Characterization of Matrix Effects using an Inductively Coupled Plasma-Sector

Field Mass Spectrometer

Shi Jiao^{ab} and John W. Olesik^{a*}

Table S1 Recoveries (ratio of sensitivity in the presence of 5 mM Cs to sensitivity in the absence of 5 mM Cs) when using a single internal standard (IS) to compensate for matrix effects

		% Change	hange Recovery using internal standard				
Analyta	Macc		IC 71 ;+	10 880 r+		1c 2381 1+	
Analyte	IVIASS	5 IIIVI CS	IS LI	13 31	IS EU	13 0	
Li	7	-28%	Х	89%	89%	81%	
В	11	5%	146%	130%	130%	118%	
Mg	24	-21%	110%	97%	98%	89%	
Sc	45	-21%	110%	98%	98%	89%	
Ga	71	-24%	106%	94%	94%	85%	
As	75	-25%	105%	93%	93%	85%	
Sr	88	-19%	113%	Х	100%	91%	
Cd	111	-23%	107%	95%	95%	86%	
Ва	138	-16%	118%	105%	105%	95%	
Eu	153	-20%	112%	100%	Х	91%	
Yb	172	-14%	121%	107%	107%	97%	
U	238	-11%	124%	110%	110%	Х	

* % change in analyte sensitivity due to presence of 5 mM Cs

All measurements made using the optimum lens voltage in the absence of Cs. Numbers in *italics* indicates a recovery that is less than 80% or more than 120%

		% Change	Recovery using internal standard				
Analyte	Mass	5 mM Tb*	IS ⁷ Li ⁺	IS ⁸⁸ Sr ⁺	IS ¹⁵³ Eu ⁺	IS 238U+	
Li	7	-34%	Х	111%	127%	96%	
В	11	-29%	107%	119%	136%	102%	
Mg	24	-46%	82%	91%	104%	78%	
Sc	45	-47%	80%	89%	102%	77%	
Ga	71	-46%	82%	91%	105%	79%	
As	75	-48%	79%	87%	100%	75%	
Sr	88	-40%	90%	Х	114%	86%	
Cd	111	-45%	83%	92%	106%	80%	
Ва	138	-37%	95%	106%	121%	91%	
Eu	153	-48%	79%	87%	Х	75%	
Yb	172	-34%	100%	111%	127%	96%	
U	238	-31%	105%	116%	133%	Х	

Table S2 Recoveries (ratio of sensitivity in the presence of 5 mM Tb to sensitivity in the absence of 5 mMTI) when using a single internal standard (IS) to compensate for matrix effects

* % change in analyte sensitivity due to presence of 5 mM Tl

All measurements made using the optimum lens voltage in the absence of Tl. Numbers in *italics* indicates a recovery that is less than 80% or more than 120%

 Table S3 Recoveries (ratio of sensitivity in the presence of 5 mM Tl to sensitivity in the absence of 5 mM

 TI) when using a single internal standard (IS) to compensate for matrix effects

		% Change	Recovery using internal standard				
Analyte	Mass	5 mM TI*	IS ⁷ Li ⁺	IS ⁸⁸ Sr ⁺	IS ¹⁵³ Eu ⁺	IS 238U+	
Li	7	-49%	Х	110%	134%	106%	
В	11	-44%	109%	120%	147%	116%	
Mg	24	-57%	83%	91%	112%	88%	
Sc	45	-56%	85%	93%	114%	90%	
Ga	71	-57%	84%	92%	113%	89%	
As	75	-59%	80%	87%	107%	85%	
Sr	88	-53%	91%	Х	123%	97%	
Cd	111	-53%	91%	100%	123%	97%	
Ва	138	-52%	94%	103%	127%	100%	
Eu	153	-62%	74%	82%	Х	79%	
Yb	172	-54%	90%	99%	121%	95%	
U	238	-51%	94%	103%	127%	х	

* % change in analyte sensitivity due to presence of 5 mM Tl

All measurements made using the optimum lens voltage in the absence of Tl. Numbers in *italics* indicates a recovery that is less than 80% or more than 120%

Figure S1.¹¹⁵In⁺ signal intensity (1 ng/mL) and UO⁺/U⁺ signal ratio as a function of nebulizer gas flow rate at a fixed focus lens voltage (-880V). The data shown in (a) were acquired 3 months earlier than the data shown in (b).

This page purposely blank so next two pages viewable side by side in two page view.

Figure S2. At each nebulizer gas flow rate, nine sets of measurements of ICP-MS signal versus focus lens voltage were made from a 20 ppb multi-element solution. Measurements were made before and after each of the solutions containing one of the eight matrix elements at a concentration of 5 mM. Analytes are listed on the right. The intensities measured at nebulizer gas flow rates of 0.9, 0.95 and 1.0 L/min were multiplied by 15, 3, and 2, respectively, prior to plotting. Order of data acquisition (also chronologically): prior to any 5 mM matrix (_____), after 5 mM Na (_____), after 5 mM Cu (_____), after 5 mM Y (_____), after 5 mM In (_____), after 5 mM Tb (_____), after 5 mM Lu (_____), after 5 mM Tl (_____).

Figure S3. At each nebulizer gas flow rate, nine sets of measurements of ICP-MS signal versus focus lens voltage were made from a 20 ppb multi-element solution. Measurements were made before and after each of the solutions containing one of the eight matrix elements at a concentration of 5 mM. Analytes are listed on the right. The intensities measured at a nebulizer gas flow rates of 0.9, 0.95 and 1.0 L/min were multiplied by 15, 3, and 2, respectively, prior to plotting. Order of data acquisition (also chronologically): prior to any 5 mM matrix (_____), after 5 mM Na (_____), after 5 mM Cu (_____), after 5 mM Y (_____), after 5 mM In (_____), after 5 mM Cs (_____), after 5 mM Tb (_____), after 5 mM Lu (_____), after 5 mM Tl (_____).

Figure S4. Matrix-induced change in ⁷Li⁺, ⁷¹Ga⁺, ¹³⁸Ba⁺ and ²³⁸U⁺ analyte ion sensitivity as a function of matrix element concentration. (a) Y matrix. (b) In matrix. (c) Cs matrix. (d) Tb matrix. (e) Lu matrix. (f) Tl matrix.

Figure S5. Optimum focus lens voltage as a function of analyte mass.

Figure S6. ICP-MS signals as a function of lens voltage in the absence and presence of 5 mM matrix element at the optimum nebulizer gas flow rate. Matrix elements listed on top. Analytes listed on the right.

Figure S7. ICP-MS signals as a function of lens voltage in the absence and presence of 5 mM matrix element at the optimum nebulizer gas flow rate. Matrix elements listed on top. Analytes listed on the right. The Lu solution produced a significant Lu^{2+} signal at same m/z as Sr^{2+} . The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S8. Matrix induced change in ICP-MS sensitivity as a function of lens voltage at the optimized nebulizer gas flow rate. Matrix elements listed on top. Analytes listed on the right.

Figure S9. Matrix induced change in ICP-MS sensitivity as a function of lens voltage at the optimized nebulizer gas flow rate. Matrix elements listed on top. Analytes listed on the right. The Lu solution produced a significant Lu^{2+} signal at same m/z as Sr^{2+} . The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S10. ICP-MS analyte ion signals as a function of lens voltage at the optimum nebulizer gas flow rate in the absence (--) or presence of 0.5 (--), 1.0 (--), 2.5 (--) and 5 (--) mM matrix element (Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltageMatrix elements listed on top. Analytes listed on the right.

Figure S11. ICP-MS analyte ion signals as a function of lens voltage at the optimum nebulizer gas flow rate in the absence (______) or presence of 0.5 (_____), 1.0 (_____), 2.5 (_____) and 5 (_____) mM matrix element. Matrix elements listed on top. Analytes listed on the right. The Lu solution produced a significant Lu^{2+} signal at same m/z as Sr^{2+} . The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S12. Matrix-induced change in analyte ion sensitivity due to the presence of 0.5 (—), 1 (—), 2.5 (—), or 5 (—) mM matrix element (Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage.

Figure S13. Matrix-induced change in analyte ion sensitivity due to the presence of 0.5 (—), 1 (—), 2.5 (—), or 5 (—) mM matrix element (Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. The Lu solution produced a significant Lu²⁺ signal at same m/z as Sr²⁺. The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S14. Change in analyte ion sensitivity as a function of analyte ion mass at a focus lens voltage of -560 V (320 V more positive than the optimum focus lens voltage in the absence of a matrix element) from data shown in Fig. 10, 11 in the presence of 5 mM Y, In, Cs, Tb, Lu or Tl.

This page purposely blank so next two pages viewable side by side in two page view.

Figure S15. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum lens voltage (-880 V) for maximum sensitivity in the absence of a matrix element while the UO⁺/U⁺ signal ratio was 0.1 or less. The guard electrode inserted between torch and coil was grounded.

Figure S16. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum lens voltage (-880 V) for maximum sensitivity in the absence of a matrix element while the UO⁺/U⁺ signal ratio was 0.1 or less. The guard electrode inserted between torch and coil was grounded. The Lu solution produced a significant Lu²⁺ signal at same m/z as Sr²⁺. The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S17. Matrix-induced change in analyte ion sensitivity due to 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. The vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was grounded.

Figure S18. Matrix-induced change in analyte ion sensitivity due to 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. The vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was grounded. The Lu solution produced a significant Lu^{2+} signal at same m/z as Sr^{2+} . The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S19. Analyte ion signals as a function of lens voltage in the absence (---) or presence of 5 mM Tl in solution at nebulizer gas flow rates of 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15 L/min. The y-axis scale is the same for each particular analyte ion (within a row of plots), independent of nebulizer gas flow rate with the exception of the first column (0.90 L/min). All signals measured at 0.90 L/min were multiplied by 4 in order to allow the signals to be more easily seen in the plots. Typically a nebulizer gas flow rate of 1.05 L/min would be used to maximize sensitivity while keeping the UO⁺/U⁺ signal ratio at or below 0.1.

Figure S20. Analyte ion signals as a function of lens voltage in the absence (---) or presence of 5 mM Tl in solution at nebulizer gas flow rates of 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15 L/min. The y-axis scale is the same for each particular analyte ion (within a row of plots), independent of nebulizer gas flow rate with the exception of the first column (0.90 L/min). All signals measured at 0.90 L/min were multiplied by 4 in order to allow the signals to be more easily seen in the plots. Typically a nebulizer gas flow rate of 1.05 L/min would be used to maximize sensitivity while keeping the UO⁺/U⁺ signal ratio at or below 0.1.

Figure S21. Matrix-induced change in analyte ion sensitivity due to the presence of 5 mM Tl in solution at nebulizer gas flow rates of 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15 L/min. The y-axis scale is the same for each particular analyte ion (within a row of plots), independent of nebulizer gas flow rate with the exception of the first column (0.90 L/min). All signals measured at 0.90 L/min were multiplied by 4 in order to allow the signals to be more easily seen in the plots. Typically a nebulizer gas flow rate of 1.05 L/min would be used to maximize sensitivity while keeping the UO^+/U^+ signal ratio at or below 0.1.

Figure S22. Matrix-induced change in analyte ion sensitivity due to the presence of 5 mM Tl in solution at nebulizer gas flow rates of 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15 L/min. The y-axis scale is the same for each particular analyte ion (within a row of plots), independent of nebulizer gas flow rate with the exception of the first column (0.90 L/min). All signals measured at 0.90 L/min were multiplied by 4 in order to allow the signals to be more easily seen in the plots. Typically a nebulizer gas flow rate of 1.05 L/min would be used to maximize sensitivity while keeping the UO^+/U^+ signal ratio at or below 0.1.

Figure S23. (a) Analyte signal (${}^{7}Li^{+}$, ${}^{88}Sr^{+}$, ${}^{238}U^{+}$) from a 20 ng/mL no matrix solution as a function of focus lens voltage. (b) ${}^{138}Ba^{+}$ signal intensity, UO⁺/U⁺ signal ratio as a function of nebulizer gas flow rate. Guard electrode was ungrounded.

Figure S24. Analyte sensitivity ratio with guard electrode grounded/ungrounded at the optimum operating conditions without the presence of a matrix element.

Figure S25. (a) As^+/Ga^+ and (b) Ar^+/Sc^+ signal ratio when GE was grounded, (c) As^+/Ga^+ and (d) Ar^+/Sc^+ signal ratio when GE was ungrounded at the optimum nebulizer gas flow rate, (e) As^+/Ga^+ and (f) Ar^+/Sc^+ signal ratio when GE was ungrounded at the optimum nebulizer gas flow rate when GE was grounded (1.05 L/min), which was lower than the optimum nebulizer gas flow rate when GE was ungrounded (1.2 L/min). Black symbols indicate signals produced from solutions without an added matrix element.

Figure S26. Change in analyte ion sensitivity in the presence of 5 mM Cs as a function of analyte ionization energy (IE) with a fixed lens voltage (-720 V) that was near optimum for all analytes at the optimum nebulizer gas flow rate (1.2 L/min). The guard electrode was ungrounded.

This page purposely blank so next two pages viewable side by side in two page view.

Figure S27. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. The vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded.

Figure S28. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. The vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded. The Lu solution produced a significant Lu^{2+} signal at same m/z as Sr^{2+} . The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S29. Matrix-induced change in analyte ion sensitivity (${}^{7}Li^{+}$, ${}^{45}Sc^{+}$, ${}^{71}Ga^{+}$, ${}^{111}Cd^{+}$, ${}^{138}Ba^{+}$, ${}^{153}Eu^{+}$, ${}^{238}U^{+}$) due to the presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO⁺/U⁺ signal ratio was 0.1 or less. Vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded.

Figure S30. Matrix-induced change in analyte ion sensitivity (${}^{7}Li^{+}$, ${}^{45}Sc^{+}$, ${}^{71}Ga^{+}$, ${}^{111}Cd^{+}$, ${}^{138}Ba^{+}$, ${}^{153}Eu^{+}$, ${}^{238}U^{+}$) due to the presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of lens voltage. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO⁺/U⁺ signal ratio was 0.1 or less. Vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded. The Lu solution produced a significant Lu²⁺ signal at same m/z as Sr²⁺. The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S31. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum lens voltage (-720 V) for maximum sensitivity in the absence of a matrix element while the UO⁺/U⁺ signal ratio was 0.1 or less. The guard electrode inserted between torch and coil was ungrounded.

Figure S32. Analyte ion signals in the absence or presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum long voltage (720 V) for maximum geneticity in the channel of a matrix element while the $100^{+}(1^{+})$ simple

lens voltage (-720 V) for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. The guard electrode inserted between torch and coil was ungrounded. The Lu solution produced a significant Lu²⁺ signal at same m/z as Sr²⁺. The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S33. Matrix-induced change in analyte ion sensitivity due to the presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. Vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded.

Figure S34. Matrix-induced change in analyte ion sensitivity due to the presence of 5 mM matrix element (Na, Cu, Y, In, Cs, Tb, Lu, or Tl; lowest to highest matrix ion mass) in solution as a function of nebulizer gas flow rate. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. Vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded. The Lu solution produced a significant Lu²⁺ signal at same m/z as Sr²⁺. The Lu solution contained Yb contamination that contributes a significant signal at m/z 172.

Figure S35. Matrix-induced change in analyte ion sensitivity due to the presence of 44mM and 87 mM Na in solution as a function of nebulizer gas flow rate. Optimum nebulizer gas flow rate for maximum sensitivity in the absence of a matrix element while the UO^+/U^+ signal ratio was 0.1 or less. Vertical line in each plot indicates the optimum lens voltage for maximum sensitivity in the absence of a matrix element. The guard electrode was ungrounded.