Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

Impact of temperature and *in situ* FeCo catalysis on the architecture and

Young's modulus of model wood-based biocarbons

Amandine Codou¹ \top , Jean-Mathieu Pin¹ Ψ , Manjusri Misra^{*1,2}, and Amar K. Mohanty^{*,1,2}

¹ Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, N1G 2W1 Ontario, Canada

² School of Engineering, University of Guelph, Thornbrough Building, Guelph, N1G 2W1, Ontario, Canada

* Corresponding author: M. Misra (E Mail: <u>mmisra@uoguelph.ca</u>) and A. K. Mohanty (E-mail: <u>mohanty@uoguelph.ca</u>)

Currently at: \top TNO - Brightlands Materials Center, Urmonderbaan 22, 6167 RD Geleen, The Netherlands. Ψ Polystyvert Inc., 9350 Rue de l'Innovation, Anjou, QC H1J 2X9, Canada.

Biomass	Un-catalysed				Catalysed			
	Measured	Calculated	Measured	Calculated	Measured	Calculated	Measured	Calculated
	300 °C		700 °C		300 °C		700 °C	
Pin / %	51.8±2.3	49.3	17.6±0.5	23.0	49.1±0.2	39.9	21.5±0.5	23.2
Maple / %	48.7±4.1	50.0	23.4±0.9	24.2	45.2±1.3	41.3	26.8±0.2	24.2

Table S1. Percentage of yield measured and recalculated from the analysis of the individual components.

Figure S1. FTIR spectra of the investigated wood and individuals components depending on the temperature and catalysis.

Figure S2. WAXS diffractograms of the un-catalyzed pyrolysed biomass

Figure S3. Elucidation of the Maple FeCo 700 C diffractogram.

(Coupled TwoTheta/Theta)

Figure S4. Elucidation of the Maple FeCo 900 C diffractogram.

Figure S5. Height images as measured by AFM after pyrolysing at 300 °C different sources of biomasses A-E) without and F-J) with CoFe. The scale is the same for all the images.

Theoretical calculation:

• <u>Weight of introduced Fe and Co:</u>

$$m_{Fe} = n \times M = \frac{7.18 \times 10^{-3}}{2} \times 55.845 = 0.2005 \text{ g}$$

$$m_{Co} = n \times M = \frac{7.18 \times 10^{-3}}{2} \times 58.93 = 0.2116 \text{ g}$$

Thus the total amount of introduced metals is:

 $m_{total} = m_{Fe} + m_{Co} = 0.4121 \text{ g}$

• Volume of one FeCo nanoparticle (as an hypothetic perfect sphere) and the coated graphite:

$$V_{FeCo}(1) = \frac{4\pi \times R^3}{3} \approx 4033 \ nm^3$$
, with R = 9.875

$$V_{CSP}(1) = \frac{4\pi \times R^3}{3} \approx 13\ 648\ nm^3$$
, with R = 14.825

With $V_{CSP}(1)$ being the total volume of the core-shell particle representing one FeCo spherical nanoparticle coated with one layer of graphite.

Thus the volume of the coated graphite, V_G :

$$V_G(1) = V_{CSP}(1) - V_{FeCo}(1) \approx 9614 \ nm^3$$

• <u>Calculus of FeCo and graphite weight for one core-shell nanoparticle:</u>

We took:

$$\rho_G = 2.16 \text{ g. cm}^{-3}$$

$$\rho_{FeCo} = 8.17 \text{ g. cm}^{-3}$$

Thus the weight for one particle:

$$m_G(1) = \rho_G \times V_G = 2.16 \times 9.614 \times 10^{-18} \approx 2.08 \times 10^{-17} \text{ g}$$

 $m_{FeCo}(1) = \rho_{FeCo} \times V_{FeCo} = 8.17 \times 4.033 \times 10^{-18} \approx 3.29 \times 10^{-17} \,\mathrm{g}$

• <u>Total amount of generated graphite for the amount of introduced metal, considering the</u> <u>ideal model of perfectly coated FeCo nanoparticles :</u>

Total number of FeCo nanoparticles, TN_{FeCo}:

$$\text{TN}_{FeCo} = \frac{m_{total}}{m_{FeCo}} = \frac{0.4121}{3.29 \times 10^{-17}} \approx 1.25 \times 10^{16} \text{ nanoparticles}$$

Thus, the total weight of generated graphite, m_G , is this ideal case would be:

$$m_G = \text{TN}_{FeCo} \times m_G(1) = 1.25 \times 10^{16} \times 2.08 \times 10^{-17} \approx 0.26 \text{ g}$$

Figure S6. A,C,E,G) Pore size distribution and B,D,F,H) cumulative pore volume for samples A-D) Pine and E-H) Maple, with C,D,G,H) in presence of catalyst.

Figure S7. AFM imaging and automatically calculated Young's modulus