Electronic supplementary information

Table S1

Emission wavelengths employed in this work

	Element	Tuno	Wavelength	Element	Type	Wavelength
	Liement	Type	(nm)	Liement	Type	(nm)
Analytes	Ag	I	328.068	Mn	I	403.076
	Al	Ι	396.152	Мо	Ι	379.825
	В	Ι	249.772	Na	Ι	588.995
	Cd	Ι	228.802	Ni	Ι	352.454
	Со	Ι	340.512	Pb	Ι	405.781
	Cr	Ι	425.433	Sn	Ι	317.505
	Cu	Ι	324.754	Sr	П	407.721
	Fe	Ι	371.993	Ti	П	334.941
	К	Ι	766.491	TI	Ι	535.046
	Li	Ι	670.784	V	Ι	309.311
	Mg	П	280.270	Y	П	371.029
	Mg	Ι	285.213	Zn	Ι	213.857
Molecular ba	and					
	CN	-	388.340 (Cr I 388.327)	СН	-	431.420 (Sc II 431.408)
	C ₂	-	473.700 (Fe I 473.677)	ОН	-	308.970 (Tb II 308.958)
	N_2^+	-	391.439 (Nb I 391.470)			

Variables		Levels			
	++	+	0	-	
NaCl concentration (w v ⁻¹ %)	8	6	4	2	0
DDTP concentration (w w ⁻¹ %)	3.3	2.5	2	0.9	0.1
Mass of disperser solvent (mg)	600	500	400	300	200
Mass of extraction solvent (mg)	475	400	325	250	175

Table S2. Central composite design for Cd extraction with DLLME operatingchloroform as extractant.

NaCl	DDTP	Ethanol	Chloroform	Integrated signal
(% w w-1)	(% w w ⁻¹)	(mL)	(mL)	(counts) ·10 ³
2	2.5	500	400	1440±30
2	2.5	300	250	1200±130
2	2.5	300	400	630±60
8	1.7	400	325	2600±140
6	0.9	300	250	1800±120
4	1.7	400	325	1380±8
6	2.5	300	400	1050±60
4	1.7	200	325	900±40
4	1.7	600	325	2300±190
6	2.5	500	400	1430±20
4	1.7	400	475	1000±50
6	0.9	500	400	1640±30
6	2.5	500	250	2600±170
2	0.9	300	400	900±70
4	1.7	400	175	1340±20
2	0.9	300	250	2025±7
2	2.5	500	250	2900±200
4	3.3	400	325	1600±170
6	0.9	300	400	950±70
4	1.7	400	325	1300±170
2	0.9	500	250	3000±400
4	0.1	400	325	1230±91
0	1.7	400	325	1900±100
2	0.9	500	400	1370±80
6	2.5	300	250	2400±140
6	0.9	500	250	2100±180

Table S3. Cadmium signal response for a CCD design operating DLLME with chloroform. Q_g : 0.3 L min⁻¹; analyte concentration: 0.5 mg L⁻¹.

Table S4. Central composite design for Cd extraction with DLLME operating thesupramolecular solvent as extractant.

Variables			Levels		
	++	+	0	-	
NaCl concentration (w v ⁻¹ %)	4	3	2	1	0
DDTP concentration (w w ⁻¹ %)	3.3	2.5	1.7	0.9	0.1
Mass of THF (mg)	750	600	450	300	150
Mass of 1-decanol (mg)	240	200	160	120	80

NaCl	DDTP	THF	1-decanol	Integrated signal
(% w w-1)	(% w w ⁻¹)	(mL)	(mL)	(counts) ·10 ³
1	0.9	600	200	375±2
2	1.7	150	160	482±7
3	0.9	300	120	570±15
2	1.7	450	240	365.7±0.5
1	0.9	300	200	406±1.4
3	2.5	600	200	400±19
3	2.5	300	200	100±2
3	2.5	300	120	500±100
2	3.3	450	160	141±1.5
1	2.5	300	120	530±40
2	1.7	450	80	720±10
4	1.7	450	160	296±9
3	0.9	300	200	360±30
3	0.9	600	200	125±4
2	1.7	750	160	440±20
3	0.9	600	120	360±60
2	0.1	450	160	170±12
1	0.9	300	120	327±6
3	2.5	600	120	250±11
1	0.9	600	120	300±40
1	2.5	600	120	470±50
1	2.5	300	200	380±13
2	1.7	450	160	244±7
0	1.7	450	160	190±30
2	1.7	450	160	240±20
1	2.5	600	200	450±13
I	2.0	000	200	400±10

Table S5. Cadmium signal response for a CCD design operating DLLME with the supramolecular solvent. Q_g : 0.3 L min⁻¹; analyte concentration: 0.5 mg L⁻¹.

Fig. S1. Emission spectra for N₂⁺ molecular band (391.439 nm) operating (\bullet) 1.0 w w⁻¹ nitric acid, (\Box) the supramolecular solvent and (\circ) chloroform. Q_g 0.3 L min⁻¹.

Fig. S2. Pareto charts obtained in the optimization study of the main variables affecting Cd extraction with DLLME for (A) chloroform and (B) the supramolecular solvent. (□) positive effect; (■) negative effect.

