Supporting Information for:

Determination of stable isotope ratios using Nuclear Reaction Analysis coupled with a particle-gamma coincidence method

Paula Rangel Pestana Allegro^{1,*}, Márcia de Almeida Rizzutto¹, Nemitala Added¹, Vitor Ângelo Paulino de Aguiar¹, Dennis Lozano Toufen², Eduardo Luiz Augusto Macchione¹, Nilberto Heder Medina¹, Roberto Vicençotto Ribas¹, José Roberto Brandão de Oliveira¹, Rafael Escudeiro¹, Juan Antonio Alcántara-Núñez¹, Jessica Fleury Curado³, Valdir Brunetti Scarduelli¹, Vinicius Antonio Bocaline Zagatto^{1,4}, Cléber Lima Rodrigues¹, Manfredo Harri Tabacniks¹

¹ Institute of Physics, University of São Paulo, São Paulo, São Paulo, 05508-090, Brazil.
² Federal Institute of Education, Science, and Technology of São Paulo - IFSP, 07115-000 Guarulhos, São Paulo, Brazil.
³ Physics Dept., Centro Universitário–FEI, São Bernardo do Campo, São Paulo, Brazil.
⁴ Physics Institute, Fluminense Federal University - UFF, Niterói, Rio de Janeiro, 24210-340, Brazil.

This supporting information provides the figures and tables to support the results presented in the main text.

Table of Contents

Figure S1 Tables S1–S2.

^{*} Corresponding author: allegro@if.usp.br

Table S.1: Predicted reaction cross-sections of an 11.75 MeV proton beam with the copper stable isotopes using PACE4 code ¹.

Target	Compound nucleus	Reaction products	Predicted cross- sections (b)
⁶³ Cu	⁶⁴ Zn	⁶³ Zn + n + γ	0.385
		⁶³ Cu + p + γ	0.372
		⁶⁰ Ni + α + γ	0.229
⁶⁵ Cu	⁶⁶ Zn	⁶⁵ Zn + n + γ	0.751
		⁶⁵ Cu + p + γ	0.121
		⁶² Ni + α + γ	0.136

Figure S.1: Reduced level schemes of the nuclei populated in this work (a) ⁶⁰Ni, b) ⁶²Ni, c) ⁶⁵Cu, and d) ⁶³Cu. The level schemes show only the gamma-rays de-populating the excited states observed in the experiments. The transitions used to calculate the isotope ratios are shown in red. Adapted from references ²⁵. The energies of the excited states and gamma-rays are in keV.

Table S.2: Gamma-ray energies (in keV) used from 63,65 Cu and 60,62 Ni to obtain the 63,65 Cu reaction crosssections with ^{nat}Cu and 65 Cu targets and to determine the 63,65 Cu isotopic ratio in the ^{mixed}Cu target. The *"Coincidence Spectrum"* column indicates the coincidence spectrum from which the gamma-ray was observed, while the *"E_{yref}"* column indicates the reference energy values, taken from references ${}^{2-5}$. The errors are the standard counting statistics uncertainties and correspond to one sigma (k = 1).

Nucleus	Coincidence Spectrum	E _{vref} (keV)	
⁶³ Cu	γ-proton	449.93 (5)	
		584.82 (15)	
		645.4 (3)	
		669.62(5) + 668.5 (2)	
		742.25 (10)	
		765.7 (5)	
		881.0 (1)	
		899.0 (4)	
		955.0 (17) + 956.1 (5)	
		1048.8 (5)	
		1130.7 (3) + 1131.0 (1)	
		1178.9 (3)	
		1245.2 (2)	
		1327.03 (8)	
		1350.1 (4)	
		1412.08 (5)	
		1543.0 (1)	
		1547.04 (6)	
		1861.3 (3)	
		2011.4 (5) +2012.0 (1)	
		2092.6 (5)	
		2336.5 (3)	
⁶⁵ Cu	γ-proton	255.0 (13)	
		312.4 (6)	
		439.7 (7)	
		499.7 (21)	
		609.5 (1)	
		612.7 (8)	
		770.6 (2)	
		1052.0 (4)	
		1115.546 (4)	
		1162.6 (11) + 1163.7 (11)	
		1724.92 (6)	
		2094.3 (2)	
⁶⁰ Ni	γ-alpha	467.3 (2)	
		826.06 (3)	
628.1		1332.501 (5)	
^{o∠} Ni	γ-alpha	1128.82 14	
		1163.50 (12)	

References

¹O. Tarasov and D. Bazin, Development of the program LISE: application to fusion–evaporation, *Nucl. Instrum. Methods Phys. Res. B*, 2003, **204**, 174 – 178.

² A. L. Nichols, B. Singh, and J. K. Tuli, Nuclear Data Sheets for A = 62, *Nucl. Data Sheets*, 2012, **113**, 973 – 1114.

³ E. Browne and J. Tuli, Nuclear Data Sheets for A = 60, *Nucl. Data Sheets*, 2013, **114**, 1849–2022.

⁴ B. Erjun and H. Junde, Nuclear Data Sheets for A = 63, *Nucl. Data Sheets*, 2001, **92**, 147–252.

⁵ E. Browne and J. Tuli, Nuclear Data Sheets for A = 65, *Nucl. Data Sheets*, 2010, **111**, 2425–2553.