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Machine learning algorithms

Several different types of supervisedS1 machine learning algorithms were included in the 

present study. Examples include boosting, generalized linear models, nearest neighbors, neural 

networks, partial least squares regression, random forests and support vector machine.S2 Table 2 

in the main text lists each model used with the respective descriptions and abbreviations. The 

following is a brief summary of each modeling technique used in the present study. For further 

details, the reader is referred to some works in the reference list.S3-S5

Random forests

Random forests are ensembles of deep, unpruned decision trees that are trained on 

bootstrapped training samples.S6 The trees are built uncorrelated to each other, thereby allowing 

for a reduction in variation when averaging the bagged predictions. To do this, a random sample 

of m predictors (p) is chosen each time a split in a tree is considered. This allows for individual 

trees to have high variance stemming from different parts of the training data.S7 A rule of thumb 

is to choose m ≈ (p)1/2 and m ≈ p/3 for classification and regression, respectively. In a comparison 

of many different types of machine learning classifiers, the random forest algorithm proved to be 

the most accurate.S2

Boosting

Boosting is an ensembling technique that is applied to individually weak learning 

algorithms. Here, we focus on boosted decision trees. To build an ensemble of boosted decision 

trees, the trees are grown sequentially where each tree is fit to a modified version of the original 

data set. Specifically, trees are fit to the residuals of the current model, not the response.S4 Unlike 
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random forests, which rely on bagging uncorrelated decision trees, boosted decision trees are 

highly dependent on each other. Typically, shallow trees (higher bias, lower variance) are 

sequentially added which slowly improve the fit function by lowering the residuals. The present 

work features gradient tree boosting via the extreme gradient tree boosting algorithm. The 

algorithm is a scalable end-to-end tree boosting system that has recently shown predictive success 

on various datasets.S8

Generalized linear models and regularized generalized linear models

Generalized linear models (GLM)s are extensions of standard linear regression models that 

account for non-normal response distributions and possibly nonlinear functions of the mean. They 

are composed of a response that is a member of the exponential family distribution, and a link 

function that describes how the mean of the response and a linear combination of the predictors 

are related.S9 Traditionally, linear models are fit according to the least-squares method, in which 

model coefficients are selected to minimize the residual sum of squares (RSS). The RSS is defined 

by eqn. (S1), where β0 and βj are estimated model coefficients, yi is the ith observation of the 

response variable (y), and xij is the ith observation of the jth feature of x. Other fitting methods, 

however, may lead to better model interpretability and prediction accuracy. Different from least-

squares, the shrinkage method is a technique that constrains or regularizes the coefficient estimates 

to zero.S4 This may have the effect of significantly reducing the variance in the model. Two popular 

techniques involving the shrinking method are ride regression and the lasso.S10 Ridge regression 

and lasso regression select model parameters that minimize the quantities defined by those in eqns 

(S2) and (S3), respectively, where λ is a hyperparameter tuned empirically over training data.S4 
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The ridge regression and lasso techniques select model coefficients that minimize 

quantities that include a penalty term in addition to the RSS. Ridge regression, with the penalty 

term, , achieves better prediction than traditional linear regression due to an optimized 
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causes decreased variance but increased bias. The lasso regression, with the penalty term, 

, allows for variable selection due to the use of the L1 penalty (i.e. ) instead of the L2 
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penalty (i.e. ) featured in ridge regression.S4,S11 As a result of the L1 penalty, at larger values of 𝛽2
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λ, some of the model coefficients are forced to be exactly zero. Models generated from lasso 

regression may be more interpretable than ridge regression due to the reduced set of features. The 

elastic-net is another form of regularization of the generalized model that encompasses the bias-

variance tradeoff of ridge regression and the feature selection capability of lasso regression.S12 The 

elastic-net features the penalty term defined by eqn (S4), where α governs the contribution of each 

penalty term.
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When α = 1, the elastic-net penalty is simply ridge regression. When α = 0, the penalty is lasso 

regression. The present work features results from a generalized linear model and a penalized 

generalized linear model using the elastic-net penalty.

k-nearest neighbor regression

The k-nearest neighbor algorithm for regression (KNN) is a simple strategy that takes a test 

prediction point and considers the value from the “k” nearest neighbors.S4 The value of k is a 

hyperparameter determined empirically from training data. The response values of the k neighbors 

are averaged to give the predicted response. This process is defined by eqn (S5),S4 where  is 𝑓̂(𝑥0)

the estimated predicted value for point ,  are the K training observations that are closest to 𝑥0 𝑁0

, and  is the ith observation of the response.𝑥0 𝑦𝑖

(S5)
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Partial least-squares regression

Partial least-squares (PLS) regression is a dimension reduction method for linear 

regression, which is a popular modeling technique within the chemometrics community.S13 Unlike 

shrinkage methods for linear regression, in which model coefficients are shrunk towards zero, PLS 

regression transforms the original predictor variables into a new set of features, M, which are linear 

combinations of the original features. A linear model is then fit via the least-squares method using 

the newly transformed variables. The linear combinations are determined according to eqn (S6), 

where Z1, Z2, …,  Zm represent M < p linear combinations of the original p predictors.S4
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PLS regression determines Z1 by setting each  equal to the coefficient from simple linear 𝜙𝑗1

regression of Y onto Xj, where Y is the response matrix and Xj is the feature matrix for the jth 

feature. Therefore, the variables that are most strongly related to the response receive the highest 

weight according to PLS regression.

Neural network

A neural network is a form of nonlinear regression that was inspired by theories of how the 

brain works.S14 Like PLS regression, the response is modeled by an intermediary set of unobserved 

variables (i.e. hidden units). These transformed variables are linear combinations of the original 

variables. A neural network model usually involves multiple hidden units to predict the response. 

Unlike PLS regression, the linear combinations are not determined in hierarchical fashion and 

there are no constraints that help define the linear combinations. As a result, there is little 

information in the coefficients from the linear combination of each hidden unit. After the optimal 

number of hidden units is defined, another linear combination connects the hidden units to the 

predicted response.S3 

Optimal parameters are determined according to the minimization of the RSS, using an 

efficient algorithm such as back-propagation.S5 Due to the highly flexible nature of neural 

networks (i.e. large number of regression coefficients), they are prone to overfitting. To prevent 

this, a penalization method known as weight decay, which is similar to the penalty used in ridge 

regression, may be used to regularize the model.S5 The weight decay is a hyperparameter that is 

determined empirically from the training data. Therefore, the optimization procedure would seek 
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to minimize the quantity listed by eqn (S7), where H is the number of hidden units, k is the kth 

hidden unit, λ is the weight decay, βjk is the model coefficient of the linear combination connecting 

the jth feature to the kth hidden unit, and γk is the kth model coefficient of the linear combination 

connecting the hidden units to the response.S3 This is the description for the simplest neural 

network architecture, known as a single-layer feed forward network. Our work features the use of 

a multilayer perceptron,S5 which is a fully connected one-layer network.
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Support vector regression

Support vector machines (SVM)s were first proposed to solve classification problems 

where response values lie on a discrete scale (e.g. 0 and 1 or “control” and “disease”).S15 To extend 

the applications to regression, in which values are on a continuous scale, an SVM model is fit to 

training data such that it has at most ϵ deviation from the response variable, while attempting to be 

as flat as possible.S16 Considering a user set threshold value, ϵ, data with residuals within ϵ do not 

contribute to the regression fit, and data with an absolute difference greater than ϵ contribute a 

linear scale amount to the model fit. This process is referred to as ϵ-insensitive regression, which 

is described by the ϵ-insensitive function, L ϵ. Model coefficients for SVMs are fit to minimize the 

quantity listed by eqn (S8).S3 Cost penalizes large residuals and is a hyperparameter that is 

optimized over training data.
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Given a prediction point x0, a trained SVM model makes predictions according to eqn (S9), 

where αi is the set of unknown model parameters and K(xi, xo) is a kernel function capable of 

describing non-linear relationships among the features.S3 For a certain percentage of training data, 

the αi parameters will be exactly zero. 

 (S9)
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This set of training data represents the samples that are within ± ϵ of the regression line. 

The regression line is determined using the training data points where α ≠ 0. Collectively, these 

are referred to as the support vectors since they support the regression line.S3

Supplementary figures

Figures associated to Co, Cr and Pb results, similar to those presented for Cd in the main 

manuscript, are presented here. Results for Co are shown in Figs. SI1, SI4 and SI7. For Cr, results 

are shown in Figs. SI2, SI5 and SI8. Lead results are shown in Figs. SI3, SI6 and SI9.
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Fig. SI1. Predicted error vs. observed non-negative relative error for model predictions of matrix 

effects on Co for the external testing data. The line y = x represents perfect prediction accuracy (R2 

= 1).
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Fig. SI2. Predicted error vs. observed non-negative relative error for model predictions of matrix 

effects on Cr for the external testing data. The line y = x represents perfect prediction accuracy (R2 

= 1).
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Fig. SI3. Predicted error vs. observed non-negative relative error for model predictions of matrix 

effects on Pb for the external testing data. The line y = x represents perfect prediction accuracy (R2 

= 1).
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Fig. SI4. Analyte percent recoveries from a 500 µg L-1 spike of Co obtained for the withheld 

training data when using (a) the analytical signal alone, (b) the Ar signal at 737.212 nm as IS, (c) 

the H signal at 434.047 nm as IS, (d) the Y signal at 371.029 nm as IS, (e) the Ar signal at 737.212 

nm as IS only when the trained pls model predicts a non-negative relative error > 0.1, and (f) the 

H signal at 434.047 nm as IS only when the trained pls model predicts a non-negative relative error 

≥ 0.1. Dashed and solid lines represent 100% and between 90 - 110% recoveries, respectively.
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Fig. SI5. Analyte percent recoveries from a 500 µg L-1 spike of Cr obtained for the withheld 

training data when using (a) the analytical signal alone, (b) the Ar signal at 737.212 nm as IS, (c) 

the H signal at 434.047 nm as IS, (d) the Y signal at 371.029 nm as IS, (e) the Ar signal at 737.212 

nm as IS only when the trained pls model predicts a non-negative relative error > 0.1, and (f) the 

H signal at 434.047 nm as IS only when the trained pls model predicts a non-negative relative error 

≥ 0.1. Dashed and solid lines represent 100% and between 90 - 110% recoveries, respectively.
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Fig. SI6. Analyte percent recoveries from a 500 µg L-1 spike of Pb obtained for the withheld 

training data when using (a) the analytical signal alone, (b) the Ar signal at 737.212 nm as IS, (c) 

the H signal at 434.047 nm as IS, (d) the Y signal at 371.029 nm as IS, (e) the Ar signal at 737.212 

nm as IS only when the trained pls model predicts a non-negative relative error > 0.1, and (f) the 

H signal at 434.047 nm as IS only when the trained pls model predicts a non-negative relative error 

≥ 0.1. Dashed and solid lines represent 100% and between 90 - 110% recoveries, respectively.
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Figure SI7. Analyte percent recoveries from a 500 µg L-1 spike of Co in Dead Sea water and 

Mediterranean Sea water at different levels of dilution, i.e. 1:1, 1:10 and 1:100 v/v. Results are 

shown for calibration using the analytical signal alone (“Co.238.892”), the Ar signal at 737.212 

nm as IS (“ratio.Ar.737.212”), and the Y signal at 371.029 nm as IS (“ratio.371.029”). Dashed and 

solid lines represent recoveries of 100% and between 90 - 110%, respectively.
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Figure SI8. Analyte percent recoveries from a 500 µg L-1 spike of Cr in Dead Sea water and 

Mediterranean Sea water at different levels of dilution, i.e. 1:1, 1:10 and 1:100 v/v. Results are 

shown for calibration using the analytical signal alone (“Cr.267.716”), the Ar signal at 737.212 

nm as IS (“ratio.Ar.737.212”), and the Y signal at 371.029 nm as IS (“ratio.371.029”). Dashed and 

solid lines represent recoveries of 100% and between 90 - 110%, respectively.
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Figure SI9. Analyte percent recoveries from a 500 µg L-1 spike of Pb in Dead Sea water and 

Mediterranean Sea water at different levels of dilution, i.e. 1:1, 1:10 and 1:100 v/v. Results are 

shown for calibration using the analytical signal alone (“Pb.220.353”), the Ar signal at 737.212 

nm as IS (“ratio.Ar.737.212”), and the Y signal at 371.029 nm as IS (“ratio.371.029”). Dashed and 

solid lines represent recoveries of 100% and between 90 - 110%, respectively.


