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1. Comparison with other label-free droplet sorting 

studies 

We reviewed the most relevant sorting methods published for post-encapsulation 

droplet sorting, selecting only label-free techniques. CNN based sorting performs in 

line with previous studies or favourably for throughput and classification accuracy. The 

main advantage of our technique lies in its adaptability to variation in visual 

appearance, object sizes and the possibility to perform co-encapsulations with diverse 

objects. 

 Method for 
object 
identification 

Efficiency of 
single cells 
identification 

Throughput Resolution Adaptability to 
variation in 
visual 
appearance, 
object sizes 
and possibility 
to perform co-
encapsulations 

Image-
based 
methods 

     

This work Convolutional 
neural 
networks 

80-90% 40 Hz 478 x478 Yes 

1 Image 
binarization 
and 
segmentation 

NA 100 Hz 72x72 Difficult 

2 Template 
matching 
algorithm 

~ 90% 10 Hz Not 
mentioned 

Not shown  

Non-
image-
based 
methods 

     

3 Acoustic 
waves 

97% 40 Hz NA No 

4 Hydrodynamic 
instabilities 

~70-80% 160 Hz NA No 

5 ~60-78% ~60-78% 5 kHz NA No 

Table S1. Comparison of CNN based droplet sorting for micro-encapsulation with 

other published studies using label-free droplet-based techniques. 

2. Detailed microdevice fabrication procedure 

The device was fabricated following classical soft-lithography procedures by using a 

high-resolution acetate mask (Microlithography Services Ltd.) Negative photoresist 

SU-8 3050 (MicroChem, Newton, MA) was deposited onto clean silicon wafers to a 

thickness of 80 µm and patterned by exposure to UV light through a transparency 



photomask. Prior of immersing the master in propylene glycol monomethyl ether 

acetate (PGMEA, Sigma-Aldrich) for development, a second layer of SU-8 2100 was 

applied for coating and UV exposed for the development of a serpentine channel 

(height, 150 µm; width, 150 um diameter). Uncured polydimethylsiloxane (PDMS) 

consisting of a 10: 1 polymer to cross-linker mixture (Sylgard 184) was poured onto 

the master, degassed, and baked at 70 °C for 4 hours. The PDMS mould was then cut 

and peeled from the master, punched with a 1 mm biopsy punch (Kai Medical) for inlet 

ports, and plasma bonded (Diener Zepto) to a microscope slide (76 x 26 mm, 1.00 – 

1.2 mm thick, Academy Science). Hydrophobic surface treatment was performed after 

bonding by flushing with 1% (v/v) Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane 

(Aldrich) in HFE-7500 and, subsequently, placed in a 65 °C oven for 30 min.  

3. Optical setup  

The trinocular port of the inverted microscope was used for triggering, imaging, and 

recording of high-speed videos. The distances between the optical elements are 

depicted in Figure S1. 

 

Figure S1. Optical setup with location of the optical elements. The lengths are 

indicated by numbers placed along the light path and are expressed in millimetres. 

Plano-convex lenses had focal lenses of 50 mm for L1 and L2, 25.4 mm for L3 and 

L4.  



4 Accuracy and number of training classes 

We tested whether CNNs could classify images into two (‘non single object’ and ‘single 

object’) rather than three classes (‘0’,’1’and ‘>1’ object). Figure S2 shows that for a 

typical CNN architecture (as shown in Figure 2), accuracy reduces slightly for PA (1% 

loss) and MCF7 (5% loss), more significantly for PS (~17% loss). The training images 

consisted of 200 single objects and 2x 200 non single objects. We kept this class 

imbalance for validating the models. 

 

 

Figure S2. Accuracy versus number of training classes (n= 3). 

5. Timing for training and single image evaluation for 

real-time classification 

5.1 Real-time saving of images 

Images could be acquired and saved to an SSD drive and a circular mask was applied 

to exclude irrelevant parts of the images outside the droplets. Frame grabbing time 

was found to be below 1 ms for all image sizes. The saving time, however, increased 

exponentially with the pixel number and was typically 22 ms for 480 x 480 pixels 

(Figure S3A). 

5.2 Comparison between single CPU and single GPU 

We compared time performance between a CPU and a GPU for both training and 

testing CNNs. Therefore, after acquisition and labelling of the training data, the offline 

CNN training was done using either a CPU or a GPU. The time it took for training using 
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the GPU was typically 7 minutes for 478 x 478 pixels images with 1200 images per 

class and 10 epochs (each image was passed 10 times through the network). By 

contrast, the CPU required 200 minutes to perform the same task (Figure S3B). After 

training, the CNN was applied in real-time on single images being received by the area 

scan camera. Figure S3C shows the testing time for a single image using the 

GPU/CPU. With the GPU, it took 5 ms to process an image independently of image 

size, while the CPU timing increased exponentially from 5 ms at 50 x 50 pixels to 213 

ms for 480 x 480 pixels. 

 

Figure S3. Timings for the real-time saving of images (n= 3) (A), CNN training (B) and 

single image testing through the network (C). Training time assumes a collection of 3 

x 1200 images with 10 epochs. 

5.3 Influence of CNN parameters on time performance 

The training time using a GPU was assessed with different kernel sizes and number 

of filters in a 3 convolutional layers CNN with 128 neurons in the first fully connected 

layer and a 40% dropout rate (Figure S4-A). We also evaluated time performance to 

classify a single image with a network having 3 convolutional layers with different 

number of filters and kernel size. The relationship is plotted in Figure S4-B. Significant 

increases in training and testing time are seen when kernel size exceeds 20 and with 

higher number of filters. 



 

Figure S4. (A) Dependence between training time per 100 images using a GPU and 

kernel size, number of filters in a 3 convolutional layers CNN (n= 3). (B) Dependence 

between testing time for a single image and Kernel size and number of filters with a 3 

convolutional layers network (n= 3).  

6. Optimization of CNN architecture 

6.1 Influence of number of filters per convolutional layer 

We compared the accuracy on model validations sets for networks with varying depths 

(number of convolutional layers) from 1 to 4. Small kernel sizes below 5 x 5 pixels did 

not result in accurate classification, presumably because of the limited type of features 

that small kernels are able to detect. On the other hand, kernel sizes over 15 x 15 

pixels appeared to be too large as they did not improve accuracy any longer or even 

decreased performance. Single layer architectures could not classify beyond 50-70% 

accuracy while two classes reached >90% accuracies for PA and PS. Three- and four-

layers networks outperformed shallower networks and identified objects with similar 

accuracies although the loss for PA models was much smaller for four layers models 

(Figure S5). Accuracies reached close to 100% for PA beads for kernel sizes ranging 

from 4 to 20 and 3 or 4 layers CNNs, independently of the number of filters. Losses 

were minimal for kernel size around 15. For MCF7 and PS, the kernel size had to 

exceed 10 to reach peak accuracy of the models. 

A B 



 

Figure S5. Comparison of model performance depending on the number of 

convolutional layers and kernel size (n= 3).  

Losses associated to training with different network depths for PA, MCF7 and PS are 

shown in Figure S6. Corresponding accuracies are shown in Figure S5. 

 

 

 

Figure S6. CNN models losses depending on the number of convolutional layers for 

PA, MCF7 and PS (n= 3). 

 

 



6.2 Influence of number of filters per convolutional layer 

We compared the accuracy on model validation sets for networks with varying number 

of filters, depths and kernel size. Figure S7 shows that there are no significant 

differences when changing the number of filters but that the more the depth the better 

the model. 

     

 

Figure S7. Comparison of model performance depending on the number of filters per 

convolutional layer for a 1 layer (2 versus 8 filters), 2 layers (2 and 4 versus 4 and 8 

filters) and 3 layers (2, 4 and 8 versus 4, 8 and 16 filters) convolutional networks (n= 

3).  

6.3 Influence of number of neurons in first fully connected layer 

The number of neurons in the first fully connected layer was varied from 16 to 256 

(Figure S8). The accuracy was found to be weakly dependent on this parameter and 

we kept 128 neurons for all models. 

 



 

Figure S8. Dependence between number of neurons in the first fully connected layer, 

kernel size and model accuracy for a 3 convolutional layers network with 2, 4 and 8 

filters and a dropout rate of 40% (n= 3).  

6.4 Influence of dropout layer rate 

The dropout rate was varied from 0 to 80% (Figure S9). The accuracy was found to 

be weakly dependent on this parameter and we kept 40% for all models. 

 

 

Figure S9. Dependence between dropout rate and model accuracy for a 3 

convolutional layers network with 2, 4 and 8 filters and 128 neurons for the first fully 

connected layer (n= 3).  

7. Data augmentation  

Data augmentation is a proven technique to provide artificial training data for CNNs. 

We tested rotations, translations or mirroring and found they could improve model 



accuracy. However, while this gain was large when working with few examples (<100), 

there were diminishing returns with larger training image collections. Interestingly, the 

loss of the models using translations with PA was an order of magnitude lower 

compared to other transformations (Figure S10). It is worth pointing out that while 

accuracies did not reach 100% for both PS and MCF7, images misclassified will often 

be associated with low class probability and can therefore be excluded in sorting runs. 

The MCF-7 models performed usually poorly when classifying images of attached cell 

doublet/dividing cells, presumably because of the lack of training examples. 

Losses associated to training with original or augmented training sets for PA, MCF7 

and PS are shown in Figure S10. Corresponding accuracies are shown in Figure 3A 

in the main manuscript. 

 

Figure S10. Models losses depending on the type of augmentation (n= 3). 

8. Example of activation layers 

Figures S11-S13 give examples of the filters at the ReLU activation layers of the 

networks with networks previously validated on model image sets.   

 



 

Figure S11. Filters from activation (ReLU) layers for PA beads with a CNN with 3 

convolutional layers having 2, 4 and 8 filters respectively. 

 



 

Figure S12. Filters from activation layers for MCF-7 cells with a CNN with 3 

convolutional layers having 2, 4 and 8 filters respectively. 



 

Figure S13. Filters from activation layers for PS spheres with a CNN with 3 

convolutional layers having 2, 4 and 8 filters respectively. 

9. Robustness of CNN models towards exposure 

settings 

We tested CNN models robustness to exposure settings by assessing the 

classification of PA beads with 4 different exposure times (30 µs, 50 µs, 100 µs, 300 

µs) and 3 different gains (5 dB, 10 dB and 15 dB) with constant light intensity (Figure 

S14). Models trained with average (100 µs exposure) and low light intensities (30 µs 

exposure) can perform well on images obtained with other exposure times except 300 

µs for which accuracy decreases. Figure S15 summarizes the accuracies obtained. 

Similarly, models trained with average (100 µs exposure) and low light intensity (30 µs 

exposure) at fixed high gain (15 dB) can perform well on images obtained with other 

gains (5 and 10 dB). We hypothesized that the loss in accuracy at high exposure is 

due to reaching pixel saturation, leading to a disappearance of image features. We 

ascribe this robustness to the normalization of the images (subtraction of mean 

followed by division by standard deviation) before processing by the CNN. 

 



 

 

 

Figure S14. Acquisition of datasets using different exposure settings with 

representative images. (A) Exposure change from 30 to 300 µs at fixed 15 dB gain. 

(B) Gain change from 5 to 15 dB at fixed 100 µs exposure. 

 

Figure S15. Accuracy of the CNN models when trained with fixed exposure settings. 

(A) and (B). Training with 100 µs and 30 µs, respectively, (gain fixed at 15 dB) and 

testing the models on images acquired with a range of exposure times (n= 3). (C) and 

(D) Training with 100 µs and 30 µs, respectively, (gain fixed at 15 dB) and testing the 

models on images acquired with a range of camera gains (n= 3).  



 

10. Example of activation layers for spheroid sorting 

Figure S16 gives examples of the filters at the ReLU activation layers of the networks 

validated on model image sets.   

 

 

Figure S16. Filters from activation layers for multicellular spheroids with a CNN with 

3 convolutional layers having 2, 4 and 8 filters, respectively. 

11. Viability test of sorted spheroids 

We have stained the sorted spheroids by adding 2 µM of Calcein Green AM to 1 mL 

of media, incubating 30 minutes in a cell incubator, then adding 20 µg/mL propidium 

iodide and 20 µM Hoechst 33342 for 10 minutes. The stained spheroids were 

centrifugated at 300 rpm for 3 minutes, resuspended in 1 mL PBS and imaged using 

a high-content screener (ImageXpress, Molecular Devices). The images are displayed 

in Figure S17, confirming viability of the cells forming the 3D cell cultures.  



 

Figure S17. Images of stained spheroids obtained after microfluidic sorting followed 

by 24h incubation. (A) Bright-field. (B) Calcein green. (C) Propidium iodide. (D) 

Hoechst 33342. Scalebars = 50 µm. 
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