We use 9,0 ml of HF (48% m/m, ρ 1,14 g/ml) and 1,8 ml of HNO₃ (60% m/m, ρ 1,40 g/ml) for bomb digestion of sample.

HF (F):

The concentration of HF in acid mixture at bomb digestion is possibly calculated by 2 means:

- Concentration in water solution is calculated using water content and HF content: 9 ml of HF contains 4.925 g of HF and 5.335 g of H₂O: 9 ml x 1.14=10.26 g - 100% X g - 48% - 4.925 g of HF 10.26-4.925=5.335 g of H₂O; 1.8 ml of HNO₃ contains 1.512 g of HNO₃ and 1.008 g of H₂O: 1.8 ml x 1.40=2.52 g - 100% X g - 60% - 1.512 g of HNO₃ 2.52 -1.512 =1.008 g of H₂O; So, the final solution contains 4.925 g of HF, 1.512 g of HNO₃ and 5.335 + 1.008 =6.343 g of H₂O; total mass of water solution of HF is 4.925 g of HF + 6.343 g of H₂O = 11.268 g. 11.268 g of water solution of HF - 100% 4.925 g of HF - 43.7% of HF or 41,515% of F or 24,8 Mol/1 of F.
- Concentration in acid mixture is calculated using water content, HNO₃ and HF content: 9 ml of HF contains 4.925 g of HF and 5.335 g of H₂O (as above); 1.8 ml of HNO₃ contains 1.512 g of HNO₃ and 1.008 g of H₂O (as above);

So, the final solution of the acid mixture contains 4.925 g of HF, 1.512 g of HNO₃ and 5.335 + 1.008 = 6.343 g of H₂O; total mass of acid mixture is 4.925 g of HF + 6.343 g of H₂O + 1.512 g of HNO₃ = 12.78 g. 12.78 g of acid mixture– 100% 4.925 g of HF – 38.5% of HF or 36,575% of F or **21,9 Mol/l of F**.

BaF₂, solubility product is 1,84*10⁻⁷ [1]

Spike of 50 mg of the nephelinite NKT-1 contains 37050 ng of Ba or 37,05*10⁻⁶ g or 2,68*10⁻⁷ mol.

The concentration of Ba in water solution:

(mean 1, using 6.343 g of $\rm H_2O,\,\rho$ 1,0 g/ml) is calculated as 4,2*10^5 Mol/1:

2,68*10⁻⁷ mol of Ba is in 6,343 ml

X mol - 1000 ml;

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 2,5*10⁻⁵ Mol/l;

So, real (Ba*F²) are 5 orders above solubility product of BaF₂ at least:

in water solution is calculated as $4,2*10^{-5} * 24,8^2 = 2,6*10^{-2}$ in acid mixture is calculated as $2,5*10^{-5} * 21,9^2 = 1,2*10^{-2}$

FeF₂, solubility product is 2,36*10⁻⁶ [1]

300 mg of the dunite DTS-1 contains 18228000 ng of Fe or 18,2*10⁻³ g or 3,25*10⁻⁴ mol. The concentration of Fe in water solution:
(mean 1, using 6.343 g of H₂O, ρ 1,0 g/ml) is calculated as 5,1*10⁻⁵ Mol/l;
(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 3,1*10⁻⁵ Mol/l;
So, real (Fe*F²) are 4 orders above solubility product of FeF₂ at least:

in water solution is calculated as $5,1*10^{-5} * 24,8^2 = 3,1*10^{-2}$

in acid mixture is calculated as $2,5*10^{-5} * 21,9^2 = 1,2*10^{-2}$

LiF, solubility product is 1,84*10⁻³ [1]

300 mg of the dunite DTS-1 contains 597 ng of Li or $5,97*10^{-7}$ g or $8,5*10^{-8}$ mol.

The concentration of Li in water solution:

(mean 1, using 6.343 g of H_2O , ρ 1,0 g/ml) is calculated as 1,3*10⁻⁵ Mol/l;

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 8*10⁻⁶ Mol/I;

So, real (Li*F) are 1 order under solubility product of LiF at least:

in water solution is calculated as $1,3*10^{-5} * 24,8 = 3,2*10^{-4}$

in acid mixture is calculated as $8*10^{-6} * 21,9 = 528*10^{-5} = 1,8*10^{-4}$

MgF₂, solubility product is 5,16*10⁻¹¹ [1]

300 mg of the dunite DTS-1 contains 89100000 ng of Mg or 89,1*10⁻³ g or 3,71*10⁻³ mol. The concentration of Sr in water solution:

(mean 1, using 6.343 g of H_2O , ρ 1,0 g/ml) is calculated as 0,49 Mol/I:

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 0,35 Mol/I;

So, real (Mg*F²) are 13 orders above solubility product of MgF₂ at least:

in water solution is calculated as $0,49 * 24,8^2 = 301$

in acid mixture is calculated as $0,35 * 21,9^2 = 168$

PbF₂, solubility product is 3,3*10⁻⁸ [1]

Spike of "100 ng of the elements" contains 100 ng of Pb or $100*10^{-9}$ g or $4,81*10^{-10}$ mol.

The concentration of Pb in water solution:

(mean 1, using 6.343 g of H_2O , ρ 1,0 g/ml) is calculated as 7,6*10⁻⁸ Mol/l:

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 4,5*10⁻⁸ Mol/l;

So, real (Pb*F²) are 3 orders above solubility product of PbF₂ at least:

in water solution is calculated as $7,6*10^{-8} * 24,8^2 = 4,7*10^{-5}$

in acid mixture is calculated as $4,5*10^{-8} * 21,9^2 = 2,2*10^{-5}$

SrF₂, solubility product is 4,33*10⁻⁹ [1]

Spike of "100 ng of the elements" contains 100 ng of Sr or 100*10⁻⁹ g or 1,14*10⁻⁹ mol. The concentration of Sr in water solution:

(mean 1, using 6.343 g of H_2O , ρ 1,0 g/ml) is calculated as 1,8*10⁻⁷ Mol/l:

1,14*10⁻⁹ mol of Sr is in 6,343 ml

X mol - 1000 ml;

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 1,1*10⁻⁷ Mol/l;

So, real (Sr*F²) are 5 orders above solubility product of SrF₂ at least:

in water solution is calculated as $1,8*10^{-7} * 24,8^2 = 1107*10^{-7} = 1,1*10^{-4}$

in acid mixture is calculated as $1,1*10^{-5} * 21,9^2 = 528*10^{-5} = 5,3*10^{-3}$

ScF₃, solubility product is 5,81*10⁻²⁴ [1]

Spike of "100 ng of the elements" contains 100 ng of Sc or 100*10⁻⁹ g or 2,22*10⁻⁹ mol. The concentration of Sc in water solution:

(mean 1, using 6.343 g of H_2O , ρ 1,0 g/ml) is calculated as 3,5*10⁻⁷ Mol/l;

(mean 2, using 12.78 g of acid mixture, ρ about 1,2 g/ml) is calculated as 2,1*10⁻⁷ Mol/l;

So, real (Sc*F³) are 21 orders above solubility product of ScF₃ at least:

in water solution is calculated as $3,5*10^{-7} * 24,8^3 = 5,3*10^{-3}$

in acid mixture is calculated as $2,1*10^{-7} * 21,9^3 = 528*10^{-5} = 2,2*10^{-3}$

1. A.I. Volkov, I.M. Zharskiy. Large chemical guide. Modern school, Minsk, 2005 (in Russian).