Absolute Isotope Ratios of Carbon Dioxide - A Feasibility Study
 - Electronic Supplementary Information (ESI)

Lukas Flierl ${ }^{* a}$, Olaf Rienitz ${ }^{a}$, Paul J. Brewer ${ }^{b}$, Harro A. J. Meijer ${ }^{c}$, Farilde M. Steur ${ }^{c}$

1 Gravimetric Mixture

This section is a brief summary of the gravimetric mixture approach, we discuss a generic system of $N_{\text {is }}$ isotopes. In the case of a system of $N_{\text {iso }}$ isotopes, $N_{\text {iso }}$ starting materials - each enriched in one different of the $N_{\text {iso }}$ isotopes - are needed. For a system with $N_{\text {iso }}$ different isotopes, there are ($N_{\text {iso }}-1$) isotope ratios $R_{i / 1}$, where 1 is the reference isotope, and therefore, there are also ($N_{\text {iso }}-1$) K-factors. In the case of an isotopologue system like carbon dioxide, the starting materials must be enriched in on of the isotopologues. With $N_{\text {iso }}$ starting materials, there are in total $\left(n_{\text {iso }} \times\left(n_{\text {iso }}-1\right)\right) / 2$ different binary blends prepared from the starting materials, see figure 1, where all possible combinations are shown for carbon dioxide having twelve isotopologues (not considering the unstable isotopes). The starting materials are represented as squares, and the blends are represented as circles. The bars in the circles and squares indicate the amount-of-substance fraction of each isotopologue. The preparation of the binary mixtures is done under gravimetric control and in such a way that the resulting ratio of the two major isotopes/isotopologues is close to unity. For example, if material A is enriched in the first isotope and material B is enriched in the second isotope, the resulting blend AB should have a ratio $R_{2 / 1}$ close to 1 . It has been shown that the ratios of the two major isotopes in the binary blends (AB to AX) can be expressed as linear combinations of the corresponding ratios of the two parent materials ${ }^{11}$. By setting up this kind of equation for at least ($n_{\text {iso }}-1$) binary mixtures, a system of linear equations is obtained. By taking into account the relation between the absolute isotope ratios R and measured ion intensity ratios R^{m}, see equation 1 , the $\left(n_{\text {iso }}-1\right) K$-factors are introduced into this system of linear equations. This system can be solved for the wanted K-factors for any number of isotopes in a non-iterative way by using the so-called Gaussian elimination ${ }^{2}$, and also the uncertainty associated with the K-factors can be calculated by solving the system several thousand times during a Monte Carlo simulation ${ }^{3}$. A generic expression of such equations is given in equation 2. The quantities appearing in equation 2 are as follows: K_{j} correcting the $j^{\text {th }}$ intensity ratio, M_{j} being the molar mass of the $j^{\text {th }}$ species, $R_{\mathrm{A}, i}^{\mathrm{m}}$ being the $i^{\text {th }}$ measured intensity ratio in material $\mathrm{A}, R_{Y, i}^{\mathrm{m}}$ being analogously defined, $R_{\mathrm{A} Y, i}^{\mathrm{m}}$ being the $i^{\text {th }}$ measured intensity ratio in blend $\mathrm{A} Y, m_{\mathrm{A} Y}$ being the mass of material A used to prepare $\mathrm{A} Y$ and finally $m_{Y \mathrm{~A}}$ is the mass of material Y used for preparing blend $\mathrm{A} Y$. It has also been shown that it is not necessary to prepare all possible binary blends and that there is, in terms of the lowest achievable uncertainty associated with the K-factors, a best choice of blends and measured ratios. The lowest uncertainty can be achieved by using all the blends that contain material A, which has a very high amount-of-substance fraction of the most abundant isotope (higher than its natural abundance). In the case of carbon dioxide, $x\left({ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}\right)$ of material A would be very high and blends AB to AG must be prepared, see figure $S 1$, if we consider the ideal case where all the twelve isotopologues can be resolved and detected and starting materials A to G exist.

$$
\begin{gather*}
R_{i / 1}=\frac{n_{i}}{n_{1}}=K_{i / 1} \times R_{i / 1}^{\mathrm{m}}=K_{i / 1} \times \frac{I_{i}}{I_{1}} \tag{1}\\
0=\sum_{j=1}^{N_{\text {iso }}}\left[K_{j} \times M_{j} \times\left(\frac{R_{\mathrm{A}, i}^{\mathrm{m}}}{m_{\mathrm{A} Y} \times\left(R_{\mathrm{A} Y, j}^{\mathrm{m}}-R_{\mathrm{A}, j}^{\mathrm{m}}\right)}-\frac{R_{Y, i}^{\mathrm{m}}}{m_{Y \mathrm{~A}} \times\left(R_{Y, j}^{\mathrm{m}}-R_{\mathrm{A} Y, j}^{\mathrm{m}}\right)}\right)\right] \tag{2}
\end{gather*}
$$

[^0]

Fig. S 1 All 66 different binary mixtures that can be prepared from the twelve different starting materials A to K . The starting materials are represented as squares, and blends are represented as circles. The amount-of-substance fraction of each isotopologue is indicated with the bars in the squares and the circles, respectively.

2 Calculating R_{47}^{m}

R_{47}^{m} was derived from the isotope ratios R_{13}, R_{17} and R_{18}, according to equation 3 .

$$
\begin{equation*}
R_{47}^{\mathrm{m}}=2 \times R_{18} \times R_{17}+2 \times R_{18} \times R_{13}+R_{17} \times R_{13}^{2} \tag{3}
\end{equation*}
$$

The isotope ratios were derived by solving equation 4, the so-called Santrock algorithm ${ }^{4}$. For λ and K, the values recommended by Brand ${ }^{5}$ ($\lambda=0.528, K=0.01022461$) were chosen. It should be pointed out that K is not a K-factor and should not be confused with them, but we did not change its symbol as it is well established in the literature. K is defined as $K=R_{17, V \mathrm{VDB}} / R_{18, V P D B}^{\lambda}$ and, therefore, describes the oxygen isotope composition of VPDB-CO ${ }_{2}$. Since $\lambda \neq 0.5$, equation 4 cannot be solved for R_{18} analytically and must be solved iteratively. In the ESI, we present a code which calculates the isotope ratios and their associated uncertainties. To solve equation 4, the so-called regula falsi ${ }^{6}$ is implemented.

$$
\begin{equation*}
0=-3 \times K^{2} \times R_{18}^{2 \times \lambda}+2 \times K \times R_{45}^{\mathrm{m}} \times R_{18}^{\lambda}+2 \times R_{18}-R_{46}^{\mathrm{m}} \tag{4}
\end{equation*}
$$

For the calculation of the uncertainties associated with the isotope ratios, we made the following considerations. The standard uncertainty associated with R_{46}^{m} can be calculated according to the guide titled 'Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM) ${ }^{7}$ as shown in equation 5 . Since $u_{\mathrm{c}}^{2}\left(R_{45}^{\mathrm{m}}\right)$ and $u_{\mathrm{c}}^{2}\left(R_{46}^{\mathrm{m}}\right)$ are known from the extrapolation, this equation can be solved for the known $u_{\mathrm{c}}^{2}\left(R_{18}\right)$. The needed partial derivatives occurring in equation 5 are given in equations 6 and 6 b .

$$
\begin{gather*}
u_{\mathrm{c}}^{2}\left(R_{46}^{\mathrm{m}}\right)=\left(\frac{\partial R_{46}^{\mathrm{m}}}{\partial R_{45}^{\mathrm{m}}}\right)^{2} \times u_{\mathrm{c}}^{2}\left(R_{18}\right)+\left(\frac{\partial R_{46}^{\mathrm{m}}}{\partial R_{45}^{\mathrm{m}}}\right)^{2} \times u_{\mathrm{c}}^{2}\left(R_{45}^{\mathrm{m}}\right) \tag{5}\\
\frac{\partial R_{46}^{\mathrm{m}}}{\partial R_{18}}=2 \times K \times R_{18}^{(\lambda-1)} \times R_{45}^{\mathrm{m}} \times \lambda-6 \times K^{2} \times R_{18}^{(2 \times \lambda-1)} \times \lambda+2 \tag{6a}\\
\frac{\partial R_{46}^{\mathrm{m}}}{\partial R_{45}^{\mathrm{m}}}=2 \times K \times R_{18}^{\lambda} \tag{6b}
\end{gather*}
$$

Inserting these partial derivatives and solving for $u_{\mathrm{c}}\left(R_{18}\right)$ obtains:

$$
\begin{equation*}
u_{\mathrm{c}}\left(R_{18}\right)=\sqrt{\frac{u_{\mathrm{c}}^{2}\left(R_{46}\right)-\left(2 \times K \times R_{18}^{\lambda}\right)^{2} \times u_{\mathrm{c}}^{2}\left(R_{45}\right)}{\left(\left(2 \times K \times R_{18}^{(\lambda-1)} \times R_{45}-6 \times K^{2} \times R_{18}^{(2 \times \lambda-1)}\right) \times \lambda+2\right)^{2}}} \tag{7}
\end{equation*}
$$

Since R_{18} has been determined iteratively, the found value of R_{18} may differ from the true value, due to machine precision and rounding errors. In order to take this difference into account within the uncertainty budget, the found value of R_{18} is inserted into equation 4, and the deviation from zero (ε) is calculated. This deviation from zero is another uncertainty source and can be considered by equation 8 .

$$
\begin{equation*}
u_{\text {total }}\left(R_{18}\right)=\sqrt{u_{\mathrm{c}}^{2}\left(R_{18}\right)+\varepsilon^{2}} \tag{8}
\end{equation*}
$$

After calculating R_{18} and $u_{\text {total }}\left(R_{18}\right)$, also R_{13}, R_{17} and their associated uncertainties can be calculated using the following equations.

$$
\begin{gather*}
R_{17}=K \times R_{18}^{\lambda} \tag{9a}\\
u_{c}\left(R_{17}\right)=K \times \lambda \times R_{18}^{\lambda-1} \times u_{\text {total }}\left(R_{18}\right) \tag{9b}\\
R_{13}=R_{45}^{\mathrm{m}}-2 \times R_{17} \tag{10a}\\
u_{\mathrm{c}}\left(R_{13}\right)=\sqrt{u_{\mathrm{c}}^{2}\left(R_{45}^{\mathrm{m}}\right)+4 \times u_{\mathrm{c}}^{2}\left(R_{17}\right)} \tag{10b}
\end{gather*}
$$

Combining all the given equations, the uncertainty associated with R_{47} can finally be calculated using:

$$
\begin{align*}
u_{\mathrm{c}}\left(R_{47}\right)= & {\left[\left(4 \times R_{17}^{2}+8 \times R_{13} \times R_{17}+4 \times R_{13}^{2}\right) \times u_{\text {total }}^{2}\left(R_{18}\right)+\right.} \\
& \left(4 \times R_{18}^{2}+8 \times R_{13} \times R_{17} \times R_{18}+4 \times R_{13}^{2} \times R_{17}^{2}\right) \times u_{\mathrm{c}}^{2}\left(R_{17}\right)+ \tag{11}\\
& \left.\left(4 \times R_{18}^{2}+4 \times R_{17}^{2} \times R_{18}+R_{17}^{4}\right) \times u_{\mathrm{c}}^{2}\left(R_{13}\right)\right]^{0.5}
\end{align*}
$$

3 Calculation of theoretical ratios

For the calculation of the theoretical ratios ratios of blend $\mathrm{AB}\left(R_{45, \mathrm{AB}}^{\mathrm{neq}}, R_{45, \mathrm{AB}}^{\mathrm{neq}}, R_{45, \mathrm{AB}}^{\mathrm{eq}}, R_{46, \mathrm{AB}}^{\mathrm{eq}}\right)$, the following equations are necessary. In table S 1 , all quantities occurring in the following equations are defined.

$$
\begin{align*}
& R_{45, b k}^{\mathrm{neq}}=\frac{\left(x_{44, X} \times n_{X} \times R_{45, \mathrm{p} i}+x_{44, \mathrm{p} j} \times n_{Y} \times R_{45, Y}\right)}{\left(x_{44, X} \times n_{X}+x_{44, Y} \times n_{Y}\right)} \tag{12}\\
& x_{44, X}=x_{X}\left({ }^{(12} \mathrm{C}\right) \times x_{X}\left({ }^{16} \mathrm{O}\right) \times x_{X}\left({ }^{16} \mathrm{O}\right) \tag{13}\\
& n_{X}=m_{X} / M_{X} \tag{14}\\
& M_{X}=M\left({ }^{12} \mathrm{C}\right) \times x_{X}\left({ }^{12} \mathrm{C}\right)+M\left({ }^{13} \mathrm{C}\right) \times x_{X}\left({ }^{13} \mathrm{C}\right)+ \\
& 2 \times\left(M\left({ }^{16} \mathrm{O}\right) \times x_{X}\left({ }^{16} \mathrm{O}\right)+M\left({ }^{17} \mathrm{O}\right) \times x_{X}\left({ }^{17} \mathrm{O}\right)+M\left({ }^{18} \mathrm{O}\right) \times x_{X}\left({ }^{18} \mathrm{O}\right)\right) \tag{15}\\
& R_{45, X}=\frac{x_{X}\left({ }^{13} \mathrm{C}\right)}{1-x_{X}\left({ }^{13} \mathrm{C}\right)}+2 \times \frac{x_{X}\left({ }^{(17} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)} \tag{16}\\
& R_{46, \mathrm{~b} k}^{\mathrm{neq}}=\frac{\left(x_{44, X} \times n_{X} \times R_{46, \mathrm{p} i}+x_{44, \mathrm{p} j} \times n_{\mathrm{p} j} \times R_{46, \mathrm{p} j}\right)}{\left(x_{44, \mathrm{p} i} \times n_{X}+x_{44, \mathrm{p} j} \times n_{\mathrm{pj}}\right)} \tag{17}\\
& R_{46, p i}=2 \times \frac{x_{X}\left({ }^{13} \mathrm{C}\right)}{1-x_{X}\left({ }^{(13} \mathrm{C}\right)} \times \frac{x_{X}\left({ }^{(17} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)}+ \\
& 2 \times \frac{x_{X}\left({ }^{12} \mathrm{C}\right)}{1-x_{X}\left({ }^{13} \mathrm{C}\right)} \times\left(\frac{x_{X}\left({ }^{17} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)}\right)^{2} \tag{18}\\
& +2 \times \frac{x_{X}\left({ }^{13} \mathrm{C}\right)}{1-x_{X}\left({ }^{13} \mathrm{C}\right)} \times \frac{x_{X}\left({ }^{16} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)} \times \frac{x_{X}\left({ }^{18} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)} \\
& R_{45, \mathrm{bk}}^{\mathrm{eq}}=x_{\mathrm{b} k}\left({ }^{13} \mathrm{C}\right)+2 \times x_{\mathrm{b} k}\left({ }^{(17} \mathrm{O}\right) \tag{19}\\
& x_{\mathrm{b} k}\left({ }^{13} \mathrm{C}\right)=\frac{\left(x_{X}\left({ }^{12} \mathrm{C}\right) \times n_{X} \times R_{13, \mathrm{p} i}+x_{\mathrm{p} j}\left({ }^{12} \mathrm{C}\right) \times n_{\mathrm{p} j} \times R_{13, \mathrm{p} j}\right)}{\left(x_{X}\left({ }^{12} \mathrm{C}\right) \times n_{X}+x_{\mathrm{p} j}\left({ }^{12} \mathrm{C}\right) \times n_{\mathrm{p} j}\right)} \tag{20}\\
& R_{13, \mathrm{p} i}=\frac{x_{X}\left({ }^{13} \mathrm{C}\right)}{1-x_{X}\left({ }^{13} \mathrm{C}\right)} \tag{21}\\
& x_{\mathrm{b} k}\left({ }^{17} \mathrm{O}\right)=\frac{\left(x_{X}\left({ }^{16} \mathrm{O}\right) \times n_{X} \times R_{17, \mathrm{p} i}+x_{\mathrm{p} j}\left({ }^{16} \mathrm{O}\right) \times n_{\mathrm{p} j} \times R_{17, \mathrm{p} j}\right)}{\left(x_{X}\left({ }^{16} \mathrm{O}\right) \times n_{X}+x_{\mathrm{p} j}\left({ }^{16} \mathrm{O}\right) \times n_{\mathrm{p} j}\right)} \tag{22}\\
& R_{17, \mathrm{p} i}=\frac{x_{X}\left({ }^{(7} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)} \tag{23}\\
& R_{46, b k}^{\mathrm{eq}}=2 \times x_{\mathrm{b} k}\left({ }^{13} \mathrm{C}\right) \times x_{\mathrm{b} k}\left({ }^{16} \mathrm{O}\right) \times x_{\mathrm{b} k}\left({ }^{17} \mathrm{O}\right)+x_{\mathrm{b} k}\left({ }^{12} \mathrm{C}\right) \times x_{\mathrm{b} k}\left({ }^{17} \mathrm{O}\right)^{2}+ \tag{24}\\
& 2 \times x_{\mathrm{b} k}\left({ }^{12} \mathrm{C}\right) \times x_{\mathrm{b} k}\left({ }^{17} \mathrm{O}\right) \times x_{\mathrm{b} k}\left({ }^{18} \mathrm{O}\right) \\
& R_{18, \mathrm{p} i}=\frac{x_{X}\left({ }^{18} \mathrm{O}\right)}{1-x_{X}\left({ }^{17} \mathrm{O}\right)-x_{X}\left({ }^{18} \mathrm{O}\right)} \tag{25}
\end{align*}
$$

Table S 1 Definition of all quantities appearing in the above equations, in order of appearance.

quantity	definition
$R_{q, \mathrm{~b} k}^{\text {neq }}$	isotopologue ratio $q / 44, q \in\{45,46\}$ of blend $\mathrm{b} k$, without assuming a statistical isotope distribution
n_{X}	amount of substance of parent material X
$x_{44, X}$	amount-of-substance fraction of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ in parent material X
m_{X}	mass of parent material X
M_{X}	molar mass of parent material X
$M(q)$	molar mass of $q^{\text {th }}$ isotope, $q \in\left\{{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right\}$
$x_{X}(q)$	amount-of-substance fraction of q^{t} extth isotope, $q \in\left\{{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right\}$ in parent material X
$R_{q, X}^{\text {neq }}$	isotopologue ratio $q / 44, q \in\{45,46\}$ of parent material X, without statistical isotope distribution
$x_{\mathrm{bk}}(q)$	amount-of-substance fraction of $q^{\text {th }}$ isotope, $q \in\left\{{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right\}$ in blend bk
$R_{q, \mathrm{~b} k}^{\text {eq }}$	isotopologue ratio $q / 44, q \in\{45,46\}$ of blend $\mathrm{b} k$, with assuming a statistical isotope distribution

4 Gas mixing device

For preparing binary, mixtures a gas mixing device was set up at PTB. The device is built from CF flanges (DN 16 CF). The device is depicted in figure $S 2$ and a schematic description is also given. The gas mixing device is equipped with a turbo pumping station, consisting of a HiPace 80 and MVP 015-2, both from Pfeiffer Vacuum GmbH, Asslar Germany. With this set up a pressure of roughly $1 \times 10^{-7} \mathrm{mbar}$ can be reached. The pressure in the piping is measured with a Pirani/cold cathode gauge from Pfeiffer (part number PT R26 252) and the gas pressure for filling the process is measured with a capacitance gauges also from Pfeiffer (PT R24 602). The gas mixing device is equipped with a second membrane pump (Pfeiffer, PK T05 065), which can be used to evacuate the piping to roughly $1 \times 10^{-1} \mathrm{mbar}$, this by-pass pump is very convenient for evacuating the piping without rebooting the turbo pump. Additionally, the system is equipped with an argon flush unit (valve v9), the hole piping can be flush with argon (purity $0.999990 \mathrm{LL}^{-1}$). The symmetrical set-up allows to prepare binary mixtures and avoid cross contaminations. The valves v1 and v2 are inline valves (Pfeiffer, DVC 016 SX), v3 to v8 are all metal angle valves (Pfeiffer, UVH 016 CU) and v9 and v10 are diaphragm valves (VACOM GmbH, Großlöbichau, Germany, part number 15DVM-16KF-VV-A). The hole mixing device has been heated before each filling using heating taps, $T \approx 60^{\circ} \mathrm{C}$, for roughly 12 h . The actual mixing procedure is summarized in figure S 3 .

Fig. S 2 Photography and schematic representation of gas mixing device at PTB.

Fig. S 3 Schematic representation of the preparation of the binary blends. Please note that the weighing here is depicted using a double pan balance, whereas in this study, a single pan balance was used. At times t_{0}, t_{1} and t_{2}, the target sphere is weighed against the same evacuated reference sphere.

5 Measurement of natural CO_{2}

As mentioned the main text, we also measured CO_{2} with a natural isotopic composition ($\delta_{\text {VPDB }}{ }^{13} \mathrm{C}=(-17.526 \pm 0.016) \%$ and $\delta_{\mathrm{VPDB}-\mathrm{CO}_{2}}{ }^{18} \mathrm{O}=(-10.118 \pm 0.019) \%$, with $k=1$ in both cases). Previous to the measurement we heated the gas, which was filled into one of our gas spheres. The heating temperature ϑ was roughly $1800^{\circ} \mathrm{C}$ and the gas was heated for 30 min . The logarithm of R_{45}^{m} (top) and R_{46}^{m} (bottom) over time are shown in figure S 4 .

Fig. S 4 Logarithm of R_{45}^{m} (top) and R_{46}^{m} (bottom) over time. The red lines indicate linear regression fits. Previous to the measurement the gas has been heated for 30 min at $1800^{\circ} \mathrm{C}$.

6 ISL code for deriving time zero t_{0}

For extrapolating to time zero t_{0}, the starting time (when the corresponding valve opens and the gas flows from the bellows into the ionization chamber) needs to be defined. The following code is written Isodat Script Language (ISL) and therefore only works on Thermo Fisher gas mass spectrometers (e.g. MAT253). This script opens valve v15 (see figure 5) and records the time. The time is logged into a txt file. Before the valve is opened, Isodat will ask where this file should be saved. The script must be run as a prescript and works on Isodat 3.0, it has not been tested on any other version of Isodat. By change ‘_Set ("Dual Inlet System/Valve 15",1)’in line 25 to ‘_Set ("Dual Inlet System/Valve 25",1)' the right bellows can be used. After the valve has been opened and an idle time of 10 s the measurement starts normally. The idle time allows the gas flow to settle and can be adjusted if necessary.

Fig. S 5 Dual inlet system of a MAT 253 from Thermo Fisher, Bremen, Germany. v15 and v25 connect the corresponding gas reservoir with the changeover valve system. For extrapolating to time t_{0} the absolute time when the corresponding valve is opened is needed.

Listing S 1 ISL source code of function to extrapolate to time t_{0} and calculate the responding ratios and their associated uncertainties.

```
// Date 20-11-18
nclude "lib\stdisl.isl"
nclude "lib\instrument.isl"
nclude "lib\DualInlet_lib.isl"
main()
call InitScript();
//defining txt file for writing starting time
string CSFileName;
string date;
bool bDoStore =FALSE;
bool bOk=FALSE;
date=_GetDate();
//the file location may needs to be adjusted
csFileName="C:\Thermo\Isodat NT\Global\User\Dual Inlet
System\Results\starting-time-t0";
csFileName += date,
bDoStore=_FileSelect(FALSE,"*.txt",csFileName);
//Opening Valve 15
string t0 = GetTime();
_UserInfo(t0,0,00);
Set("Dual Inlet System/Valve 15",1);
//delay of }10\textrm{sec}\mathrm{ for gas flow to settle
Delay(10000);
If (bDoStore)
{
    bOk=_Write(csFileName, "Start time","Start time %",t0);
}
}
```


7 VBA code for extrapolation to $\boldsymbol{t}_{\mathbf{0}}$

In this section a VBA code (Visual Basics for Applications) for EXCEL ${ }^{\circledR}$ is presented. This code allows to perform the linear extrapolation of $\ln \left(R_{45}^{\mathrm{m}}\right)$ and $\ln \left(R_{46}^{\mathrm{m}}\right)$ to time zero. The input for this function are three ranges: The time, the logarithm of R_{45}^{m} and R_{46}^{m}. The function returns $R_{45,0}^{\mathrm{m}}$ and its associated uncertainty ($k=2!$) and $R_{46,0}^{\mathrm{m}}$ and its associated uncertainty ($k=2!$). Additionally, the isotope ratios R_{13}, R_{17} and R_{18} derived from the extrapolated values of $R_{45,0}^{\mathrm{m}}$ and $R_{46,0}^{\mathrm{m}}$. Also the expanded uncertainties of the isotope ratios are returned, $k=2$. For the calculation of R_{18} the SSH algorithm ${ }^{4}$ (named after Santrock, Studley and Hayes) is solved using the so-called regula falsi, the VBA codes of both are also given here. Please note that for the SSH algorithm it is necessary to choose K and λ. If necessary, the values of these two quantities
can be changed by the user. The values used in our codes were taken from Brand et al ${ }^{5}$.
Listing S 2 VBA source code of function to extrapolate to time t_{0} and calculate the responding ratios and their associated uncertainties.

```
Public Function co2_all_in_one(lnR45 As Range, lnR46 As Range, rel_time As Range) As Variant()
Dim K As Variant
Dim lambda As Variant
Dim R45_0 As Variant
    Dim R46_0 As Variant
    Dim R18_rf As Variant
    Dim delta As Variant
    Dim R_17 As Variant
    Dim R_13 As Variant
    Dim z() As Variant
    Dim y() As Variant
    Dim ur_45 As Variant
    Dim ur_46 As Variant
    Dim ur_18 As Variant
    Dim ur_17 As Variant
    Dim ur_13 As Variant
    Dim results() As Variant
    Dim results() As Variant 
    lambda = 0.528
    K = 0.01022461
    z() = WorksheetFunction.LinEst(lnR45, rel_time, 1, 1)
    y() = WorksheetFunction.LinEst(lnR46, rel_time, 1, 1)
    R45_0 = Exp (z(1, 2))
    R46_0 = Exp (y (1, 2))
    uR_45 = Exp (z(1, 2)) * z(2, 2)
    UR_46 = Exp (y(1, 2)) * y (2, 2)
    R18_rf = regula_falsi_R18(R45_0, R46_0)
    delta = ssh(R45_0, R46_0, R18_rf)
    uR_18 = ur18(R18_rf, R45_0, R46_0, ur_45, ur_46, delta)
    R_17 = K * R18_rf ^ lambda
    R_13 = R45_0 - 2 * r_17
    uR_17 = K * uR_18 * R18_rf ^ (lambda - 1) * lambda
    uR_13 = (uR_45 ^ 2 + 4 * K N ^ 2 * lambda ^ 2 * R18_rf ^ (2 * lambda - 2) -
    results(1,1)= "R_{45,0}"
    results (2,1)= "R_{46,0}"
    results (3,1)= "R_{13}"
    results (4,1)="R_{17}
    results (5,1)="R_{18}"
    results(1, 2) = R45_0 
    results(2, 2) = R46_0
    results(2, 3) = uR_46 * 2
    results(3, 2) = R_13
    results (3, 3) = uR_13 * 2
    results (4, 2) = R_17
    results (4, 3) = uर्R_17 * 2
    results(5, 2) = R18_rf
    results(5, 3) = uR_18 * 2
    co2_all_in_one = results()
End Function
```

```
Function regula_falsi_R18(r_45 As Variant, r_46 As Variant) As Variant
Dim a As Variant
Dim b As Variant
Dim z As Variant
Dim counter As Integer
    Dim fa As Variant
    Dim fb As Variant
    Dim fz As Variant
    a}=10
    b}=
    lambda = 0.528
    k = 0.01022461
    fa = ssh(r_45, r_46, a)
    fb}=\operatorname{ssh}(\mp@subsup{r}{-}{\prime}45, r_46, b
    z =a - (b - a) / (fb - fa) * fa
    fz = ssh(r_45, r_46, z)
    While Abs(fz) <> 0
    If (Sgn(fa) = Sgn(fz)) Then
        a=z
        Debug.Print ("Sgn(fa) = Sgn(fz)")
    ElseIf (Sgn(fb) = Sgn(fz)) Ther
        b}=
        Else
        Debug.Print ("Warning, fa and fb have the same sign!")
    End If
    z=a-((b-a)/(fb - fa)) * fa
    fz = ssh(r_45, r_46, z)
    fa = ssh(r_45, r_46, a)
    fb}=\operatorname{ssh}(r-45, r_46,b
    counter = counter + 1
    If counter > 10000 Then
        fz = 0
        End If
    Wend
    regula_falsi_R18 = z
End Function
```


Listing S 4 VBA source code of the SSH alogrithm.

```
Function ssh(r 45 As Variant, r 46 As Variant, r 18 As Variant) As Variant
    Dim K As Variant
    Dim lambda As Variant
    lambda = 0.5278
    K = 0.01022461
    ssh = -r_46-3* K^ 2 * r_18^ (2 * lambda) + 2 * K * r_ 45 * r_18 ^lambda _ + 2 * r_18
End Function
```

```
Function ur18(r_18 As Variant, r_45 As Variant, r_46 As Variant, ur_45
    As Variant, ur_46 As Variant, epsilon As Variant) As Variant
    Dim lambda As Variant
    Dim K As Variant
    lambda = 0.528
    k = 0.01022461
    ur18 = ((ur_46^2 - (2 * K * r_18 ^ lambda) ^ 2 * ur_45 ^ 2) /
        (2 * K * r_18^ (lambda - 1) * r_45* lambda - 6 * K^ 2 * r_18^ ( 2 * _ lambda - 1) * lambda + 2) ^ 2 + epsilon ^ 2) ^ 0. 5
End Function
```


8 Alternative equations

In main text of this publication, it has been shown how a system of non-linear equation based on the ratios R_{45}, R_{46} and R_{47} can be set-up and solved for the absolute ratios and the K-factors. Depending on the isotopic composition of the starting materials it is also possible to measure other intensity ratios and consequently for calculating the absolute isotope ratios and the K-factors a different set of equations is needed. The solving routine is the same and must be adapted accordingly. Please note that three ion intensity ratios must be measured, so that enough information is available and the system of equations can be solved. Equations 26 a to 26 e describe the measured ion intensity ratios of the two parent materials and the binary blend, y stands for A, B or AB .

$$
\begin{gather*}
0=K_{45} \times R_{45, y}^{\mathrm{m}}-\left(R_{13, y}+2 \times R_{17, y}\right) \tag{26a}\\
0=K_{46} \times R_{46, y}^{\mathrm{m}}-\left(2 \times R_{18, y}+2 \times R_{17, y} \times R_{13, y}+R_{17, y}^{2}\right) \tag{26b}\\
0=K_{47} \times R_{47, y}^{\mathrm{m}}-\left(2 \times R_{18, y} \times R_{17, y}+2 \times R_{18, y} \times R_{13, y}+R_{17, y}^{2} \times R_{13, y}\right) \tag{26c}\\
0=K_{48} \times R_{48, y}^{\mathrm{m}}-\left(2 \times R_{13, y}+R_{18, y}^{2}\right) \tag{26d}\\
0=K_{49} \times R_{49, y}^{\mathrm{m}}-\left(R_{13, y} \times R_{18, y}^{2}\right) \tag{26e}
\end{gather*}
$$

In order to reduce the number of unknowns, the absolute isotope ratios of the binary blend $A B$ must be expressed as linear combinations of the corresponding ratios of the two parent materials. This is shown in equations 27a to 27 c .

$$
\begin{align*}
& R_{13, \mathrm{AB}}=\frac{\left(n_{\mathrm{A}} \times x_{12, \mathrm{~A}} \times R_{13, \mathrm{~A}}+n_{\mathrm{B}} \times x_{12, \mathrm{~B}} \times R_{13, \mathrm{~B}}\right)}{\left(n_{\mathrm{A}} \times x_{12, \mathrm{~A}}+n_{\mathrm{B}} \times x_{12, \mathrm{~B}}\right)} \tag{27a}\\
& R_{17, \mathrm{AB}}=\frac{\left(n_{\mathrm{A}} \times x_{16, \mathrm{~A}} \times R_{17, \mathrm{~A}}+n_{\mathrm{B}} \times x_{16, \mathrm{~B}} \times R_{17, \mathrm{~B}}\right)}{\left(n_{\mathrm{A}} \times x_{16, \mathrm{~A}}+n_{\mathrm{B}} \times x_{16, \mathrm{~B}}\right)} \tag{27b}\\
& R_{18, \mathrm{AB}}=\frac{\left(n_{\mathrm{A}} \times x_{16, \mathrm{~A}} \times R_{18, \mathrm{~A}}+n_{\mathrm{B}} \times x_{16, \mathrm{~B}} \times R_{18, \mathrm{~B}}\right)}{\left(n_{\mathrm{A}} \times x_{16, \mathrm{~A}}+n_{\mathrm{B}} \times x_{16, \mathrm{~B}}\right)} \tag{27c}
\end{align*}
$$

The amounts of substance can be expressed as:

$$
\begin{equation*}
n_{y}=m_{y} / M_{y} \tag{28}
\end{equation*}
$$

Whereas y stands for A or B. The molar mass of the corresponding material can be expressed as:

$$
\begin{align*}
M_{y}= & M\left({ }^{12} \mathrm{C}\right) \times x_{y}\left({ }^{12} \mathrm{C}\right)+M\left({ }^{13} \mathrm{C}\right) \times x_{y}\left({ }^{13} \mathrm{C}\right)+ \\
& 2 \times\left(M\left({ }^{16} \mathrm{O}\right) \times x_{y}\left({ }^{16} \mathrm{O}\right)+M\left({ }^{17} \mathrm{O}\right) \times x_{y}\left({ }^{17} \mathrm{O}\right)+M\left({ }^{18} \mathrm{O}\right) \times x_{y}\left({ }^{18} \mathrm{O}\right)\right) \tag{29}
\end{align*}
$$

The occurring amount-of-substance fractions must be expressed in terms of the isotope ratios:

$$
\begin{gather*}
x_{12, y}=1 /\left(1+R_{13, y}\right) \tag{30a}\\
x_{13, y}=R_{13, y} /\left(1+R_{13, y}\right) \tag{30b}\\
x_{16, y}=1 /\left(1+R_{17, y}+R_{18, y}\right) \tag{30c}\\
x_{17, y}=R_{17, y} /\left(1+R_{17, y}+R_{18, y}\right) \tag{30d}\\
x_{18, y}=R_{18, y} /\left(1+R_{17, y}+R_{18, y}\right) \tag{30e}
\end{gather*}
$$

Taking all these relations into account equations like the ones already shown in the main text can be set-up. In the second Mathematica notebook ('equation-system.nb') accompanying this publication all possible initial equations are give.

9 Supplement to the Simulation

In the main text, we described a simulation, where we calculated the absolute isotope ratios, the K-factors, and all associated uncertainties of the two parent materials via a Monte Carlo simulation. The input is listed in Table S2. The results of our code are the density probability functions (PDF) of the above listed quantities, see figure S 6 . From those PDFs the best estimates and the uncertainties associated with them are derived. The PDFs are assumed to be normal distributions, therefore the uncertainty u is σ and the best estimate is μ. The number of Monte Carlo trials was to 1×10^{5}.

Table S 2 Input of the second simulation with made-up numbers of the two parent materials (A^{\prime}, B^{\prime}) and the binary blend $A B$ '. Note that the uncertainties $(k=1)$ (of the measured ratios and the masses), on the other hand, stem from real measurements in order to assess the performance of the method. The isotopologue ratios were calculated from the isotope ratios and transformed into the intensity ratios by dividing them with the corresponding K-factors, which are also given in table .

	A^{\prime}	B^{\prime}	AB^{\prime}
$R_{45, y}^{\mathrm{m}} /\left(\mathrm{AA}^{-1}\right)$	$0.0121488(14)$	$83.5958(60)$	$1.040411(10)$
$R_{46, y}^{\mathrm{m}} /\left(\mathrm{AA}^{-1}\right)$	$0.004961380(74)$	$1.94805(40)$	$0.0306918(31)$
$R_{47, y}^{\mathrm{m}} /\left(\mathrm{AA}^{-1}\right)$	$0.000057939(12)$	$2.74052(90)$	$0.0192271(40)$
m_{x} / g	$0.99470(19)$	$1.0023(19)$	-

Fig. S 6 Probability density functions (blue lines, Gaussian functions) and histograms obtained by Monte Carlo simulation. The number of Monte Carlo trials was set to 1×10^{5}.

10 Code for solving the system of non-linear equations

In the main text it is described how K-factors for CO_{2} can be calculated when the isotopic equilibrium is considered. Since we presented a Mathematica file to solve the non-linear equation system, we also like to share the code for all other users who do not use Mathematica but like to implement our code in a different way. Please note, the system of non-linear equations is not directly shown in the code, since they are excessively long. The non-linear equation system, the equations for calculating the initial guesses, and the function for generating normally distributed deviates were imported from the file titled 'equations-r45-r46-r47.m'. Therefore, these two files must be saved in the same directory. The functions in this file are all given in the main text. The data evaluation is also imported from a file ('data-evaluation.m', see listing77). This file must also be saved in the same directory.

Listing S 6 Mathematica code for solving the system of non-linear equations.

```
SetDirectory[NotebookDirectory[]]
Import["equations-r45-r46-r47.m"]
fmport ["data-evaluation.m"];
*************************************************)
(* input *)
* nr is the number of Monte Carlo trials *)
    nr = 1000000;
* Atomic mass of the five stable isotopes *)
    M12C = 12;
    muM13C = 13.00335483521;
    muM160 = 15.9949146196;
    muM170 = 16.9991317566
    muM180 = 17.9991596128;
(* uncertainties (k=1) associated with the atomic mass of the five \
Stable isotopes *)
    uM13C = 2.3*^-10;
    GM160 = 1.7*^-10;
    uM170 = 7*^-10;
    uM180 = 7*^-10;
(* masses of the parent materials A and B *)
    mumA = 0.9947
    mumB = 1.0023;
* uncertainties (k=1) associated with the masses of the parent
materials A and B *)
    umA = 1.9*^-4
    umB = 1.9*^-4
* measured ion intensities of material A *)
    mur45A = 0.0121488105002256;
    nur46A = 0.00496138026894439;
    mur47A = 0.0000579385118709506;
* uncertainties (k=1) associated with the measured ion intensities of
material A *)
    ur45A = 0.00000139711320752594;
    ur46A = 0.0000000744207040341659;
    ur47A = 0.0000000121670874928996
* measured ion intensities of material B *)
    mur45B = 83.5957511985939;
    mur46B = 1.94805231823881
    mur47B = 2.74051699405287
(* uncertainties (k=1) associated with the measured ion intensities of
material B *)
    Mr45B = 0.006018894;
    ar46B = 0.00038961;
    ur47B = 0.000904371;
* measured ion intensities of blend AB *)
    mur45AB = 1.04041111720587;
    mur46AB = 0.0306918329606498;
    mur47AB = 0.0192271177872782;
* uncertainties (k=1) associated with the measured ion intensities of
material AB *)
    ur45AB = 0.0000100919878368969;
    ur46AB = 0.00000306918329606498;
    ur47AB = 0.00000403769473532842;
********************************************** *)
    * list for storing the results and later data evaluation *)
    listK45 = Table[Null, nr];
    listK46 = Table[Null, nr];
    1istK47 = Table[Null, nr];
    listR13A = Table[Null, nr];
    listR17A = Table[Null, nr];
    listR18A = Table[Null, nr];
    1istR13B = Table[Null, nr];
    listR17B = Table[Null, nr];
    1istR18B = Table[Null, nr];
```

```
78
(* Monte Carlo trials *)
For[i=1, i <= nr, i++,
    (* generating random deviates *)
    M13C = muM13C + boxmuller[uM13C, RandomReal[], RandomReal[]];
    M160 = muM160 + boxmuller[uM160, RandomReal[], RandomReal[]];
    M170 = muM170 + boxmuller[uM170, RandomReal[], RandomReal[]];
    M180 = muM180 + boxmuller[uM180, RandomReal[], RandomReal[]];
    mA = mumA + boxmuller[umA, RandomReal[], RandomReal[]];
    mB = mumB + boxmuller[umB, RandomReal[], RandomReal[]];
    r45A = mur45A + boxmuller[ur45A, RandomReal[], RandomReal[]];
    r46A = mur46A + boxmuller[ur46A, RandomReal[], RandomReal[]];
    r47A = mur47A + boxmuller[ur47A, RandomReal[], RandomReal[]];
    r45B = mur45B + boxmuller[ur45B, RandomReal[], RandomReal[]];
    r46B = mur46B + boxmuller[ur46B, RandomReal[], RandomReal[]];
    r47B = mur47B + boxmuller[ur47B, RandomReal[], RandomReal[]];
    r45AB = mur45AB + boxmuller[ur45AB, RandomReal[], RandomReal[]];
    r46AB = mur46AB + boxmuller[ur46AB, RandomReal[], RandomReal[]];
    r47AB = mur47AB + boxmuller[ur47AB, RandomReal[], RandomReal[]];
    (* calculating initial values of material A *)
    intR17A = FindRoot[InitalR17[r45A, r46A, r47A, x], {x, 0}]
    intR17A = x/. intR17A[[1]];
    intR18A = (r46A - 2*intR17A*r45A + 3*intR17A^2)/2;
    intR13A = r45A - 2*intR17A;
    (* calculating initial values of material B *)
    intR17B = FindRoot[InitalR17[r45B, r46B, r47B, x], {x, 0}];
    intR17B = x /. intR17B[[1]];
    intR18B = (r46A - 2*intR17B*r45A + 3*intR17B^2)/2;
    intR13B = r45B - 2*intR17B;
    (* solving the system of non-linear equations *)
    results =
    FindRoot[{f1, f2, f3, f4, f5, f6, f7, f8,
        f9}, {{K45, 1}, {K46, 1}, {K47, 1}, {R13A, intR13A}, {R17A,
        intR17A}, {R18A, intR18A}, {R13B, intR13B}, {R17B,
        intR17B}, {R18B, intR18B}}, MaxIterations -> \[Infinity]];
    (* storing results for later data evaluation in lists *)
    listK45[[i]] = K45 /. results[[1]];
    1istK46[[i]] = K46 /. results[[2]];
    listK47[[i]] = K47 /. results[[3]];
    listR13A[[i]] = R13A /. results[[4]];
    listR17A[[i]] = R17A /. results[[5]];
    listR18A[[i]] = R18A /. results[[6]];
    listR13B[[i]] = R13B % results[[7]];
    listR17B[[i]] = R17B % results[[8]];
    1istR18B[[i]] = R18B /. results[[9]];
]
(*************************************************)
(*************************************************)
(* data evaluation, calculating of the best estimate and the 
associated uncertainty *)
(* data evaluation for Subscript[R, 13,A] *)
    dataevaluation[listR13A, "\!\\\**SubscriptBox[
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(13, A\)]\)", " mol/mol"];
    resultl = %;
(* data evaluation for Subscript[R, 17,A] *)
    dataevaluation[listR17A, "\!\(\*SubscriptBox|
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(17, A\)]\)", " mol/mol"];
    result2 = %;
* data evaluation for Subscript[R, 18,A] *)
    dataevaluation[listR18A, "\!\\(\*SubscriptBox\
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(18, A\)]\)", " mol/mol"];
    result3 = %;
(* data evaluation for Subscript[R, 13,B] *)
    dataevaluation[listR13B, "\!\(\*SubscriptBox[
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(13, B\)]\)", " mol/mol"];
    result4 = %;
(* data evaluation for Subscript[R, 17,B] *)
    dataevaluation[listR17B, "\!\(\*SubscriptBox[
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(17, B\)]\)", " mol/mol"];
    result5 = %;
(* data evaluation for Subscript[R, 18, B] *)
    dataevaluation[listR18B, "\!\(\**SubscriptBox[
    StyleBox[\"R\",\nFontSlant->\"Italic\"], \(18, B\)]\)", " mol/mol"];
    result6 = %;
(* data evaluation for Subscript[K, 45] *)
    dataevaluation[listK45, "\!\\(\*SubscriptBox[
    StyleBox[\"K\",\nFontSlant->\"Italic\"], \(45\)]\)", " mol/mol/A/A"];
    result7 = %;
(* data evaluation for Subscript[K, 47] *)
    dataevaluation[listK46, "\!\(\*SubscriptBox[
    StyleBox[\"K\",\nFontSlant>>\"Italic\"], \(46\)]\)", " mol/mol/A/A"];
    result8 = %;
```

```
1 7 5 ~ ( * ~ d a t a ~ e v a l u a t i o n ~ f o r ~ S u b s c r i p t [ K , ~ 4 7 ] ~ * ) ~
    dataevaluation[listK46, "\!\(\*SubscriptBox[
    StyleBox[\"K\",\nFontSlant->\"Italic\"], \(47\)]\)", " mol/mol/A/A"];
    result9 = %;
(**************************************************)
(****************************************************)
(* printing result file, which contains all best estimates and their \
associated uncertainties *)
    filename =
    "results-file-co2-calculator-" <>
    DateString[{"Year", "-", "Month", "-", "Day", "-", "Hour", "-",
        "Minute"}] <> ".txt";
nrstring = "Number of Monte Carlo trials was set to " <> ToString[nr];
putAppend[nrstring, result1, result2, result3, result4, result5,
    result6, result7, result8, result9, filename ];
```

Listing S 7 Mathematica code the data evaluation.

```
dataevaluation[datalist_, name_, unit_] :=
    (dist = EstimatedDistribution[datalist, NormalDistribution[\[Mu],
        \[Sigma]]]; mu = dist[[1]]; sigma = dist[[2]]; pdfs = PDF[dist, x];
    ylable = StringJoin["Prpabilitydensity/(", unit,
        "\!\(\*SuperscriptBox[\()\),\(-1\)]\)"];
    xlable = StringJoin[name, "/(", unit, ")"];
    Print[Show[{Histogram[datalist, Automatic, "PDF",
            Frame -> {True, True, True, True}, FrameLabel ->
            {Style[xlable, 16], Style[ylable, 16]}],
        Plot[pdfs, {x, Min[datalist], Max[datalist]}]}]];
    string = StringJoin["The best estimate of ", ToString[name], " is ",
        ToString[mu], " ", unit, " "];
    Print["The best estimate of", name,
    "is ", mu, " and its associated uncertainty is ", sigma, " (",
    (sigma/mu)*100, " %)."];
    Return[string])
```


Notes and references

[1] G. Mana and O. Rienitz, Int. J. Mass Spectrom., 2010, 291, 55-60.
[2] A. Stoll-Werian, L. Flierl, O. Rienitz, J. Noordmann, R. Kessel and A. Pramann, Spectrochim. Acta B, 2019, 76-83.
[3] L. Flierl, A. Pramann, J. Noordmann, A. Röthke and O. Rienitz, Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 168, 105866.
[4] J. Santrock, S. A. Studley and J. M. Hayes, Analytical Chemistry, 1985, 57, 1444-1448.
[5] W. A. Brand, S. S. Assonov and T. B. Coplen, Pure Appl. Chem., 2010, 82, 1719-1733.
[6] S. K. Gupta, Numerical Methods for Engineers, New Age International Limited Publishers, New Delhi, 2003.
[7] Joint Committee for Guides in Metrology, JCGM 100: Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement, JCGM technical report, 2008.

[^0]: ${ }^{a}$ Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany. Fax: + 49531592 310; Tel: +49 5315923319 ; E-mail: lukas.flierl@ptb.de
 ${ }^{b}$ National Physical Laboratory, Analytical Science Division, Hampton Road, Teddington, Middlesex TW11 OLW, U.K.
 ${ }^{c}$ Centre for Isotope Research (CIO), Energy and Sustainability Institute Groningen (ESRIG), University of Groningen, 9747 AG, Groningen, the Netherlands

