Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2020

Single particle ICP-MS combined with internal standardization for accurate

characterization of polydisperse nanoparticles in complex matrices

Yingyan Huang,^a Judy Tsz-Shan Lum,^a Kelvin Sze-Yin Leung*^{a,b}

^a Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region

^b HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China

Keywords

Single particle inductively coupled plasma-mass spectrometry; cerium dioxide nanoparticles; matrix effect; internal standardization; polydisperse nanoparticles

Figures in Electronic Supplementary Information:

Fig. S1. Time-resolved signal of ¹⁴⁰Ce of 1 μ g L⁻¹ ionic Ce in 2% nitric acid, 500-time diluted enzyme-digested matrix, urine and plasma.

Fig. S2. Time-resolved signal of 103 Rh of 1 µg L⁻¹ Rh in 2% nitric acid, 500-time diluted enzyme-digested matrix, urine and plasma.

Fig. S3. Information of CeO₂ NPs determined by sp-ICP-MS after the IS correction at a dilution factor of 500: a) comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS (paired t-test, p < 0.05); b) particle number concentration of CeO₂ NPs.

Fig.S4. Information of CeO₂ NPs determined by sp-ICP-MS without the IS correction at a dilution factor of 2,500: a) a comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS. * Indicates a significant difference between the two methods through a paired t-test (p< 0.05); b) particle number concentration of CeO₂ NPs.

Fig. S5. Information of CeO₂ NPs determined by sp-ICP-MS with the IS correction at a dilution factor of 2,500: a) a comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS (paired t-test, p < 0.05); b) particle number concentration of CeO₂ NPs.

Fig. S1. Time-resolved signal of ¹⁴⁰Ce of 1 μ g L⁻¹ ionic Ce in 2% nitric acid, 500-time diluted enzyme-digested matrix, urine and plasma.

Fig. S2. Time-resolved signal of 103 Rh of 1 µg L⁻¹ Rh in 2% nitric acid, 500-time diluted enzyme-digested matrix, urine and plasma.

Fig. S3. Information of CeO₂ NPs determined by sp-ICP-MS after the IS correction at a dilution factor of 500: a) comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS (paired t-test, p < 0.05); b) particle number concentration of CeO₂ NPs.

Fig.S4. Information of CeO₂ NPs determined by sp-ICP-MS without the IS correction at a dilution factor of 25,000: a) a comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS. * Indicates a significant difference between the two methods through a paired t-test (p < 0.05); b) particle number concentration of CeO₂ NPs.

Fig. S5. Information of CeO₂ NPs determined by sp-ICP-MS with the IS correction at a dilution factor of 25,000: a) a comparison on mass concentration determined by sp-ICP-MS and conventional ICP-MS (paired t-test, p < 0.05); b) particle number concentration of CeO₂ NPs.