Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Radially Resolved Optical Emission Spectral Imaging Diagnostics of Atmospheric Pressure µDBD Jet for Direct Surface Solid Sampling Analysis

Songyue Shi, Kevin Finch, and Gerardo Gamez*

Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX 79409-41061, USA. E-mail: <u>Gerardo.gamez@ttu.edu</u>

Section 1

The schematic and concept of push-broom hyperspectral imaging system used in the lab.

Figure S1. Schematic of push-broom hyperspectral imaging system. The hyperspectral datacube (upper right) contains the emission information of vertical direction (y), horizontal direction (scanning x), and spectral direction (λ).

Section 2

The LIFBASE software is used to simulate and determine the rotational temperature based on the N_2^+ first negative system. The best fitted temperature is determined by the least Chi-square value (χ^2) between the experimental spectra data and the simulated model data.

Section 3

He2 (bar) at 52 μ m above the sample surface compared with the FWHM of the erosion crater (red line) from 0.1 to 0.4 L/min flow rate. The applied voltage is a) 6 kV and b) 8 kV. The error bars represent the standard deviation of the triplicate measurements.

