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To model the generation and propagation of the acoustic waves in the piezoelectric substrate, 
we employ the time-domain constitutive equation governing the motion of a piezoelectric 
solid:1-5
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where  is the electric displacement,  is the electric field,  are the dielectric 𝐷𝑖 = 𝜀𝑖𝑘𝐸𝑘 𝐸𝑘 𝜀𝑖𝑘

coefficients,  is the time,  are the piezoelectric stress coefficients,  are the stress 𝑡 𝑒𝑖𝑗𝑘𝑙 𝑇𝑖𝑗

components, and  are the elastic stiffness coefficients; the superscripts  and  denote that 𝑐𝑖𝑗𝑘𝑙 𝑆 𝐸

these quantities are measured at constant strain and constant electric field, respectively. Here, 

we assume the electric field is quasi-static and hence . Together with the infinitesimal ∂𝐷𝑖 ∂𝑡 ≈ 0

strain-displacement relationship,
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Eqns. (S1) and (S2) can be simplified to
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where  is the particle displacement and  is the velocity of the solid.𝜉 𝑣

Equations (S4) and (S5) are solved together with Newton’s second law of motion
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simultaneously using a finite difference time-domain method; in the above,  being the mass 𝜌𝑠

density of the substrate. To minimize wave reflection from the boundaries, split-field perfectly 
matched layers are adopted along the left, right, and bottom boundaries of the piezoelectric 
domain (see Fig. 2 in the manuscript).6,7 To generate the SAW, a sinusoidal electric potential, 

, in which  is the peak-to-peak voltage and  is the 𝜑 = 𝜑𝑝 ‒ 𝑝sin (2𝜋𝑥 𝜆𝑆𝐴𝑊)sin 𝜔𝑡 𝜑𝑝 ‒ 𝑝 𝜔 = 2𝜋𝑓𝑆𝐴𝑊
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angular frequency with  MHz, is imposed on the surface of the piezoelectric substrate. 𝑓𝑆𝐴𝑊 = 30

The dimensions of the piezoelectric substrate are  and ; the distance 𝐿𝐿𝑁 ≈ 15𝜆𝑆𝐴𝑊 𝐻𝐿𝑁 ≈ 4𝜆𝑆𝐴𝑊

between computational nodes is m.∆𝑥𝐿𝑁 = ∆𝑦𝐿𝑁 = 0.468 𝜇

To model the acoustic wave propagation and the subsequent acoustic streaming in the liquid 
atop the LN substrate, we employ a lattice Boltzmann model based on the single-relaxation-time 
Bhatnagar-Gross-Krook scheme on a two-dimensional square lattice with nine velocities (D2Q9). 
The macroscopic fluid velocity is defined by8-11
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and the fluid density is defined by
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where  denotes the position on the lattice; for D2Q9 (see Fig. w in the manuscript), the lattice 𝑥

vectors are , , , , , , , 𝑒0 = (0,0) 𝑒1 = (1,0) 𝑒2 = ( ‒ 1,0) 𝑒3 = (0,1) 𝑒4 = (0, ‒ 1) 𝑒5 = (1,1) 𝑒6 = ( ‒ 1,1)

 and . The particle distribution function  spatiotemporally evolves as𝑒7 = ( ‒ 1, ‒ 1) 𝑒8 = (1, ‒ 1) 𝑓𝑖

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡,𝑡 + ∆𝑡) = 𝑓𝑖(𝑥,𝑡) ‒
1
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𝑖 (𝑥,𝑡)],           (𝑆9)

where  is the time step and  is the relaxation time, which is related to the kinematic shear ∆𝑡 𝜏

viscosity , where for D2Q9  is the sound speed in the lattice unit.𝜈 = 𝑐2
𝑓(𝜏 ‒ 1 2)(Δ2 Δ𝑡) 𝑐𝑓 = 1 3
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),                                       (𝑆10)

is the local equilibrium distribution function, whose weight factors  are 𝑤𝑖

,  and  for the D2Q9 lattice.𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 1 9 𝑤5 = 𝑤6 = 𝑤7 = 𝑤8 = 1 36 𝑤0 = 4 9

We assume the top boundary of the liquid film ( ) is non-deformable ( ), i.e., a 𝑦𝑓 = 𝐻𝑓 𝑢 = 0

bounce-back boundary condition applies; periodic boundary conditions, on the other hand, are 

assumed at both ends of the fluid domain, i.e., at  and . As noted earlier, the aim of 𝑥𝑓 = 0 𝑥𝑓 = 𝐿𝑓

this simplified calculation is to approximate the ion distribution within the liquid film atop the 
LN substrate, rather than an accurate hydrodynamic quantification of the flow; thus, we adopt a 
simplified assumption of a bounce-back boundary condition is employed on the top surface. The 

total number of cycles is  and the streaming velocities  are computed from 𝑡 = 300𝑓 ‒ 1
𝑆𝐴𝑊 𝑢𝑑𝑐

to . The dimensions for the liquid domain are  and  𝑡 = 20𝑓 ‒ 1
𝑆𝐴𝑊 𝑡 = 300𝑓 ‒ 1

𝑆𝐴𝑊 𝐿𝑓 ≈ 22𝜆𝑓 𝐻𝑓 ≈ 0.5𝜆𝑓

whereas the distance between computational nodes is m. At the interface ∆𝑥𝑓 = ∆𝑦𝑓 = 0.117 𝜇

between the piezoelectric substrate and the liquid, i.e.,  and , the domains are 𝑦𝐿𝑁 = 𝐻𝐿𝑁 𝑦𝑓 = 0

coupled through continuity in the velocities and stresses.



In the absence of any ion generation reactions, the equation governing the transport of ionic 
species in the liquid is:12-14
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where  denotes the ionic concentration of species ,  is the ion valency,  is the Faraday 𝐶𝑖 𝑖 𝑧𝑖 𝐹

constant,  is the diffusion coefficient of ionic species ,  is the molar gas constant in 𝐷𝑖 𝑖 𝑅 = 𝑘𝐵𝑁𝐴

which  is the Boltzmann constant,  is Avogadro's constant and  is the temperature of the 𝑘𝐵 𝑁𝐴 𝑇

liquid. Additionally, we solve the Poisson equation

∇2𝜑𝑓 =‒
𝜌𝑒

𝜀𝑟𝜀0
,                                                                     (𝑆12)

to obtain the potential field ;  is the net charge density,  is the relative 𝜑𝑓

𝜌𝑒 = 𝐹∑
𝑖

𝑧𝑖𝐶𝑖
𝜀𝑟

permittivity of the medium, and  is the permittivity of free space. At the interface between the 𝜀0

piezoelectric substrate and the liquid, i.e.,  and , the boundary conditions  𝑦𝐿𝑁 = 𝐻𝐿𝑁 𝑦𝑓 = 0

 and  (  being the normal coordinate) are imposed, whereas far 𝜑𝐿𝑁 = 𝜑𝑓 𝜀33∂𝜑𝐿𝑁 ∂𝑛 = 𝜀𝑓∂𝜑𝑓 ∂𝑛 𝑛

from the LN substrate, . For simplicity, we assume that  wherein  𝜑𝑓(𝑦𝑓→∞) = 0 |𝑧1:𝑧2| = 1:1 𝑧1

and  denote the valence for the positive and negative ions, respectively,  the bulk ionic 𝑧2

concentration  M, the temperature  K, the dielectric constant 𝐶∞ = 10 ‒ 6
𝑇 =  293

 C2/J m, and the diffusion coefficients for both ions  𝜀𝑓 = 𝜀𝑟𝜀0 = 2.6 × 10 ‒ 10
∙ 𝐷1 = 𝐷2 = 1 × 10 ‒ 8

m2/s.13 Equation (S11) is solved using the finite difference time-domain method, whereas Eq. 
(S12) is solved using the Gauss-Seidel method.15

References
[1] K. M. Ang, L. Y. Yeo, Y. M. Hung and M. K. Tan, Lab Chip, 2016, 16, 3503-3514.
[2] K. M. Ang, L. Y. Yeo, Y. M. Hung and M. K. Tan, Nanoscale, 2017, 9, 6497-6508.   
[3] B. A. Auld, Acoustic Fields and Waves in Solids: Volume I, Wiley, 1973. 
[4] H. F. Tiersten, J. Acoust. Soc. Am., 1963, 35, 234-239.
[5] F. Changla and P. M. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2006, 53, 1895-
1901.
[6] C. T. Schr der and W. R. Scott, IEEE Trans. Geosci. Remote Sens., 2000, 38, 1505-1512.�̈�

[7] F. Collino and C. Tsogko, Geophysics, 2001, 66, 294-307.
[8] D. Haydock and J. M. Yeomans, J. Phys. A: Math Gen., 2001, 34, 5201-5213.
[9] D. Haydock and J. M. Yeomans, J. Phys. A: Math Gen., 2003, 36, 5683-5694.
[10] S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 1998, 30, 329-364.
[11] M. K. Tan and L. Y. Yeo, Phys. Rev. Fluids, 2018, 3, 044202.
[12] D. Hlushkou, D. Kandhai and U. Tallarek, Int. J. Numer. Methods Fluids, 2004, 46, 507-532.
[13] M. Wang and Q. Kang, J. Comput. Phys., 2010, 229, 728-744.
[14] H.-C. Chang and L. Yeo, Electrokinetically Driven Microfluidics and Nanofluidics, Cambridge 
University Press, 2010. 



[15] J. D. Anderson, Computational Fluid Dynamics: The Basics with Application, McGraw-Hill, 
1995.


