Supporting Information

Deciphering lignin heterogeneity in ball milled softwood; Unravelling the synergy between supramolecular cell wall structure and molecular events

Ioanna Sapouna,^a and Martin Lawoko* ^{a,b}

^aWallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Royal Institute of Technology, KTH Teknikringen 56–58, 100 44 Stockholm (Sweden)

^bDivision of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Royal Institute of Technology, KTH Teknikringen 56–58, 100 44 Stockholm (Sweden)

e-mail: lawoko@kth.se

Figure S1: The extraction protocol.

For the relative determination of lignin and hemicelluloses in the extracted fractions, the following equations (S1&S2) were used. In the first one, for the determination of the hemicelluloses extracted in the fraction, the C2-Ar signal of the phenyl propane unit is integrated and set to 100 (\mathcal{Y}) and the region where the signals for the anomeric C1 appear is also integrated (\mathcal{X}). The ratio of the hemicelluloses to the total hemicelluloses and lignin ($\mathcal{X} + \mathcal{Y}$) is multiplied with the molecular weight ratio of the phenyl propane unit (183 g×mol⁻¹) to the anhydro sugar (162 g×mol⁻¹). Afterwards, the value is multiplied with the percentage of wood extracted in this fraction. The result is divided by the theoretical amount of hemicelluloses in softwoods (0.3) to yield the %hemicelluloses resonate is integrated first and set to 100 (\mathcal{X}) followed by the C2-Ar signal of the phenyl propane unit (\mathcal{Y}). The ratio of the later (\mathcal{Y}) to the total amount of lignin and hemicelluloses ($\mathcal{Y} + x$) is then multiplied with the ratio of the molecular weights of anhydro sugar to phenyl propane and the % of wood extracted. The result is divided by the theoretical amount of lignin in softwoods expressed as 0.27 to yield the percentage of lignin on wood basis.

$$\frac{\chi}{\chi + y} \times \frac{183}{162} \times \% \text{ of wood extracted}}{0.3} = \% \text{hemicelluloses on wood basis}$$

 $\frac{\frac{y}{y+x} \times \frac{162}{183} \times \% \text{ of wood extracted}}{0.27} = \% \text{ lignin on wood basis}$

Equations S1&S2: Determination of relative %hemicelluloses and %lignin on wood basis for the extracted fractions.

In Tables S1a-c, the reported amounts of lignin and hemicelluloses were calculated using the results from the HSQC NMR experiments and Equations S1&S2. Klason lignin, acid soluble lignin and carbohydrate analysis using the classical, acid hydrolysis protocol was performed for a few representative samples, in order to confirm the composition of the fractions. The process as well as the results are presented in Table S2c.

Table S1a: Mass balance of extracted material from warm water extraction as a function of milling time and atmosphere.

				V	Vood basis		Fraction
	Warm water	Average mass	% wood				
	extraction	extracted (mg)	extracted	% lignin	% hemicelluloses	% lignin	% hemicelluloses
	1h ball milled	18.7 ± 2.4	1.8	1.75	4.7	29.7	70.3
	2h ball milled	23.5 ± 3.3	2.3	1.15	7.3	15.3	84.7
milled	4h ball milled	39.0 ± 1.6	3.9	1.4	13.1	10.6	89.4
, mil	8h ball milled	100.6 ± 9.8	10.0	3.5	33.7	10.6	89.4
Air	12h ball milled	121.0 ± 3.8	12.1	3.7	41.3	9.0	91.0
	18h ball milled	148.8 ± 9.5	14.9	5.3	50.0	10.8	89.2
	24h ball milled	145.3 ± 11.9	14.5	5.5	48.2	11.7	88.3
	1h ball milled	26.0 ± 1.8	2.6	1.4	8.1	16.8	83.2
	2h ball milled	47.9 ± 6.5	4.8	2.2	15.5	14.4	85.6
milled	4h ball milled	82.1 ± 0.7	8.2	3.9	26.4	14.4	85.6
Ш.	8h ball milled	120.1 ± 3.3	12.0	4.4	40.1	11.2	88.8
N2	12h ball milled	146.7 ± 14.0	14.7	5.6	48.9	11.7	88.3
	18h ball milled	164.8 ± 11.2	16.5	5.9	55.4	10.9	89.1
	24h ball milled	179.5 ± 13.8	18.0	6.9	59.8	11.8	88.2

Table S1b: Mass balance of extracted material from mild alkaline extraction as a function of milling time and atmosphere.

				V	Vood basis		Fraction
	Alkaline	Average mass	% wood				
	extraction	extracted (mg)	extracted	% lignin	% hemicelluloses	% lignin	% hemicelluloses
	1h ball milled	14.7 ± 1.3	1.5	4.2	0.8		
	2h ball milled	18.4 ± 0.1	1.8	5.0	1.0	85.1	14.9
led	4h ball milled	21.2 ± 0.8	2.1	5.9	1.2		
milled	8h ball milled	30.1 ± 3.8	3.0	8.1	2.0	077	17.0
Air	12h ball milled	53.6 ± 8.5	5.4	14.6	3.6	82.2	17.8
	18h ball milled	70.0 ± 4.9	7.0	16.5	7.4	72.1	27.9
	24h ball milled	80.8 ± 15.8	8.1	21.3	6.0	80.3	19.7
	1h ball milled	15.8 ± 0.6	1.5	4.4	0.6		
	2h ball milled	19.0 ± 1.1	1.9	5.6	0.7	90.0	9.8
milled	4h ball milled	33.1 ± 2.7	3.3	9.75	1.2		
mil	8h ball milled	52.1 ± 3.0	5.2	14.3	3.2	83.7	16.3
N2	12h ball milled	86.0 ± 9.7	8.6	22.5	6.6	79.8	20.2
	18h ball milled	110.7 ± 13.6	11.1	31.7	5.4	87.0	13.0
	24h ball milled	167.7 ± 1.4	16.8	49.4	6.6	89.6	10.4

Table S1c: Mass balance of extracted material from IL-EtOH/H⁺ extraction as a function of milling time and atmosphere.

				Wood basis	Fraction
	IL-EtOH, H+	Average mass	% wood		
	extraction	extracted (mg)	extracted	% lignin	% lignin*
	1h ball milled	31.7 ± 4.5	3.2	11.8	100
	2h ball milled	41.0 ± 2.0	4.1	15.2	100
milled	4h ball milled	87.8 ± 2.3	8.8	32.6	100
mil	8h ball milled	97.3 ± 1.6	9.7	35.9	100
Air	12h ball milled	89.9 ± 27.4	9.0	33.4	100
	18h ball milled	76.9 ± 4.0	7.7	28.5	100
	24h ball milled	101.7 ± 8.9	10.2	37.8	100
	1h ball milled	53.4 ± 12.9	5.3	19.6	100
	2h ball milled	57.4 ± 21.3	5.7	21.1	100
milled	4h ball milled	76.2 ± 0.8	7.6	28.1	100
Ш	8h ball milled	59.3 ± 12.7	5.9	21.8	100
N2	12h ball milled	74.2 ± 6.2	7.4	27.4	100
	18h ball milled	102.1 ± 3.3	10.2	37.8	100
	24h ball milled	75.5 ± 1.6	7.6	28.1	100

* Carbohydrates below detection limit.

In Tables S2a-b the amount of residual lignin and hemicelluloses is calculated based on the theoretical 27% and 30% in softwoods respectively, by subtracting the amounts extracted in all the extraction steps. After drying the residue of the IL/EtOH, H⁺ extraction it was not possible to re-disperse the material due to cellulose hornification, hence Klason lignin and sugar analysis was not possible with that method.

Klason lignin, acid soluble lignin (ASL) and carbohydrate analysis of the starting material, i.e. Wiley milled spruce and a few representative samples, were determined with acid hydrolysis.¹ In short, 100 mg of the lyophilized sample were mixed with 1.5 mL of 72% H₂SO₄ and placed in a vacuum desiccator for 80min, with occasional stirring. 42 mL of Milli-Q water were added to the mixture and the reaction bottles were sealed and placed in the autoclave at 125°C for 1h. Afterwards, the mixture was filtered through a pre-weighed glass fiber filter, which was then used for the gravimetric determination of Klason lignin. The hydrolysate was further diluted and analysed with High-Performance Anion-Exchange Chromatography equipped with Pulse Amperometric Detector (HPAEC-PAD) ICS 3000 (Dionex, ThermoScientific, USA). Acid soluble lignin was determined by measuring the absorbance of the diluted hydrolysate at 205nm and the Equation S3. The results are presented in Table S2c.

$$ASL\% = 100 \times \frac{A \times V \times f}{a \times b \times M} - 0.2$$

A= absorbance value at 205 nm V= volume of hydrolysate (L) f= dilution factor α = absorptivity (L×g⁻¹×cm⁻¹). For softwood, α =128 L×g⁻¹×cm⁻¹ b= path length (cm) M= dry weight of the sample (g) 0.2 is a correction value used for the absorbance of sugar degradation products at 205 nm

Equation S3: Determination of acid soluble lignin (ASL).

Table S2a: Total mass balance of lignin from all the steps of the extraction protocol on wood basis and residual lignin. Standard deviation for each fraction is reported in Tables S1a-c.

		Warm				
	% lignin	water	Alkaline	IL/EtOH, H⁺	Total lignin	
	extracted ¹	extraction	extraction	extraction	extracted	Residual lignin*
	1h ball milled	1.8	4.2	11.8	17.8	82.2
	2h ball milled	1.2	5.0	15.2	21.4	78.6
milled	4h ball milled	1.4	5.9	32.6	39.9	60.1
шi	8h ball milled	3.5	8.1	35.9	47.5	52.5
Air	12h ball milled	3.7	14.6	33.4	51.7	48.3
	18h ball milled	5.3	16.5	28.5	50.3	49.7
	24h ball milled	5.5	21.3	37.8	64.6	35.4
	1h ball milled	1.4	4.4	19.6	25.4	74.6
	2h ball milled	2.2	5.6	21.1	28.9	71.1
milled	4h ball milled	3.9	9.8	28.1	41.8	58.2
	8h ball milled	4.4	14.3	21.8	40.5	59.5
N2	12h ball milled	5.6	22.5	27.4	55.5	44.5
	18h ball milled	5.9	31.7	37.8	75.4	24.6
	24h ball milled	6.9	49.3	28.1	84.3	15.7

¹ The %lignin is calculated on wood basis.

* Residual lignin was estimated after addition of the extracted lignin amounts and considering a theoretical 27% lignin in softwoods, as earlier discussed.

Table S2b: Total mass balance of extracted hemicelluloses from warm water extraction and mild alkaline extraction. Standard deviation for each fraction is reported in Tables S1a-c.

	% Hemicelluloses extracted¹	Warm water extraction	Alkaline extraction	Total hemicelluloses extracted	Residual Hemicelluloses*
	1h ball milled	4.7	0.8	5.5	94.5
	2h ball milled	7.3	1.0	8.3	91.7
milled	4h ball milled	13.1	1.2	14.3	85.7
ы.	8h ball milled	33.7	2.0	35.7	64.3
Air	12h ball milled	41.3	3.6	44.9	55.1
	18h ball milled	50.0	7.4	57.4	42.6
	24h ball milled	48.2	6.0	54.2	45.8
	1h ball milled	8.1	0.6	8.7	91.4
	2h ball milled	15.5	0.7	16.2	83.8
milled	4h ball milled	26.4	1.2	27.6	72.4
ы.	8h ball milled	40.1	3.2	43.3	56.7
ZZ	12h ball milled	48.9	6.6	55.5	44.6
	18h ball milled	55.4	5.4	60.8	39.2
	24h ball milled	59.8	6.6	66.4	33.6

¹ The %hemicellulose is calculated on wood basis.

* Residual hemicelluloses were calculated by addition of the extracted amounts and considering a theoretical yield of 30% hemicelluloses for softwoods, as discussed above.

Table S2c: Klason lignin and sugar analysis of the starting material, i.e. Wiley milled spruce. The process is described in the Materials and Methods section. Monosugars detected but not quantified because they were below limit of detection are marked with <l.o.d in the corresponding cells in the Table.

	% Ara	% Rha	% Gal	% Glc	% Xyl	% Man	%Total carbohydrates	%Klason lignin ¹	%ASL ¹	%Mass balance
Wiley milled spruce	1.1	-	2.1	41	5.9	10.8	60.9	33.0	1.2	95.1
WWE 24h air	2.9	< l.o.d	3.9	10.1	12.7	26.4	56.0	6.9	2.5	65.4²
WWE 24h N2	3.0	< l.o.d	4.1	10.6	13.9	26.7	58.3	7.6	3.0	68.9 ²
Alkaline 24h	0.6	-	2.0	5.8	2.1	5.9	16.4	67.8	1.7	85.9
Alkaline 24h N2	0.6	-	2.0	4.9	2.1	5.9	15.5	69.8	1.5	86.8
IL 24h	< l.o.d	-	0.4	< l.o.d	< l.o.d	< l.o.d	0.4	74.5	3.0	77.9 ³
IL 24h N2	< l.o.d	-	0.4	< l.o.d	< l.o.d	< l.o.d	0.4	72.6	3.3	76.3 ³

¹ Includes extractives.

² Lower mass balance for WWE fractions for a number of reasons: acetyl decorations are not included as these are hydrolysed by the acid treatment, oxidized structures in carbohydrates created during ball milling are not analysed, galacturonic acids and glucuronic acids not analysed.

³ Some residual ionic liquid present in sample and contributes to lower mass balance. This was also verified by NMR analysis.

Table S2d: Comparison between the hemicellulose and lignin amounts present in fractions of the protocol, analysed by acid hydrolysis as described in the text above and NMR.

	%Hemice	lluloses	%Lignin		
	IC/HPAEC-PAD ¹	NMR ²	Klason lignin +ASL ¹	NMR ²	
WWE 24h	56.0 ³	88.3	9.4	11.7	
WWE 24h N2	58.3 ³	88.2	10.6	11.8	
Alkaline 24h	16.4	19.7	69.5	80.3	
Alkaline 24h N2	15.5	10.4	71.3	89.6	
IL 24h	0.4	-	77.5	100*	
IL 24h N2	0.4	-	75.9	100*	

¹This analysis gives the absolute values.

² This analysis is semi-quantitative and gives the relative values between lignin and hemicelluloses.

³ Discrepancies when compared to NMR since some acetyl groups, uronic acids and possible oxidized moieties escaped the analysis but were included in the NMR analysis.

*Carbohydrates below detection limit.

Figure S2: Lignin mass balance from (a) mild alkaline extraction and (b) IL/EtOH, H⁺ extraction.

Figure S3a: DMSO SEC overlay of warm water extracts milled in air.

Figure S3b: DMSO-SEC overlay of warm water extracts milled in N2 atmosphere.

Table S3: Results of DMSO SEC using refractive index detector calibration with pullulan standards. The reported values correspond to the largest area peak.

Warm water

	extraction	Mn (g/mol)	Mw (g/mol)	PDI
	1h ball milled	8416	19690	2.34
	2h ball milled	7110	17771	2.50
Air milled	4h ball milled	5449	14342	2.63
mil	8h ball milled	4786	11805	2.47
Air	12h ball milled	3078	10051	2.27
	18h ball milled	2896	8524	2.94
	24h ball milled	3779	7676	2.03
	1h ball milled	7309	18344	2.51
p	2h ball milled	5707	16463	2.88
ille	4h ball milled	5496	14070	2.56
N2 milled	8h ball milled	4965	11727	2.36
2	12h ball milled	4643	10284	2.21
	18h ball milled	4576	9326	2.04
	24h ball milled	4075	8117	1.99

Figure S4a: THF SEC of IL/EtOH, H⁺ fractions milled in air.

Figure S4b: THF SEC of the IL/EtOH, H⁺ fractions milled in nitrogen atmosphere.

Figure S5: HSQC of MWL after purification for the removal of carbohydrates. The starting material was 18h ball milled wood in air. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figure S6a: HSQC of ALK-EtOH, H⁺- red sample. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figure S6b: HSQC of IL/EtOH, H⁺⁻ red sample. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figure S6c: HSQC of IL/EtOH, H⁺ sample before and after reduction. The marked areas highlight the completion of the reduction as the aldehyde signals disappear. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figure S6d: ¹³C-NMR spectra of alkaline fractions before and after reduction. The marked areas highlight the completion of the reduction as the spirodienone signals disappear. DMSO- d_6 was used for the NMR. Peak assignment can be found in Table S9.

In the following figures, S7a-b, the NMR spectra of dehydrogenation polymer lignin (DHP) produced in the presence of uronic acid or without the presence of uronic acid (reference sample) are presented. DHP was synthesized according to previous work.² Using a NE-1800 Eight Channel Programmable syringe pump, 20 mL coniferyl alcohol solution (34 mM in 50% acetone) and 20 mL of H2O2 (34 mM) were pumped into 20 mL solution (50 mg/L in 50% acetone) of horseradish peroxidase (HRP) type IV. The addition occurred under a constant speed of 250 μ L/h, at room temperature, under slow stirring (150 rpm). After the addition, the mixture was stirred for additionally 4h. For the DHP produced in the presence of galacturonic acid, 0.2M of the later were dissolved in 20 mL of 50% acetone and the pH was adjusted at 6.5-7 before the addition of HRP. The coniferyl alcohol used for these experiments was reduced from coniferyl aldehyde. This process is described elsewhere.³

Figure S7a: HSQC of DHP produced in the presence of uronic acid. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figures S7b-c: HSQC of reference DHP. DMSO- d_6 was used for the NMR. Peak assignment can be found in Tables S7, S8.

Figure S8: Evidence of benzyl ester structures between lignin and arabinoglucuronoxylan in wood isolates. Solvent for the NMR was $DMSO-d_6$.

Figure S9: Evidence for the γ -ester LCC in lignin in wood isolates. Solvent for the NMR was DMSO- d_6 .

Figure S10: HMBC and HSQC spectra, evidence of 4-O-etherified 5-5' structures that are connected to β -O-4' substructures and are etherified at phenolic position, not in DBDO structures. Solvent for the NMR was DMSO- d_6 .

Figure S11: HMBC of lignin from warm water extract after mild acidolysis in ethanol and extraction with ethyl acetate. Solvent for the NMR was DMSO- d_6 .

Table S4: Comparison of lignin inter-unit linkages from HSQC and quantitative ¹³C NMR experiments.

	%β-Ο	%β-Ο-4′		7
	HSQC-NMR*	¹³ C-NMR	HSQC-NMR	¹³ C-NMR
ALK-EtOH, H ⁺ -red air milled	40	42	10	11
ALK-EtOH, H⁺-red N2 milled	46	47	13	12
IL/EtOH, H⁺-red air milled	41	46	13	12
IL/EtOH, H⁺-red N2 milled	44	47	13	13

*With HSQC-NMR, the total amount of β -O-4' is presented as described in the main paper.

Table S5: Quantification of 4-O-etherified 5-5' substructures with 13C-NMR.

	% 5-5' etherified
ALK-EtOH, H⁺-red air milled	23
ALK-EtOH, H ⁺ -red N2 milled	23
IL/EtOH, H⁺-red air milled	26
IL/EtOH, H ⁺ -red N2 milled	24
DHP*	25

*DHP was not reduced before NMR analysis, hence the signal corresponding to 5-5' etherified bond overlaps with α - and γ -carbonyls and spirodienone structures. Using the HSQC and ¹³C NMR data, the integral values for α -carbonyls (3%), coniferyl aldehyde (2%), spirodienone (2%) and DBDO (3%) structures were subtracted from the integral value for C3 in 4-O-etherified 5-5' substructures.

Table S6: Most common lignin inter-unit linkages in all fractions. The amounts are calculated from the HSQC spectra, after normalization of C2-Ar integral to 100. Some of the samples were combined for the NMR analysis due to small amounts extracted and are presented in the same cell.

					%β-O-4′ *	%β-5'	%β-β'
			1h b	all milled	15	5	n.a
			2h b	all milled	18	4	n.a
		σ	4h ball milled		12	3	n.a
		ille	8h b	all milled	16	3	n.a
	cts	Air milled	12h	ball milled	18	4	n.a
	trac	Ai		ball milled	23	4	n.a
	ext			ball milled	16	4	n.a
	ter						
	Warm water extracts		1h b	all milled	17	4	n.a
	E			all milled	18	5	n.a
	٧a	ed		all milled	26	4	n.a
	-	nill		all milled	24	4	n.a
		N2 milled		ball milled	20	5	n.a
		~		ball milled	23	4	n.a
				ball milled	22	5	n.a
[
	1h ł	oall m	illed				
		oall m		41	12	3	
_		all m			12		
lleo		oall m					
Air milled		ball m		46	12	3	
Air		ball m		41	11	3	
		ball m			11	3	
	2411	buii ii	inieu	55		5	
	164	oall m	illad				_
		all m		40	12	2	
g		all m		40	12	2	
N2 milled		oall m		1.1	10	2	
2 π		ball m		44	13	3	
z				42	13	3	
		ball m		42	13		
	24n	ball m	nnea	44	12	3	
	41-1		:111				
		oall m oall m		45	12	2	
		oall m		45	12	3	
Air milled							
, L	8h ball milled		47	13	3		
Air	12h ball milled		40	12	2		
	18h ball milled 24h ball milled		48	12	3		
	24n	ball m	illea	46	12	3	
	41.1	11	•11 • •1				
		oall m		42	12	2	
σ		oall m					
N2 milled		oall m		49	13	2	
8		oall m		47	12	3	
ž		ball m		45	12	2	
		ball m		49	15	2	
	24h	ball m	nilled	40	12	2	

Alkaline extracts

IL/EtOH, H⁺ extracts

*For the alkaline and IL/EtOH, H⁺ fractions, the total β -O-4' content is reported and calculated as described in the main paper.

Table S7: ${}^{13}C{}^{-1}H$ correlations of the main lignin inter-unit linkages and LCC identified in 2D HSQC spectra. DMSO- d_6 was used as solvent.

δ_c (ppm)	δ_н (ppm)	Description
71.4	4.71	C_{α}/H_{α} in γ -hydroxylated β -O-4'
83.7	4.28	C_{β}/H_{β} in γ -hydroxylated β -O-4' in G-units
59.9	3.42/3.85	C_{γ}/H_{γ} in β -O-4'
85.7	4.3	C_{β}/H_{β} in γ -hydroxylated β -O-4' in S-units
81.0	4.62	C_{γ}/H_{γ} in γ -acylated β -O-4'
85.6	4.33	C_{β}/H_{β} in β -O-4' in Benzyl Ether structure
61.2	3.79	C_{y}/H_{y} in β -O-4' in Benzyl Ether structure
79.6	4.48	C_{α}/H_{α} in α -O-ethylated β -O-4'
82.9	4.86	C_{α}/H_{α} in Dibenzodioxin
85.5	3.88	C_{β}/H_{β} in Dibenzodioxin
60.4	3.42	C_{v}/H_{v} in Dibenzodioxin
79.4	4.11	C_{β}/H_{β} in Spirodienone
86.8	5.47	C_{α}/H_{α} in Phenylcoumaran
52.9	3.47	C_{β}/H_{β} in Phenylcoumaran
62.5	3.70	C_{v}/H_{v} in Phenylcoumaran
84.5	4.65	C_{α}/H_{α} in Resinol
53.5	3.10	C_{β}/H_{β} in Resinol
71.0	3.78/4.15	C_{v}/H_{v} in Resinol
110.5	7.35	C_2/H_2 in (C=O) _a in G-units
122.6	7.5-7.7	C_6/H_6 in $(C=O)_{\alpha}$ in G-units
105.5	7.0-7.2	$C_{2,6}/H_{2,6}$ in (C=O) _a in G-units
153.4	7.61	C_{α}/H_{α} in Cinnamyl aldehyde
126.1	6.76	C_{β}/H_{β} in Cinnamyl aldehyde
59.5	4.04	C _v /H _v in Cinnamyl alcohol
55.3	3.71	C/H in methoxy group in G-, S-units
104.4	6.72	C_2/H_2 and C_6/H_6 in S-units
110.8	6.96	C ₂ /H ₂ in G-units
114.7	6.73	C_5/H_5 in G-units
119.6	6.76	C ₆ /H ₆ in G-units
112.1	6.69	C ₂ /H ₂ in 4-O-etherified 5-5' substructures
120.6	6.59	C ₆ /H ₆ in 4-O-etherified 5-5' substructures
127.9	7.19	C_2/H_2 and C_6/H_6 in H-units
101.9	4.92	Phenyl Glycoside in G-units
74.5	5.92	C_{α}/H_{α} in Benzyl ester
63.3	4.41	C _ν /H _ν in γ-esterified LCC
62.6	4.23/3.82	γ-acetyl esters in lignin

Table S8: Main ¹³C-¹H correlations of carbohydrate bonds identified in 2D HSQC. The solvent used was DMSO-d₆.

 δ _c (ppm)	δ _н (ppm)	Description
 107.8	4.75	C1/H1 in β-L-arabinopyranoside
 83.3	3.76	C2/H2 in β-L-arabinopyranoside
 84.6	3.98	C4/H4 in β-L-arabinopyranoside
 62.3	3.36/3.44	C5/H5 in β-L-arabinopyranoside
101.6	4.36	C1/H1 in β-D-glucopyranoside
74.8	2.88	C2/H2 in β-D-glucopyranoside
76.7	3.06	C3/H3 in β-D-glucopyranoside
80.1	3.34	C4/H4 in β-D-glucopyranoside
70.3	3.18	C5/H5 in β-D-glucopyranoside
60.0	3.56	C6/H6 in β-D-gluco-/mannopyranoside
101.5	4.36	C1/H1 in β-D-xylopyranoside
72.6	3.02	C2/H2 in β-D-xylopyranoside
74.9	3.30	C3/H3 in β-D-xylopyranoside
 75.3	3.45	C4/H4 in β-D-xylopyranoside
62.9	3.13/3.78	C5/H5 in β-D-xylopyranoside
 75.0	4.78	C3/H3 in 3-O-acetyl-β-D-xylopyranoside
 71.4	4.49	C2/H2 in 2,3-O-acetyl-β-D-xylopyranoside
 72.9	4.97	C3/H3 in 2,3-O-acetyl-β-D-xylopyranoside
 99.2	4.67	C1/H1 in 2,3-O-acetyl-β-D-xylopyranoside
 73.7	4.45	C2/H2 in 2-O-acetyl-β-D-xylopyranoside
 100.0	4.44	C1/H1 in 2-O-acetyl-β-D-xylopyranoside
 66.8	3.28	C4/H4 in β-D-xylopyranoside of xylans non reducing end
 65.3	2.98/3.61	C5/H5 in β -D-xylopyranoside of xylans non reducing end
 103.4	4.14	C1/H1 in β -D-xylopyranoside of xylans non reducing end
 92.3	4.84	C1/H1 in α -D-xylopyranoside of xylans reducing end
 97.3	4.20	C1/H1 in β-D-xylopyranoside of xylans reducing end
 69.7	3.24	C2/H2 in α-D-xylopyranoside of xylans reducing end
 100.3	4.51	C1/H1 in β-D-mannopyranoside
 74.5	2.87	C2/H2 in β-D-mannopyranoside
 76.5	3.06	C3/H3 in β-D-mannopyranoside
 79.1	3.36	C4/H4 in β-D-mannopyranoside
 76.9	3.60	C5/H5 in β-D-mannopyranoside
 70.8	5.21	C2/H2 in 2-O-acetyl β-D-mannopyranoside
 73.1	4.80	C3/H3 in 3-O-acetyl β-D-mannopyranoside
 63.7	4.03/4.26	C6/H6 in 6-O-acetyl β-D-mannopyranoside
 93.5	4.87	C1/H1 in α-D-mannopyranoside of mannans reducing end
 93.8	4.55	C1/H1 in β -D-mannopyranoside of mannans reducing end
 105.3	4.23	C1/H1 in α-D-galactopyranoside
 96.8	5.11	C1/H1 in 4-O-methyl-α-D-Glucuronic Acid
 81.4	3.07	C4/H4 in 4-O-methyl-α-D- Glucuronic Acid
 91.9/95.5	5.18/4.98	C1/H1 in Galacturonic acid

Table S9: Peak assignments for the most common lignin inter-unit linkages 13 C NMR spectra. Due to signal overlap, not all bonds reported in Table S8 can be reported. The solvent used was DMSO- d_6 .

δ _c (ppm)	Description		
55.5	Methoxy group in G- units		
71.4	C_{α} in γ -hydroxylated β -O-4'		
83.4	C_{β} in γ -hydroxylated β -O-4' in G-units		
60.0	C _ν in β-O-4'		
80.9	C_{γ} in γ -acylated β -O-4'		
85.5	C_{β} in β -O-4' in Benzyl ether structure		
79.7	C_{α} in α -O-ethylated β -O-4'		
82.5	C_{α} in Dibenzodioxin		
85.5	C_{β} in Dibenzodioxin		
79.7	C_{β} in Spirodienone		
87.0	C_{α} in Phenylcoumaran		
53.1	C_{eta} in Phenylcoumaran		
62.7	C _γ in Phenylcoumaran		
84.6	C_{α} in Resinol		
53.7	C _β in Resinol		
71.0	C _γ in Resinol		
59.5	C _y in Cinnamyl alcohol		
110.7	C ₂ in G-units		
114.7	C₅ in G-units		
111.9	C ₂ in 4-O-etherified 5-5' substructures		
120.6	C ₆ in 4-O-etherified 5-5' substructures		
74.5	C_{α} in Benzyl ester		

References

- 1. SCAN, Carbohydrate composition, 2009, SCAN-CM, 71, 09
- 2. N. Giummarella, C. Gioia, M. Lawoko. *Green Chemistry*. 2018, **20**, 2651-62.
- 3. M. Jawerth, M. Lawoko, S. Lundmark, C. Perez Berumen, M. Johansson, *RSC Advances*, 2016, **6**, 96281-8.