Supplementary Information

Controlling Product Selectivity with Nanoparticle Composition in Tandem Chemo-Biocatalytic Styrene Oxidation.

Derik Wilbers^{a,b}, Joseph Brehm^c, Richard J. Lewis^c, Jacqueline van Marwijk^d, Thomas E. Davies^c, David J. Morgan^c, Diederik J. Opperman^{a,d}, Martha S. Smit^{a,d}, Miguel Alcalde^e, Athanasios Kotsiopoulos^{a,b}, Susan T. L. Harrison^{a,b*}, Graham J. Hutchings^{c*} and Simon J. Freakley^{f*}

* Sue.Harrison@uct.ac.za, Hutch@Cardiff.ac.uk, s.freakley@bath.ac.uk

^a South African DST-NRF Centre of Excellence in Catalysis, C*Change, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa

^bCentre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa

^c Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10
3AT, UK

^d Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa

e Institute of Catalysis, ICP-CSIC, Cantoblanco, 28049, Madrid, Spain

^fDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Catalyst	Productivity /	Degradation /
	$mol_{H2O2}kg_{cat}\text{-}^{1}h\text{-}^{1}$	$mol_{H2O2}kg_{cat}$ -1h-1
Au ₁₀₀ /TiO ₂	1	9
Au ₇₅ Pd ₂₅ /TiO ₂	32	70
$Au_{50}Pd_{50}/TiO_2$	93	227
$Au_{25}Pd_{75}/TiO_2$	87	247
Pd_{100}/TiO_2	26	269
Lindlar's Catalyst	12	994

Table S1. Catalytic activity towards H_2O_2 synthesis and its subsequent degradation under high pressure batch conditions.

Direct synthesis of H₂O₂ using high-pressure batch autoclave.

 H_2O_2 synthesis was evaluated using a Parr Instruments stainless steel autoclave with a nominal volume of 100 mL and a maximum working pressure of 14 MPa using procedures outlined in Santos et al.¹⁸. To test each catalyst for H_2O_2 synthesis, the autoclave was charged with catalyst (0.01 g) and solvent (5.6 g MeOH (HPLC grade) and 2.9 g H_2O (HPLC grade)). The charged autoclave was then purged three times with 5% H_2/CO_2 (7 bar) before filling with 5% H_2/CO_2 (29 bar), followed by the addition of 25 % O_2/CO_2 (11 bar). The reaction mixture was cooled to a temperature of 2 °C prior to stirring (1200 rpm) for 0.5 h.- H_2O_2 productivity was determined by titrating aliquots of the final solution after reaction with acidified Ce(SO₄)₂ (0.01 M) in the presence of ferroin indicator.

Degradation of H₂O₂ using high-pressure batch autoclave.

Catalytic activity towards H_2O_2 degradation was determined in a manner similar to that used to evaluate catalytic performance towards H_2O_2 synthesis. The autoclave was charged with 0.01 g catalysts and 4 wt. % H_2O_2 solution composed of MeOH (5.6 g), H_2O_2 (50 wt. % 0.69 g) HPLC standard H_2O (2.21 g). Before every reaction, 2 aliquots of 0.05 g were removed and titrated with acidified $Ce(SO_4)_2$ solution using ferroin as an indicator to confirm the H_2O_2 concentration. The autoclave was pressurized with 5 % H_2/CO_2 (29 bar) and reaction temperature subsequently reduced to 2 °C. Once at the desired temperature the reactor was stirred (1200 rpm) for 0.5 h. After the reaction was complete the catalyst was removed from the reaction solvents via filtration and as previously two aliquots of post reaction solution (0.05 g) were titrated against the acidified $Ce(SO_4)_2$ solution using ferroin as an indicator. The degradation activity is reported as $mol_{H2O2}kg_{cat}$ -¹h⁻¹.

Figure S1: Transmission electron microscopy of (a) Au_{100}/TiO_2 , (b) $Au_{75}Pd_{25}/TiO_2$, (c) $Au_{50}Pd_{50}/TiO_2$ and (d $Au_{25}Pd_{75}/TiO_2$ catalysts prepared by modified impregnation H₂/Ar, 400° C, 4 h, ramp rate = 10 °C min⁻¹).

Figure S.2. Surface atomic compositions of as-prepared 1%AuPd/TiO₂ catalysts as determined by XPS using Au (4f) and Pd (3d) regions. (a) Au_{100}/TiO_2 , (b) $Au_{75}Pd_{25}/TiO_2$, (c) $Au_{50}Pd_{50}/TiO_2$ (d) $Au_{25}Pd_{75}/TiO_2$, (e) Pd_{100}/TiO_2 . **Key**: Au⁰ (Green), Pd⁰ (Blue), Pd²⁺ (Purple), Loss of structure (Grey).

Table S.2. Surface atomic composition of 1%AuPd/TiO₂ catalysts as determined via XPS, using Pd (3d) and Au (4f) regions.

Catalyst	Pd^{2+} / Pd^{0}	$(Pd^{2+}+Pd^0) / Au^0$	Pd ⁰ /Au ⁰
1%Au/TiO ₂	-	-	-
0.75%Au-0.25%Pd/TiO ₂	1.39	7.0	3.05
0.5%Au-0.5%Pd/TiO ₂	0.55	4.78	2.92
0.25%Au-0.75%Pd/TiO ₂	0.53	19.5	17.43
1%Pd/TiO ₂	All Pd ⁰	-	-

Scheme S1: Divergent Reaction Pathways Obtained when Employing α-Methylstyrene as Substrate

Figure S3: Comparison of experimentally obtained (a) and NIST database¹ reference(b) GC-MS spectra for the major product formed during α -methylstyrene tandem conversion.

References

 NIST/NIH/EPA Mass Spectral Library, Standard Reference Database 1, NIST 11. Standard Reference Data Program, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011