1H), 3.67 (dd, *J* = 11.8, 3.8 Hz, 1H), 3.53 (td, *J* = 16.7, 4.5 Hz, 1H), 3.32 (td, *J* = 11.4, 2.1 Hz, 1H), 2.96 (d, *J* = 16.2 Hz, 1H), 2.48 (q, *J* = 7.7 Hz, 2H), 1.12 (t, *J* = 7.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 148.0, 140.4, 137.0, 133.5, 130.1, 128.9, 128.3, 128.3, 127.7, 126.4, 126.4, 125.0, 122.6, 117.0, 113.4, 110.7, 99.9, 61.4, 54.9, 30.6, 28.1, 15.1.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₅H₂₅N₂O : 369.1967, found 369.1962.

1-(1H-Indol-3-yl)-6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4p): General procedure

was followed with **1a** (100.0 mg, 0.81 mmol), 6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (187.6 mg, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4p** as a white solid (257.8 mg, 0.65 mmol, 80% yield).

Purification: Silica gel Flash chromatography, eluted with 20% EtOAc in hexane $R_f 0.60$ (30% EtOAc in hexane).

Melting Point: 186-188 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.98 (bs, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.18 (dd, J = 8.0 7.1 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 7.3 Hz, 1H), 7.00 (dd, J = 8.1, 8.0 Hz, 2H), 6.76 (s, 1H), 6.65 (s, 1H), 6.60 (d, J = 2.0 Hz, 1H), 6.06 (s, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 3.62–3.51 (m, 2H), 3.05–2.94 (m, 1H), 2.61 (dt, J = 16.1, 3.8 Hz, 1H), 2.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 147.9, 147.7, 147.0, 136.6, 129.7, 129.1, 128.0, 127.5, 126.8, 124.4, 122.1, 120.2, 119.6, 117.2, 111.6, 111.1, 111.0, 56.4, 56.0, 55.9, 42.4, 25.6, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₇N₂O₂: 399.2073, found 399.2064.

1-(1H-Indol-3-yl)-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (4q): General procedure was followed with **1a** (100.0 mg, 0.81 mmol), Triptoline (172.2 mg, 0.97 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **4q** as a white solid (155 mg, 0.41 mmol, 51% yield).

Purification: Silica gel Flash chromatography, eluted with 4% EtOAc in hexane $R_f 0.50$ (10% EtOAc in hexane).

Melting Point: 213-215 °C

¹H NMR (400 MHz, CDCl₃): δ 7.95 (bs, 1H), 7.70 (bs, 1H), 7.52 (d, J = 8.2, 7.6 Hz, 2H), 7.31 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 7.6 Hz 1H), 7.19 – 7.09 (m, 3H), 7.06 – 6.96 (m, 5H), 6.78 (s, 1H), 6.05 (s, 1H), 3.75 – 3.55 (m, 2H), 3.03 – 2.92 (m, 1H), 2.79 (dt, J = 15.1, 5.0 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 136.5, 136.0, 134.6, 129.4, 128.2, 126.9, 126.6, 124.8, 121.3, 120.8,

119.3, 119.0, 118.4, 118.0, 117.7, 115.7, 111.3, 111.1, 108.3, 52.9, 43.4, 20.3, 19.6. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄N₃: 378.1970, found 378.1956.

S10

1-(1H-indol-3-yl)-9-methyl-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole

procedure was followed with 1a (100 mg, 0.81 mmol), N-methyl Triptoline (223.0 mg, 1.2 mmol), indole (95.0 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 4r as a white solid (155.2 mg, 0.40 mmol, 49% yield).

Purification: Silica gel Flash chromatography, eluted with 10% EtOAc in hexane $R_f 0.50$ (20% EtOAc in hexane).

Melting Point: 218-220 °C

¹H NMR (400 MHz, CDCl₃): δ 7.83 (bs, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.22 (dd, J = 7.8, 7.7 Hz, 1H), 7.18 – 7.10 (m, 2H), 7.08 (m, 5H), 6.44 (s, 1H), 6.15 (s, 1H), 3.67 (dd, J = 13.7, 5.0 Hz, 1H), 3.55 – 3.49 (m, 1H), 3.47 (s, 3H), 3.05 – 2.91 (m, 1H), 2.64 (dd, *J* = 15.2, 3.6 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 148.2, 137.1, 136.5, 135.3, 129.8, 129.1, 127.1, 126.6, 124.6, 122.3, 121.2, 119.9, 119.7, 118.9, 118.4, 118.4, 116.2, 111.2, 109.0, 108.9, 52.0, 42.4, 29.6, 20.5, 19.2. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₇H₂₆N₃: 392.2127, found 392.2114.

1-(1H-Indol-3-yl)-2-(4-methoxyphenyl)-1.2,3,4-tetrahydroisoquinoline (4s): General procedure was followed with p-quinone dimethyl monoketal (100.0 mg, 0.65 mmol), 2a (99

µL, 0.78 mmol), indole (76 mg, 0.65 mmol), and acetic acid (7 µL, 0.13 mmol) at 70 °C to furnish 4s as a white solid (182.0 mg, 0.51 mmol, 79% yield).

Purification: Silica gel Flash chromatography, eluted with 10% EtOAc in hexane

R_f0.5 (20% EtOAc in hexane)

Melting Point: 173-175 °C

¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.44 (d, *J*=8.0 Hz, 1H), 7.30 (d, *J*=8.1 Hz, 1H), 7.24–7.13 (m, 5H), 7.01 (dd, J=7.8, 7.3 Hz, 1H), 6.97 (d, J=8.8 Hz, 2H), 6.81 (d, J=8.9 Hz, 2H), 6.56 (s,1H), 5.98 (s, 1H), 3.77 (s, 3H), 3.62–3.53 (m, 1H), 3.53–3.45 (m, 1H), 3.14–2.99 (m, 1H), 2.82 (dt, J=16.5, 4.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 153.4, 144.8, 137.6, 136.5, 135.4, 128.9, 128.2, 126.9, 126.5, 125.7, 124.3, 122.0, 120.3, 119.7, 119.6, 119.2, 114.5, 111.0, 58.0, 55.6, 43.8, 26.9. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₄H₂₃N₂O: 355.1810, found 339.1802

1-(1-methyl-1H-indol-3-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline: General procedure was followed

with 1a (100.0 mg, 0.81 mmol), 2a (123 µL, 0.97 mmol), 1-methyl-1H-indole (101.2 µL, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) at 70 °C for 14 h to furnish 4t as a white solid (133.9 mg, 0.38 mmol, 47% yield).

Purification Silica gel Flash chromatography, eluted with 4 % EtOAc in hexane R_f0.5 (10% EtOAc in hexane)

Melting Point: 86-88 °C

¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J=8.1 Hz, 1H), 7.30–7.25 (m, 2H), 7.23–7.14 (m, 4H), 7.06(d, J=8.0 Hz, 2H), 7.02 (d, J=7.4Hz, 1H), 6.96 (d, J=8.2 Hz, 2H), 6.49 (s, 1H), 6.13 (s, 1H), 3.67 (s, 3H), 3.65-3.53 (m, 2H), 3.14–2.98 (m, 1H), 2.78 (td, J=16.4, 4.2 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ147.9, 137.8, 137.5, 135.7, 129.8, 129.0, 129.0, 128.3, 127.6, 127.2, 126.6,

4r

(4r): General 125.7, 121.7, 120.4, 119.2, 118.0, 116.5, 109.2, 56.9, 42.6, 32.8, 26.5, 20.5. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₅H₂₅N₂: 353.2018, found 353.2002.

Reaction with pyrrol

1-(1H-pyrrol-2-yl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4u): General procedure was followed with

1a (100.0 mg, 0.81 mmol), 2a (123 μ L, 0.97 mmol), 1H-pyrrole (67 μ L, 0.97 mmol), and acetic acid (9 μ L, 0.16 mmol) at 70 °C for 12 h to furnish mono addition product at C2 (4u; 25 mg, 0.0.087 mmol, 11 % yield) along with C2 and C5 bis addition product (4u'; 12 mg, 0.023 mmol, 3 % yield) as a thick oil.

Purification: Both the compounds were isolated with silica gel Flash chromatography, eluted at 4-5 % EtOAc in hexane

4u: R_f 0.5 (10% EtOAc in hexane)

¹**H NMR (400 MHz, CDCl₃):** δ 8.13 (bs, 1H), 7.31–7.27 (m, 1H), 7.25–7.20 (m, 2H), 7.19–7.14 (m, 1H), 7.09 (d, *J*=8.3 Hz, 2H), 6.92(d, *J* = 8.5 Hz, 2H), 6.69–6.64 (m, 1H), 6.11–6.05 (m, 1H), 5.85 (s, 1H), 5.73–5.66 (m,1H), 3.63–3.51 (m, 1H), 3.50–3.37 (m, 1H), 3.07–2.93 (m, 1H), 2.75 (td, *J*=16.3, 4.5 Hz, 1H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.5, 135.6, 135.0, 133.3, 129.6, 128.6, 128.3, 127.7, 126.8, 125.6, 116.8, 116.2, 107.9, 107.5, 57.7, 42.9, 26.8, 20.2.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₀H₂₁N₂: 289.1705, found 289.1691.

2,5-bis(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-1H-pyrrole (4u'):

$R_{\rm f}$ 0.6 (10% EtOAc in hexane)

¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J=13.3Hz, 1H), 7.22–7.13 (m, 6H), 7.12–7.06 (m, 2H), 7.06–6.99 (m, 4H), 6.85–6.18 (m, 4H), 5.72 (s, 1H), 5.69 (s, 1H), 5.47 (d, J = 2.6 Hz, 1H), 5.39 (d, J = 2.7 Hz, 1H), 3.50–3.36 (m, 2H), 3.35–3.25 (m, 1H), 3.25–3.14 (m,1H), 3.01–2.87 (m, 2H), 2.73–2.59 (m, 2H), 2.29 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 147.9, 147.8, 139.2, 135.6, 134.9, 132.7, 132.5,

129.7,129.6, 128.6, 128.6, 127.9, 127.9, 126.7, 126.7, 125.6, 125.5, 123.4, 117.0, 116.9, 114.0, 107.6, 107.5,

58.1, 58.1 42.9, 42.5, 27.0, 27.0, 20.4, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₃₆H₃₆N₃: 510.2909, found 510.2902.

[5] Synthesis and spectral data for phenol addition products (5)

Table S1: Optimization of reaction parameters for phenols (Table S1)

^aNMR yield was calculated using 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one as an internal standard. ^bIsolated yields are mentioned in parenthesis. ^cOpen air reaction

Entry 7: Reaction was conducted at 70 °C in toluene in open air flask. Some minor by-products were also detected as below. Yields were calculated based on ¹H NMR.

General Procedure: To the reaction vial/Schlenk tube, a mixture of *p*-quinol (**1a**, 0.5 mmol), THIQ/amine (0.6 mmol), and 2-naphthol (0.5 mmol) was dissolved in toluene (1.2 mL), degassed and refilled with nitrogen. The flask was heated in an oil bath at 70 °C with/without an additive (CH₃CO₂H; 20 mol%) in the presence of an internal standard, 4-hydroxy-2,4,6-trimethylcyclohexa-2,5-dien-1-one (0.25 mmol). The progress of reaction was monitored by TLC with reference to *p*-quinol (monitored by TLC) and NMR yields was primarily checked by ¹H NMR and isolated yields were calculated after column chromatography. Yields are calculated with respect to corresponding *p*-quinols. (R_f 0.5; 20% EtOAc in hexane, eluted at 10%). The best result (**Table S1, entry 6**) was employed for substrate scope (**5**).

1-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol (5a): General procedure was followed

with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol), β -naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5a** as a white solid (193.0 mg, 0.53 mmol, 65% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane $R_f 0.40$ (5% EtOAc in hexane).

HO 5a

Melting Point: 148-150 °C

¹**H** NMR (400 MHz, CDCl₃): δ 11.19 (bs, 1H), 8.16 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.51 (dd, J = 8.3, 7.2 Hz, 1H), 7.28 (dd, J = 7.7, 7.2 Hz, 1H), 7.18 (s, 1H), 7.16 d, J = 1.2 Hz, 1H), 7.13 (s, 1H), 7.09 (dd, J = 7.4, 7.1 Hz, 1H), 6.91 (dd, J = 8.6, 1.5 Hz, 1H), 6.89–6.83 (m, 3H), 6.67 (d, J = 7.2 Hz, 1H), 6.36 (s, 1H), 3.69–3.42 (m, 2H), 3.42–3.26 (m, 1H), 2.95 (pseudo d, J = 15.8 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 154.8, 147.5, 136.5, 135.2, 133.7, 133.4, 129.7, 129.5, 129.0, 128.4, 128.3, 127.5, 127.1, 126.6, 126.5, 123.0, 122.4, 121.1, 119.7, 118.5, 59.7, 55.4, 30.6, 20.7. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄NO 366.1858, found 366.1852

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl) naphthalen-1-ol (5b): General procedure was followed

with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol), α -naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5b** as a white solid (201.0 mg, 0.55 mmol, 68% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane $R_f 0.50$ (5% EtOAc in hexane).

Melting Point: 128-130 °C

¹**H NMR (400 MHz, CDCl₃):** δ 10.76 (bs, 1H), 8.21–8.13 (m, 1H), 7.71–7.65 (m, 1H), 7.40–7.34 (m, 2H), 7.25 (d, *J* = 8.3 Hz, 1H), 7.18–7.12 (m, 4H), 7.11–7.06 (m, 2H), 7.02 (d, *J* = 8.5 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 2H), 5.71 (s, 1H), 3.58 (dt, *J* = 12.8, 5.5 Hz, 1H), 3.46–3.37 (m, 1H), 3.22–3.11 (m, 1H), 2.90 (dt, *J* = 16.8, 5.5 Hz, 1H), 2.19 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.1, 146.9, 135.5, 134.0, 133.9, 129.8, 128.9, 128.5, 127.6, 127.2, 126.9, 126.2, 126.1, 125.4, 124.8, 122.4, 122.2, 120.0, 118.3, 115.9, 64.7, 51.1, 28.2, 20.7. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄NO: 366.1858, found 366.1848.

6-(2-(*p***-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)benzo[d][1,3]dioxol-5-ol (5c):** General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol),),

benzo[d][1,3]dioxol-5-ol (112.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5c** as a white solid (180 mg, 0.50 mmol, 62% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane R_f 0.40 (5% EtOAc in hexane).

Melting Point: 198-200 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.69 (bs, 1H), 7.21–7.15 (m, 2H), 7.14–7.10 (m, 1H), 7.09–7.02 (m, 5H), 6.36 (s, 1H), 6.32 (s, 1H), 5.81 (ABq, *J* = 4.1, 1.2 Hz, 2H), 5.48 (s, 1H), 3.56–3.48 (m, 1H), 3.46–3.38 (m, 1H), 2.98 (dt, *J* = 17.2, 6.1 Hz, 1H), 2.85 (dt, *J* = 17.4, 5.5 Hz, 1H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃ and 3 drops DMSO-d₆): 8 151.1, 147.3, 146.6, 140.1, 135.2, 134.1, 132.9, 129.7, 128.8, 128.3, 126.8, 126.1, 121.2, 119.2, 109.2, 100.7, 99.0, 63.0, 49.1, 27.4, 20.6. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₃H₂₂NO₃: 360.1600, found 360.1593.

4-Methyl-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5d): General procedure was followed

with 1a (100.0 mg, 0.81 mmol), 2a (154 µL, 1.21 mmol), p-Cresol (87.5 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 5d as a white solid (148.0 mg, 0.45 mmol, 55% yield).

Purification: Silica gel Flash chromatography, eluted with 1% EtOAc in hexane R_f0.50 (5% EtOAc in hexane).

Melting Point: 132-134 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.66 (bs, 1H), 7.15 (dd, *J* = 8.0,7.6 Hz, 2H), 7.12 (s, 1H), 7.09 (s, 1H), 7.07 (s, 1H) 7.03 (dd, *J* = 9.0, 8.5 Hz, 3H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 7.9 Hz, 1H), 6.64 (s, 1H), 5.55 (s, 1H), 3.57–3.47 (m, 1H), 3.46–3.36 (m, 1H), 3.0 (dt, *J* = 16.8, 6.4 Hz, 1H), 2.85 (dt, *J* = 17.2, 5.8 Hz, 1H), 2.22 (s, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 154.0, 146.8, 134.8, 134.2, 133.5, 130.4, 129.8, 129.4, 129.1, 128.6, 128.2, 126.9, 126.9, 126.2, 121.9, 116.7, 64.1, 49.7, 27.5, 20.7, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₃H₂₄NO: 330.1858, found 330.1848.

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5e): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (154 µL, 1.21 mmol), phenol (76.0 mg, 1.2 mmol),

and acetic acid (9 µL, 0.16 mmol) to furnish 5e as a white solid (123.0 mg, 0.39 mmol, 48% yield).

Purification: Silica gel Flash chromatography, eluted with 1% EtOAc in hexane R_f0.50 (5% EtOAc in hexane).

Melting Point: 138-140 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.96 (bs, 1H), 7.26–7.13 (m, 6H), 7.11–7.06 (m, 3H), 6.90 (dd, J = 7.7, 1.5 Hz, 1H), 6.84 (dd, J = 8.1, 1.1 Hz, 1H), 6.79 (ddd, J = 7.6, 7.4, 1.2 Hz, 1H), 5.65 (s, 1H), 3.62–3.54 (m, 1H), 3.53–3.46 (m, 1H), 3.06 (dt, *J* = 16.9, 6.2 Hz, 1H), 2.92 (dt, *J* = 17.0, 5.5 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 156.4, 146.6, 134.7, 134.2, 133.7, 129.9, 129.8, 129.1, 128.9, 128.6, 127.2, 127.0, 126.2, 122.0, 119.2, 117.0, 64.1, 49.7, 27.4, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₂H₂₂NO: 316.1701, found 316.1690.

4-Methoxy-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5f): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (154 µL, 1.21 mmol), 4methoxyphenol (100.5 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 5f as a white solid (159 mg, 0.46 mmol, 57% yield).

Purification: Silica gel Flash chromatography, eluted with 10% CHCl₃ in hexane R_f0.50 (20% CHCl₃ in hexane).

Melting Point: 120-122 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.37 (bs, 1H), 7.23–7.12 (m, 3H), 7.11 (d, *J* = 1.8 Hz, 1H), 7.09 (s, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.74 (d, *J* = 8.7 Hz, 1H), 6.69 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.44 (d, *J* = 2.7 Hz, 1H), 5.58 (s, 1H), 3.69 (s, 3H), 3.58–3.43 (m, 2H), 3.11–2.74 (m, 2H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.5, 150.2, 146.6, 134.4, 134.2, 133.5, 129.8, 129.1, 128.5, 128.2, 127.1, 126.2, 121.7, 117.1, 116.5, 113.0, 63.8, 55.6, 49.4, 27.1, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₃H₂₄NO₂: 346.1807, found 346.1814.

1-(2-([1,1'-Biphenyl]-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol (5g): General procedure was followed with 1-hydroxy-[1,1'-biphenyl]-4(1H)-one (150.6 mg, 0.81 mmol), **2a** (154 μL, 1.21 mmol), β naphthol (117.0 mg, 0.81 mmol), and acetic acid (9

Purification: Silica gel Flash chromatography, eluted with 50% CHCl₃ in hexane $R_{f}0.30$ (70% CHCl₃ in hexane).

 μ L, 0.16 mmol) to furnish **5g** as a white solid (209 mg, 0.49 mmol, 60% yield).

Melting Point: 193-195 °C

¹**H NMR (400 MHz, CDCl₃):** δ 10.98 (bs, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.57 (dd, J = 8.5, 7.7 Hz, 2H), 7.37 (d, J = 7.5 Hz, 2H), 7.35–7.28 (m, 7H), 7.25–7.22 (m, 1H), 7.18 (d, J = 7.5 Hz, 1H), 7.15–7.09 (m, 1H), 6.93 (d, J = 8.8 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.44 (s, 1H), 3.75 (dd, J = 11.7, 4.6 Hz, 1H), 3.67–3.55 (m, 1H), 3.40 (td, J = 12.3, 3.1 Hz, 1H), 3.02 (d, J = 16.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 154.7, 149.3, 140.2, 138.1, 136.3, 133.7, 133.4, 129.6, 129.1, 128.6, 128.5, 128.4, 127.7, 127.6, 127.3, 127.1, 126.8, 126.7, 126.6, 123.3, 122.6, 121.1, 119.7, 118.4, 59.3, 55.5, 30.7. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₃₁H₂₆NO: 428.2014, found 428.2011.

1-(2-(*p***-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalene-2,7-diol (5h):** General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol),

naphthalene-2,7-diol (129.7 mg, 0.81 mmol), 2a (154 μ L, 1.21 mmol), naphthalene-2,7-diol (129.7 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5h** as a white solid (179 mg, 0.47 mmol, 58% yield).

Purification: Silica gel Flash chromatography, eluted with 10% EtOAc in hexane $R_f 0.50$ (30% EtOAc in hexane).

Melting Point: 150-152 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.61 (d, J = 8.9 Hz, 1H), 7.53 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 8.9 Hz, 1H), 7.21–7.17 (m, 3H), 7.14 (dd, J = 7.5, 7.2 Hz, 1H), 6.95–6.87 (m, 4H), 6.78 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.21 (s, 1H), 3.69–3.53 (m, 2H), 3.35 (td, J = 10.7, 4.3 Hz, 1H), 3.00 (like d, J = 16.5 Hz, 1H), 2.14 (s, 3H). [2 H missing]

¹³C NMR (100 MHz, CDCl₃): δ 155.4, 155.0, 147.4, 136.4, 135.1, 135.1, 133.4, 130.8, 129.7, 129.3, 128.3, 127.5, 126.7, 126.5, 123.8, 122.8, 117.5, 117.1, 114.2, 103.9, 59.8, 55.5, 30.6, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄NO₂: 382.1807, found 382.1793.

2-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-5,6,7,8-tetrahydronaphthalen-1-ol (5i): General

procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol), 5,6,7,8-tetrahydronaphthalen-1-ol (120.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5i** as a white solid (182.3 mg, 0.49 mmol, 61% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane $R_f 0.40$ (5% EtOAc in hexane).

Melting Point: 154-156 °C

¹**H NMR (400 MHz, CDCl₃):** δ 10.02 (bs, 1H), 7.24–7.16 (m, 2H), 7.15–7.10 (m, 4H), 7.06 (d, J = 8.5, Hz, 2H), 6.58 (d, J = 7.9 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 5.64 (s, 1H), 3.63–3.55 (m, 1H), 3.54–3.45 (m, 1H), 3.02–2.86 (m, 2H), 2.71 (dd, J = 6.0, 5.3 Hz, 2H), 2.65 (dd, J = 6.2, 5.5 Hz, 2H), 2.28 (s, 3H), 1.82 –1.74 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 154.1, 146.6, 138.0, 134.9, 134.3, 133.1, 129.8, 129.1 128.8, 126.9, 126.4, 126.0, 125.2, 123.2, 121.6, 119.4, 63.4, 48.9, 29.6, 26.8, 22.9, 22.9, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₆H₂₈NO: 370.2171, found 370.2164.

2,6-Dimethyl-4-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phenol (5j): General procedure was followed with **1a** (100.0 mg, 0.81 mmol), **2a** (154 μ L, 1.21 mmol), 2,6-

dimethylphenol (99.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5j** as a white solid (127 mg, 0.37 mmol, 46% yield).

Purification: Silica gel Flash chromatography, eluted with 70% CHCl₃ in hexane $R_f 0.50$ (70% CHCl₃ in hexane).

Melting Point: 138-140 °C ¹**H NMR (400 MHz CDCh)**: δ 7 25–7 13 (m 4H

¹**H NMR (400 MHz, CDCl₃):** δ 7.25–7.13 (m, 4H), 7.04 (d, *J* = 8.2 Hz, 2H), 6.85 (m, 2H), 6.80 (d, *J* = 8.2 Hz, 2H), 5.68 (s, 1H), 4.51 (s, 1H), 3.75–3.61 (m, 1H), 3.55–3.44 (m, 1H), 3.03–2.87 (m, 2H), 2.27 (s, 3H), 2.17 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 151.0, 147.7, 138.1, 135.6, 135.2, 129.6, 128.2, 127.9, 127.8, 126.9, 126.7, 126.0, 122.6, 114.7, 62.8, 43.7, 27.8, 20.3, 16.1.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₄H₂₆NO: 344.2014, found 344.1998.

6-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)benzo[d][1,3]dioxol-5-ol (5k): General

procedure was followed with **1a** (100.0 mg, 0.81 mmol), 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (234 mg, 1.21 mmol), benzo[d][1,3]dioxol-5-ol (112.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5k** as a white solid (230.8 mg, 0.55 mmol, 68% yield).

Purification: Silica gel Flash chromatography, eluted with 10% EtOAc in hexane $R_f 0.50$ (20% EtOAc in hexane).

Melting Point: 140-142 °C

¹**H NMR (400 MHz, CDCl₃):** δ 9.62 (bs, 1H), 7.06 (s, 4H), 6.60 (s, 1H), 6.56 (s, 1H), 6.41 (s, 1H), 6.32 (s, 1H), 5.84 (AB q, *J* = 3.9, 1.3 Hz, 2H), 5.45 (s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.54–3.40 (m, 2H), 2.85–2.73 (m, 2H), 2.27 (s, 3H).

MeO

HO.

5k

ĊН

5i

¹³C NMR (100 MHz, CDCl₃): δ 151.7, 148.4, 147.7, 146.6, 140.5, 133.5, 130.0, 126.7, 126.5, 121.9, 119.2, 111.8, 111.3, 109.3, 101.0, 99.5, 63.0, 56.2, 56.0, 48.8, 26.4, 20.9. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₅H₂₆NO₅: 420.1811, found 420.1798.

2-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol General (5l): procedure was followed with 1a (100.0 mg, 0.81 mmol), 6,7-dimethoxy-MeO 1,2,3,4-tetrahydroisoquinoline (234 mg, 1.21 mmol), α-naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 51 as a white solid MeO (244.4 mg, 0.58 mmol, 71% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane R_f0.40 (10% EtOAc in hexane).

Melting Point: 168-170 °C

¹**H NMR (400 MHz, CDCl₃):** δ 10.69 (bs, 1H), 8.18 (like d, J = 7.8 Hz, 1H), 7.80–7.61 (m, 1H), 7.43–7.36 (m, 2H), 7.25 (s, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.2 Hz, 1H), 7.02 (d, J = 8.2 Hz, 2H), 6.61 (s, 1H), 6.54 (s, 1H), 5.67 (s, 1H), 3.84 (s, 3H), 3.69 (s, 3H), 3.61–3.52 (m, 1H), 3.48–3.38 (m, 1H), 3.01 (dt, J = 16.7, 6.2 Hz, 1H), 2.82 (dt, J = 16.7, 5.6 Hz, 1H), 2.22 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.2, 148.1, 147.5, 146.7, 133.9, 133.7, 129.8, 127.2, 127.0, 126.3, 126.1, 125.4, 124.8, 122.4, 122.0, 120.1, 118.4, 111.4, 111.2, 63.9, 55.9, 55.8, 50.4, 27.2, 20.7 HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₈H₂₈NO₃: 426.2069, found 426.2084.

1-(6,7-Dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol: (5m): procedure was followed with 1a (100.0 mg, 0.81 mmol), 6,7-dimethoxy-MeO. 1,2,3,4-tetrahydroisoquinoline (234.0 mg, 1.21 mmol), β-naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 5m as a white MeO solid (234.1 mg, 0.55 mol, 68% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane Rf 0.40 (10% EtOAc in hexane).

Melting Point: 183-185 °C

¹**H NMR (400 MHz, CDCl₃):** δ 11.32 (bs, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 7.55 (like d, J = 7.9 Hz, 1H), 7.31 (dd, J = 7.6, 7.2 Hz, 1H), 7.22 (d, J = 8.3 Hz, 2H), 6.98-6.89 (m, 3H), 6.65 (s, 1H), 6.35 (s, 1H), 6.21 (s, 1H), 3.84 (s, 3H), 3.69–3.62 (m, 1H), 3.58–3.48 (m, 1H), 3.35 (td, *J* = 12.0, 3.4 Hz, 1H), 3.25 (s, 3H), 2.90 (d, *J* = 15.8 Hz, 1H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 154.8, 147.9, 147.6, 147.5, 135.1, 133.5, 129.7, 129.4, 129.0, 128.4, 128.3, 127.0, 125.7, 122.9, 122.4, 120.9, 119.7, 118.4, 110.7, 110.5, 59.3, 55.8, 55.5, 30.2, 20.7.

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₈H₂₈NO₃: 426.2069, found 426.2057.

2-(7-Bromo-2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol

procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one (100.0 mg, 0.81 mmol), 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (256 mg, 1.21 mmol), α-naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 μL, 0.16 mmol) to furnish **5n** as a white solid (224.6 mg, 0.49 mmol, 60% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane R_f0.40 (10% EtOAc in hexane).

Melting Point: 200-202 °C

¹**H** NMR (400 MHz, CDCl₃): δ 10.60 (bs, 1H), 8.19 (like d, J = 8.0 Hz, 1H), 7.74 (like d, J = 7.7, 1H), 7.47–7.39 (m, 2H), 7.36–7.28 (m, 2H), 7.21 (s, 1H), 7.17 (d, J = 8.5 Hz, 2H), 7.06 (dd, J = 8.0, 7.6 Hz, 4H), 5.71 (s, 1H), 3.66–3.56 (m, 1H), 3.49–3.39 (m, 1H), 3.18–3.07 (m, 1H), 2.89 (dt, *J* = 16.9, 5.2 Hz, 1H), 2.55 (q, J = 7.4 Hz, 2H), 1.17 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.1, 146.6, 140.4, 137.7, 134.0, 133.0, 131.2, 130.6, 130.1, 128.6, 127.3, 126.2, 125.4, 124.9, 122.4, 122.1, 119.9, 119.3, 118.7, 64.1, 50.6, 28.1, 27.6, 15.3.

HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₂₇H₂₅BrNO : 458.1120 found 458.1112, 460.1088

3-(2-(p-Tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)quinolin-4-ol (50): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (154 µL, 1.21 mmol), quinolin-4-ol (117.6 mg,

0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 50 as a white solid (130.0 mg, 0.36 mmol, 44% yield).

Purification: Silica gel Flash chromatography, eluted with 4% CH₂Cl₂ in EtOAc R_f 0.50 (10% CH₂Cl₂ in EtOAc).

Melting Point: 233-235 °C

¹H NMR (400 MHz, CDCl₃ and 3 Drops DMSO-d₆): δ 11.00 (d, J = 3.0 Hz, 1H),

8.18 (dd, J = 8.3, 1.3 Hz, 1H), 7.44–7.38 (m, 1H), 7.37–7.34 (m, 1H), 7.31 (dd, J = 8.3, 1.3 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 7.09 (ddd, J = 8.3, 8.1, 1.0 Hz, 1H), 6.93–6.89 (m, 3H), 6.77 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 8.5 Hz, 2H), 6.06 (s, 1H), 3.71–3.60 (m, 1H), 3.32–3.26 (m, 1H), 2.92–2.81 (m, 2H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃ and 3 Drops DMSO-d₆): δ 176.7, 147.1, 139.4, 137.9, 136.8, 134.7, 131.2, 129.4, 128.2, 127.7, 126.7, 126.2, 126.0, 125.8, 124.4, 123.1, 117.8, 114.8, 55.7, 44.9, 28.4, 20.1. HRMS (ESI⁺): m/z: [M+H]⁺ Calculated for C₂₅H₂₃N₂O: 367.1810, found 367.1797.

(8R,13S)-3-Hydroxy-13-methyl-2-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (5p): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (154 µL, 1.21 mmol), estrone

(219.0 mg, 0.81 mmol), and acetic acid (9 µL, 0.16 mmol) to furnish 5p (dr 1:1) as a white solid (159.0 mg, 0.32 mmol, 40% yield).

Purification: Silica gel Flash chromatography, both diastereomers was eluted together with 50% CHCl₃ in hexane $R_f 0.60$ (80% CHCl₃ in hexane).

HO 5p

Melting Point: 196-198 °C ¹H NMR (400 MHz, CDCl₃): δ 7.26–7.02 (m, 18H), 6.80 (s, 1H), 6.73 (s, 1H), 6.56 (s, 1H), 6.51 (s, 1H),

HO

Br'

(5n):

General

5.65 (s, 1H), 5.55 (s, 1H), 3.62–3.44 (m, 4H), 2.98–2.79 (m, 8H), 2.55–2.48 (m, 2H), 2.28 (s, 6H), 2.24– 1.87 (m, 14H), 1.69–1.36 (m, 14H), 0.93 (s, 3H), 0.92 (s, 3H). (mixture of two diastereomers; dr 1:1). ¹³C NMR (100 MHz, CDCl₃): δ 221.1, 154.2, 154.0, 146.4, 137.1, 137.0, 135.0, 134.4, 134.2, 134.0, 133.6, 133.0, 130.3, 129.8, 129.2, 129.0, 128.7, 128.4, 127.0, 126.8, 126.7, 126.1, 126.0, 124.5, 122.1, 121.5, 116.7, 64.4, 63.1, 50.4, 50.3, 48.8, 48.0, 44.1, 43.9, 38.4, 35.9, 31.6, 29.2, 27.8, 26.5, 26.0. (some carbon peaks overlap)

HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₃₄H₃₈NO₂: 492.2903 found 492.2898.

4-Allyl-2-(2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-6-methoxyphenol (5q): General procedure was followed with 4-ethyl-4-hydroxycyclohexa-2,5-dien-1-one (112.0 mg, 0.81 mmol), 2a (154 μ L, 1.21 mmol), 4-allyl-2-methoxyphenol (126.0 μ L, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish 5q as a yellow liquid (184.0 mg, 0.46 mmol, 57% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane $R_f 0.40$ (10% EtOAc in hexane).

¹**H** NMR (400 MHz, CDCl₃): $\delta 8.99$ (bs, 1H), 7.20–7.13 (m, 4H), 7.09–7.05 (m, 4H), 6.58 (d, J = 1.8 Hz, 1H), 6.41 (d, J = 1.6 Hz, 1H), 5.96–5.83 (m, 1H), 5.74 (s, 1H), 5.04–4.94 (m, 2H), 3.82 (s, 3H), 3.69–3.60 (m, 1H), 3.51–3.41 (m, 1H), 3.23 (d, J = 6.6 Hz, 2H), 3.13–3.02 (m, 1H), 2.98–2.86 (m, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.87 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 147.8, 147.0, 143.2, 138.2, 137.9, 135.6, 134.4, 130.3, 128.7, 128.5, 128.0, 126.7, 126.1, 121.5, 120.1, 115.4, 111.1, 62.4, 55.9, 48.6, 39.9, 28.0, 27.7, 15.5.

HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₂₇H₃₀NO₂: 400.2277 found 400.2267

1-(2-(*p***-Tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)naphthalen-2-ol (5r):** General procedure was followed with **1a** (100.0 mg, 0.81 mmol), triptoline (208 mg, 1.21 mmol). B nenthel (117.0 mg, 0.81 mmol) and agetia acid (0.44 0.16

mmol), β -naphthol (117.0 mg, 0.81 mmol), and acetic acid (9 μ L, 0.16 mmol) to furnish **5r** as a white solid (167.0 mg, 0.41 mmol, 51% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane

 $R_{\rm f}0.40$ (5% EtOAc in hexane).

5q

Melting Point: 188-190 °C

¹**H NMR (400 MHz, CDCl₃):** δ 11.45 (bs, 1H), 8.21 (d, J = 8.9 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.65–7.56 (m, 2H), 7.51 (like d, J = 7.7 Hz, 1H), 7.36 (dd, J = 7.2, 7.1 Hz, 1H), 7.21 (d, J = 8.3 Hz, 3H), 7.10–7.01 (m, 3H), 6.95 (d, J = 7.7 Hz, 2H), 6.90 (d, J = 8.3 Hz, 1H), 6.49 (s, 1H), 3.85–3.75 (m, 1H), 3.49–3.27 (m, 2H), 3.00 (d, J = 14.2 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.9, 146.9, 136.4, 135.1, 132.6, 132.4, 130.0, 129.9 129.5, 128.7, 127.6, 126.8, 122.8, 122.0, 119.9, 119.6, 118.3, 113.8, 111.0, 108.6, 56.6, 56.5, 22.7, 20.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ Calculated for C₂₈H₂₅N₂O: 405.1967, found 405.1954.

2-(2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol (5s): General procedure

was followed with p-quinone dimethyl monoketal (100.0 mg, 0.65 mmol), 2a (99 μ L, 0.78 mmol), α -naphthol (93.6 mg, 0.65 mmol), and acetic acid (7 μ L, 0.13 mmol) to furnish 5s as a white solid (165.4 mg, 0.43 mmol, 67% yield).

Purification: Silica gel Flash chromatography, eluted with 5% EtOAc in hexane R_f0.50 (10% EtOAc in hexane).

Melting Point: 168-170 °C

¹H NMR (400 MHz, CDCl₃): δ 10.89 (s, 1H), 8.15 (d, *J*=7.27 Hz, 1H), 7.69 (d, *J*=7.27 Hz, 1H), 7.44–7.33 (m, 2H), 7.25 (d, J=8.6 Hz, 1H), 7.20 (d, J=8.5 Hz, 2H), 7.17–7.03 (m, 4H), 6.98 (d, J=7.7 Hz, 1H), 6.72 (d, J=8.6 Hz, 1H), 7.8 (d, J=8.6 Hz, J=8.6 Hz, 2H), 5.60 (s, 1H), 3.67 (s, 3H), 3.59–3.50 (m, 1H), 3.46–3.34 (m, 1H), 3.33–3.19 (m, 1H), 2.92 (d, *J*=16.5 Hz, 1H)

¹³C NMR (101 MHz, CDCl₃): δ 156.8, 152.1, 142.8, 135.8, 133.9, 133.7, 128.8, 128.3, 127.7, 127.2, 126.8, 126.3, 126.1, 125.4, 124.7, 124.0, 122.4, 120.1, 118.3, 114.4, 65.9, 55.3, 52.1, 28.8. **HRMS (ESI⁺):** *m/z*: [M+H]⁺ Calculated for C₂₆H₂₄NO₂: 382.1807, found 339.1784

[6] Synthesis and spectral data for ketone addition products (6)

1-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (6a): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (123 µL, 0.97 mmol), acetone (600 µL, 8.1

mmol), and acetic acid (9 µL, 0.16 mmol) in toluene at 70 °C for 12 h to furnish 6a as a yellowish liquid (128 mg, 0.46 mmol, 57% yield).

Purification: Silica gel Flash chromatography, eluted with 2% EtOAc in hexane R_f0.5 (5% EtOAc in hexane).

The spectral data was completely in match with previously reported data.³

¹**H NMR (400 MHz, CDCl₃):** δ 7.22–7.14 (m, 4H), 7.10 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.35 (t, J = 6. Hz, 1H), 3.67 (dt, J = 12.8, 5.0 Hz, 1H), 3.58–3.49 (m, 1H), 3.13–3.03 (m, 2H), 2.87–2.78 (m, 2H), 2.30 (s, 3H), 2.10 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 207.4, 147.0, 138.4, 134.5, 129.9, 128.9, 128.0, 126.9, 126.8, 126.2, 115.7, 55.2, 50.1, 42.2, 31.0, 27.1, 20.4.

HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₁₉H₂₂NO: 280.1701 found 280.1687.

1-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-2-one (6b): General procedure was followed with 1a (100.0 mg, 0.81 mmol), 2a (123 µL, 0.97 mmol), butanone (724 µL, 8.1

mmol), and acetic acid (9 µL, 0.16 mmol) in toluene at 70 °C for 12 h to furnish 6b as a yellowish liquid (141 mg, 0.48 mmol, 60% yield).

Purification: Silica gel Flash chromatography, eluted with 3% acetone in hexane $R_f 0.30$ (5% acetone in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 7.18–7.12 (m, 4H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 5.37 (t, J = 6.5 Hz, 1H), 3.67 - 3.60 (m, 1H), 3.55 - 3.46 (m, 1H), 3.11 - 2.99 (m, 2H), 2.83 - 2.73 (m, 2H), 2.40 - 2.28(m, 2H), 2.26 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 210.0, 146.9, 138.4, 134.4, 129.8, 128.8, 127.8, 126.9, 126.7, 126.2, 115.5,

II O 6b 55.5, 48.8, 42.1, 37.2, 27.1, 20.3, 7.5.

HRMS (ESI⁺): m/z: $[M+H]^+$ calculated for C₂₀H₂₄NO: 294.1858 found 294.1849.

1-(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (6c): General procedure was

followed with *p*-quinonedimethyl monoketal (100.0 mg, 0.65 mmol), **2a** (99 μ L, 0.78 mmol), acetone (390 μ L, 8.1 mmol), and acetic acid (7 μ L, 0.13 mmol) to furnish **6c** as a yellowish liquid (140.0 mg, 0.47 mmol, 73% yield).

Purification: Silica gel Flash chromatography, eluted with 6% EtOAc in hexane $R_f 0.50$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 7.18–7.13 (m, 3H), 7.12–7.08 (m, 1H), 6.91 (d, *J*= 9.0 Hz, 2H), 6.81 (d, *J* = 9.0 Hz, 2H), 5.24 (t, *J* = 6.5 Hz, 1H), 3.74 (s, 3H), 3.57–3.52 (m, 1H), 3.50–3.41 (m, 1H), 3.04–2.94 (m, 2H), 2.80–2.68 (m, 2H), 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 207.4, 153.3, 143.7, 138.3, 134.3, 129.0, 126.8, 126.6, 126.2, 118.4, 114.7, 56.0, 55.6, 50.0, 42.9, 30.9, 26.8.

HRMS (ESI⁺): m/z: $[M+H]^+$ calculated for C₁₉H₂₂NO₂: 296.1651 found 296.1637.

2-(4-methoxyphenyl)-1-(1-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline: Compound 4s (100

mg, 0.28 mmol) was dissolved in 1 mL DMF and NaH (13.5 mg, 0.56 mmol, 60% suspension in mineral oil) was added slowly at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 30 min. After cooling again to 0 °C, iodomethane (52 μ L, 0.84 mmol) was added dropwise. The reaction mixture was warmed to room temperature and stirred overnight to afford methylated product as a white solid (85 mg, 0.23 mmol 82 % yield).

Purification: Silica gel Flash chromatography, eluted with 8% EtOAc in hexane $R_f 0.5$ (20% EtOAc in hexane) Melting Point: 123-125 °C

¹**H** NMR (400 MHz, CDCl₃): δ 7.48(d, *J* =7.9 Hz, 1H), 7.30–7.23 (m, 3H), 7.22–7.18 (m, 3H), 7.05 (d, *J* =7.9 Hz, 1H), 7.03–6.98 (m, 2H), 6.87–6.81 (m, 2H), 6.47 (s, 1H), 6.03 (s, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 3.63–3.57 (m, 1H), 3.55–3.48 (m, 1H), 3.14–3.02 (m, 1H), 2.83 (d, *J* =16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 153.2, 144.7, 137.8, 137.3, 135.4, 129.0, 128.9, 128.3, 127.3, 126.5, 125.7, 121.6, 120.3, 119.4, 119.1, 117.1, 114.5, 109.1, 57.8, 55.7, 43.6, 32.7, 26.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₂₅H₂₅N₂O: 369.1967 observed 369.1961

1-(1-methoxynaphthalen-2-yl)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline: A mixture of

compound **5s** (100 mg, 0.26 mmol), K_2CO_3 (72 mg, 0.52 mmol), and iodomethane (32.83 μ L, 0.52 mmol) in 1 mL DMF was stirred at room temperature for overnight to furnish the corresponding O-methylated product as a yellow solid (83 mg, 0.21 mmol, 81 %).

Purification: Silica gel Flash chromatography, eluted with 4% EtOAc in hexane $R_f 0.50$ (10% EtOAc in hexane). Melting Point: 98-100°C

¹**H** NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.57–7.51 (m, 2H), 7.51–7.46 (m, 1H), 7.31 (d, J = 8.7 Hz, 1H), 7.25–7.16 (m, 2H), 7.10 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 7.5 Hz, 1H), 6.78 (d, J = 9.0 Hz, 2H), 6.19 (s, 1H), 3.86 (s, 3H), 3.74(s, 3H), 3.70–3.59 (m, 2H), 3.16 (dt, J = 16.3, 5.8 Hz, 1H), 3.04 (dt, J = 16.5, 5.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ154.5, 153.9, 145.2, 138.0, 135.4, 135.4, 133.1, 128.7, 128.7, 128.1, 127.9, 127.9, 126.3, 126.1, 126.0, 125.8, 123.8, 122.6, 121.9, 114.2, 62.3, 59.8, 55.5, 47.4, 28.2. HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₂₇H₂₆NO₂: 396.1964 observed 396.1953

Attempts for the Oxidative cleavage of PMP group from 4s and 5s: Various oxidative conditions were examined to deprotect PMP group from 4s and 5s (eq 1 and 2). A complex reaction mixture was obtained in all of our attempts (See Table below).

^aTreament of complex reaction mixture with Boc anhydride didn't give any isolable product

Deprotection of *p*-methoxyphenyl (PMP) group from 6c:

1-(1,2,3,4-Tetrahydroisoquinolin-1-yl)propan-2-one (7): Compound 6c (59 mg, 0.2 mmol) was dissolved in acetonitrile (2 mL) and was added dropwise a solution of CAN (328 mg, 0.6 mmol) in water (0.6 mL) at 0 °C and stirred at the same temperature for 2 h. After the completion of reaction, 50 ml water added and reaction mixture was washed with diethylether (2×20 mL). The pH of the aqueous layer was adjusted to 9 with 1M NaOH and extracted with diethyl ether (3×30 mL). The combined organic phases were washed once with saturated aq NaCl (40 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave the residue in pure form of free amine (7; 32 mg, 0.17 mmol, 85.0% yield) as yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.16-7.12 (m, 2H), 7.11 – 7.07 (m, 1H), 7.06 – 7.03 (m, 1H), 4.49 (dd, J = 9.3 Hz, 1H), 3.17 (dt, J = 12.3, 5.3 Hz, 1H), 3.04–2.97 (m, 1H), 2.96–2.83 (m, 3H), 2.73 (dt, J = 16.3, 4.8 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 208.3, 137.9, 135.5, 129.5, 126.2, 125.9, 125.6, 51.9, 50.5, 41.1, 30.7, 29.8. HRMS (ESI⁺): *m/z*: [M+H]⁺ calculated for C₁₂H₁₆NO: 190.1232, found: 190.1226.

[7] Mechanistic studies

Some controlled experiments were conducted to rule out the any possibility of radical pathway under the standard (degassed) reaction conditions.

Eq 1: A control experiment was conducted with 1a (0.5 mmol), 6,7-dimethoxy-THIQ (1.2 equiv), 2-naphthol (1.0 equiv) and a stable free radical TEMPO (1.5 equiv) in toluene in the absence or presence of AcOH (20 mol%). The reaction mixture was degassed and refilled with the stream of nitrogen and heated the tube at 70-100 °C. The aliquot was subjected for mass spectrometry at different intervals for analysis. There was no peak corresponding to TEMPO adduct (6). The desired CDC product 5m was isolated in 60% yield after column chromatography.

Eq 2: Another control experiment was performed in the absence of any nucleophile. A mixture of 1a (0.5 mmol), THIQ (1.2 equiv) and AcOH (20 mol%) in toluene was degassed and refilled with the stream of nitrogen and heated the tube at 70-100 °C. The aliquot was subjected for mass spectrometry at different intervals for analysis. A mass peak corresponding peak for *N*-aryliminium was observed in HRMS (m/z 222.1273; calculated 222.1277).

There is no detection of cyclic amide product (6) in mass spectra, it rules out the possibility of any radical pathway.

Eq 3: A mixture of 1a (0.5 mmol), THIQ (1.2 equiv), indole (0.5 mmol) and AcOH (20 mol%) in toluene was degassed and refilled with the stream of nitrogen. The aliquot was subjected for mass spectrometry at different intervals for analysis. The spectrum showed the mass peaks corresponding to hemiaminal (A) and *N*-aryliminium (C) intermediates along with an indole addition product 4a (*ca* 20%) at room temperature. Reaction was completed in 6 h when heated to 70 °C. The desired product 4a was isolated in 75% yield (eq. 3, see chart below).

[8] Calculations of Green Chemistry Metrics

Previous report [Selected from the literature reports⁵ of maximum yield for each steps; based on Scifinder search]

Steps involved in this process are:

The reactants and reagents efficiently participate in product formation excluding intermediates. The Green Chemistry Metrics⁴ were calculated based on general formula as below:

1. No. of steps = No. of steps involved in the process

2. Atom Economy = [(M.W. of product J)/(M.W. of A + M.W. of B + M.W. of E + M.W. of I)] x 100

3. % yield = (Observed yield/ Calculated yield) x100

4. Atom Efficiency = % yield (over two steps) x Atom economy

5. Process Mass Intensity (PMI) = (Total mass used in the process / Mass of the product)

6. Mass Productivity = $(1/\text{ Mass intensity}) \times 100$

7. E-factor = (Mass intensity -1)

Green Metrics Calculation for J (4a), starting from 1-bromo-4-methylbenzene (B):

 No. of steps = 2
 Atom Economy = [(338.45)/ (133.19 + 171.04 + 117.15 + 96)] x 100 = 65.42% [Contribution from catalysts was excluded]
 % yield = (95 x 88)/100 = 83.60%
 Atom efficiency = (83.6/100) x 65.42 = 54.69
 Process Mass Intensity = {(15.98 + 17.1 + 2.74 + 3.28 + 13.44 + 2.07 + 2.31 + 23.43)/29.78} = (80.35/29.78) = 2.70 kg/kg
 [Contribution of catalysts was included]
 Mass Productivity = (1/2.70) x 100 = 37.03%
 E- factor = (2.70 - 1) = 1.70 kg/kg

Basic Green Chemistry metrics were calculated for some representative examples of synthesized compounds (4a and 5m).

Our methodology:

Steps involved in this process are:

A+B _____ E

Green Metrics Calculation for E (4a), starting from *p*-quinol (1a)

No. of steps = 1
 Atom Economy = [(338.45)/ (124.0 + 133.19 + 117.15)] x 100 = 90.41%
 % yield = (0.66/ 0.81) x100 = 81%
 Atom Efficiency = (81/100) x 90.41 = 73.23
 Process Mass Intensity = (100.0 + 129.46 + 94.89 + 9.6/222) = 1.50 kg/kg
 Mass Productivity = (1/1.50) x 100 = 66.66%
 E-factor = (1.50 - 1) = 0.50 kg/kg

Green Metrics Calculation for E (51), starting from *p*-quinol (1a)

- **1.** No. of steps = 1
- **2.** Atom Economy = $[(425.52)/(124 + 193 + 144)] \times 100 = [(425.52/461)] \times 100 = 92.30\%$
- **3.** % yield = $(0.58/0.81) \ge 100 = 71\%$
- 4. Atom Efficiency = $(71/100) \times 92.30 = 65.53$.
- 5. Process Mass Intensity (PMI) = [(100 + 234 + 117 + 9.6)/244] = (460.6/244) = 1.89 kg/kg
- 6. Mass Productivity = $(1/1.89) \times 100 = 52.91\%$
- 7. **E-factor** = (1.89 1) = 0.89 kg/kg

Green Metrics Calculation for E (4a), starting from *p*-cresol

Green Metrics Calculation for E (4a), starting from *p*-quinol (1a)

No. of steps = 2
 Atom Economy = [(338.45)/ (108.0 + 322 + 133.19 + 117.15)] x 100 = 49.75%
 % yield = (75 x 81)/100 = 60%
 Atom Efficiency = (60/100) x 49.75 = 29.85
 Process Mass Intensity = (116.60 + 382.40 + 129.46 + 94.89 + 9.6/222) = 3.30 kg/kg

6. Mass Productivity = $(1/3.30) \times 100 = 30.3\%$

7. E-factor = (3.30 - 1) = 2.30 kg/kg

Green Metrics Calculation for E (5a), starting from *p*-quinol (1a)

- **1.** No. of steps = 2
- **2.** Atom Economy = $[(425.52)/(108 + 322 + 193 + 144)] \times 100 = [(425.52/767)] \times 100 = 55.48\%$
- **3.** % yield = $(75 \times 71)/100 = 53.25\%$
- **4. Atom Efficiency** = (53.25/100) x 55.48 = 29.54
- 5. Process Mass Intensity (PMI) = [(116.6 + 382.4 + 234 + 117 + 9.6)/244] = (859.6/244) = 3.52 kg/kg
- 6. Mass Productivity = $(1/3.52) \times 100 = 28.41\%$
- **7. E-factor** = (3.52 1) = 2.52 kg/kg

Attempts for sp³ functionalization with pyrrolidine and piperdines: We investigated three types of dienones with pyrrolidine and indole (NH) as well as 2-naphthol in the presence of AcOH (20-40%). Indole and 2-naphthol were majorly recovered and there was decomposition of p-quinol in all of our attempts.

[9] References:

1. a) Novak, M.; Glover, S. A. *J. Am. Chem. Soc.* **2004**, *126*, 7748–7749; b) Green, N. J.; Connolly, C. A.; Rietdijk, K. P. W.; Nichol, G. S.; Duarte, F.; Lawrence, A. L.

2. Dutta, B.; Sharma, V.; Sassu, N.; Dang, Y.; Weerakkody, C.; Macharia, J.; Miao, R.; Howell, A. R.; Suib, S. L. *Green Chem.*, **2017**, *19*, 5350–5355.

3. Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Kumar, A.V. J. Org. Chem. 2018, 83, 4477-4490.

4. a) David J. C. Constable, Alan D. Curzons and Virginia L. Cunningham, *Green Chem.*, 2002, *4*, 521–527;
b) Alan D. Curzons, David J. C. Constable, David N. Mortimer and Virginia L. Cunningham, *Green Chem.*, 2001, *3*, 1–6.

5. a) for *N*-arylation step; C. Mudithanapelli, L. P. Dhorma and M. Kim, *Org. Lett.* 2019, **21**, 3098-3102; b) for Cross Dehydrogenative Coupling step; J.-J. Zhong, Q.-Y. Meng, B. Liu, X.-B. Li, X.-W. Gao, T. Lei, C.-J. Wu, Z.-J. Li, C.-H. Tung and L.-Z. Wu, *Org. lett.* 2014, **16**, 1988-1991.

[10] ¹H and ¹³C NMR spectra ¹H NMR (400 MHz, CDCl₃) for 4a

¹H NMR (400 MHz, CDCl₃) for 4b

¹H NMR (400 MHz, CDCl₃) for 4c

¹⁹F NMR (376 MHz, CDCl₃) for 4c

¹H NMR (400 MHz, CDCl₃) for 4d

¹³C NMR (101 MHz, CDCl₃) for 4d

¹³C NMR (101 MHz, CDCl₃) for 4e

¹³C NMR (100 MHz, CDCl₃) for 4f

¹³C NMR (101 MHz, CDCl₃) for 4g

¹³C NMR (101 MHz, CDCl₃) for 4h

¹³C NMR (101 MHz, CDCl₃) for 4i

¹³C NMR (101 MHz, CDCl₃) for 4j

¹³C NMR (101 MHz, CDCl₃) for 4k

¹H NMR (400 MHz, CDCl₃) for 4l

 7.1.35

 7.1.53

 7.1.53

 7.1.25

 7.1.25

 7.1.25

 7.1.25

 7.1.25

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.1.15

 7.111

 7.111

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.112

 7.113

 7.113

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

 7.118

¹³C NMR (101 MHz, CDCl₃) for 4l

¹³C NMR (101 MHz, CDCl₃) for 4m

¹H NMR (400 MHz, CDCl₃) for 4n

¹³C NMR (101 MHz, CDCl₃) for 4n

¹³C NMR (101 MHz, CDCl₃) for 4n'

¹³C NMR (101 MHz, CDCl₃) for 40

¹H NMR (101 MHz, CDCl₃) for 40'

¹³C NMR (101 MHz, CDCl₃) for 40'

¹H NMR (400 MHz, CDCl₃) for 4p

¹³C NMR (101 MHz, CDCl₃) for 4p

¹³C NMR (101 MHz, CDCl₃) for 4q

¹H NMR (400 MHz, CDCl₃) for 4r

8555482222222222244444000044	2000 2000 2000 2000 2000 2000 2000 200
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~



## ¹³C NMR (101 MHz, CDCl₃) for 4r





## ¹H NMR (400 MHz, CDCl₃) for 4t



## ¹³C NMR (101 MHz, CDCl₃) for 4t



## ¹³C NMR (101 MHz, CDCl₃) for 4u



## ¹H NMR (400 MHz, CDCl₃) for 4u'





## ¹³C NMR (101 MHz, CDCl₃) for 4u'



#### ¹³C NMR (101 MHz, CDCl₃) for 5a



¹H NMR (400 MHz, CDCl₃) for 5b



#### ¹³C NMR (101 MHz, CDCl₃) for 5b



#### ¹³C NMR (101 MHz, CDCl₃ and 3 drops DMSO-d₆) for 5c



#### ¹³C NMR (101 MHz, CDCl₃) for 5d



#### ¹H NMR (400 MHz, CDCl₃) for 5e





#### ¹³C NMR (101 MHz, CDCl₃) for 5e







# ¹³C NMR (101 MHz, CDCl₃) for 5f



### ¹³C NMR (101 MHz, CDCl₃) for 5g



#### ¹H NMR (400 MHz, CDCl₃) for 5h

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1



#### ¹³C NMR (101 MHz, CDCl₃) for 5h



#### ¹H NMR (400 MHz, CDCl₃) for 5i





#### ¹³C NMR (101 MHz, CDCl₃) for 5i



## ¹³C NMR (101 MHz, CDCl₃) for 5j



#### ¹³C NMR (101 MHz, CDCl₃) for 5k



#### ¹³C NMR (100 MHz, CDCl₃) for 5l



#### ¹³C NMR (101 MHz, CDCl₃) for 5m

10

0.91

9

8

7

0.96 2.02 3.94 3.94





6

1:00

5

4

3

1.01 1.02 2.02 1.03 1.03 2

ppm

1

3.01

#### ¹³C NMR (101 MHz, CDCl₃) for 5n



#### ¹³C NMR (101 MHz, CDCl₃ and 3 Drops DMSO-d₆) for 50



## ¹³C NMR (101 MHz, CDCl₃) for 5p



## ¹³C NMR (101 MHz, CDCl₃) for 5q



## ¹H NMR (400 MHz, CDCl₃) for 5r


## ¹³C NMR (101 MHz, CDCl₃) for 5r



¹H NMR (400 MHz, CDCl₃) for 5s



## ¹³C NMR (101 MHz, CDCl₃) for 5s



#### ¹H NMR (400 MHz, CDCl₃) for 6a



## ¹³C NMR (101 MHz, CDCl₃) for 6a



## ¹H NMR (400 MHz, CDCl₃) for 6b

	6 6
	• •
T N N N N N N N N N N N N N N N N N N N	00



### ¹³C NMR (101 MHz, CDCl₃) for 6b



## ¹³C NMR (101 MHz, CDCl₃) for 6c



### ¹H NMR (400 MHz, CDCl₃)



## ¹³C NMR (101 MHz, CDCl₃)







### ¹H NMR (400 MHz, CDCl₃)





## ¹³C NMR (101 MHz, CDCl₃)



# ¹H NMR (400 MHz, CDCl₃) for 7

115 114 113 113 106 005 005 005 005 005		100000000000000000000000000000000000000
	4 4 4 4 M M M M M M M M M M M M M M M M	



S79

# ¹³C NMR (101 MHz, CDCl₃) for 7

