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Movies of long time-scale experiment: See Supplementary movies, including “control,” “25 nM experi-

ment 1,” “15 nM experiment 1,” and “15 nM experiment 2.” The first and last in the list above were analyzed

in the main paper for the length of 6 days. All movies incorporate the merged images of PC3-EPI (prostate

cancer cell line) nuclei in green and a processed brightfield image in red that includes HS5 (bone marrow

stromal cell line), with relevant gradients established from bottom (high-drug) to top (low-drug). Note that

the brightfield images here also show, aside from stromal cells, PC3-EPI cytoplasm and background object

outlines. The processing algorithms used for the processed brightfield images and green channel images are

described in the below section. Movies are highly compressed in size for convenience and may lack detail.

Higher-quality movies can be obtained from the authors.

Algorithmic design of image-processing protocols: Here, we briefly describe the particular protocols

followed to obtain the quantifications in Fig. 8 (main text), Fig. 9 (main text), and Supplementary Fig. 3.

For the analysis in Fig. 8 and Supplementary Fig. 3, we generated processed brightfield images as described

in Supplementary Fig. 2 utilizing Fiji/ImageJ [1]. The red channel images that incorporated the cancer cell

cytoplasmic regions were processed via Otsu’s auto-thresholding algorithm locally [1]. The green channel

images that portrayed the cancer cell nuclei were processed by a standard “adjust LUT” function within

ImageJ and background subtraction [1]. To count the number of stromal cells, we proceeded as follows: (1)

we first computed the percentage area covered inside each local microhabitat from the processed brightfield

image; (2) we then found the percentage area covered by cancer cell cytoplasmic regions from the processed

red channel image; (3) we subtracted the processed brightfield image from the processed red channel image

to obtain the percentage area overcounted, as any portion of the red channel image that does not appear on

the brightfield image must be due to extraneous fluorescence effects; (4) we then computed the percentage of

the microhabitat covered by stromal cells only using

%A stroma = %A brightfield − %A mCherry + %A overcounted

where A signifies area and (5) we computed the number of stromal cells by dividing the area covered (%A×
area of microhabitat) by the average stromal cell size, which we estimated by manually running the above

steps for several regions. The number of cancer cells were determined by the number of nuclei, which we

counted within the processed green channel image by finding the number of maxima.

For the analysis in Fig. 9 to determine the average cell size, we employed the Analyze Particles function in

ImageJ to the red channel images thresholded via the Default thesholding algorithm [1] to determine both

the percentage area coverage and the number of cells in each microhabitat. We found that this method

may slightly undercount the total number of cells when compared to the number estimated by counting

the number of nuclei as described previously, mainly in areas of very high cell concentration. Thus, more

advanced cell segmentation or machine learning algorithms may be employed to increase counting accuracy.

Nevertheless, we note that this undercounting effect does not alter the illustration of the difference in cell size

across the landscape, supporting our observations.
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Figure 1: Capacity for multiple simultaneous experimental conditions. With the platform described
in Fig. 3 in the main text, we illustrate the potential for parallel experimentation. In this instance, we show
a representative visualization of a gradient test with Rhoadmine-6G (a), a control experiment (b), two 25
nM docetaxel gradient experiments (c–d), and two 15 nM docetaxel gradient experiments (e–f). For (b–f),
PC3-EPI cell cytoplasm is shown in red.
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Figure 2: Custom image-processing protocol for dual-labeled PC3-EPI prostate cancer cells and
unlabeled HS5 stromal cells. Note that the use of two fluorescent labels in one cell type limits the
emission bandwidth for the rest of the cell types. Therefore, as a preliminary test, we used unlabeled HS5
and established a image processing protocol for brightfield image analysis and cell quantification. (a) Stitched
mosaic of unprocessed 10X brightfield images. It is apparent that the background intensity differs dramatically
across the field of view due to the flat-field effect, optical configuration, and most importantly unexpected
objects that may scatter the transmission light source. (b) Correction for unevenly illuminated background
via a rolling ball algorithm in ImageJ (background subtraction). Specifically, a local background signal is
calculated by averaging over a large circle with assigned radius around the pixel. Sequentially, the calculated
local background value is subtracted from original image to remove coarse background variations. (c) Further
correction to determine local threshold value at each pixel to transform the background-subtracted image into
a binary mask with cells illuminated. An adaptive local thresholding algorithm (Phansalkar) is employed via
the Auto Local Threshold plug-in in Fiji [2]. The local thresholding scheme solves the problem of nonuniform
brightfield intensity in our case. (d) A close-up image of part (c) reveals segmented cells. Typical image
quantification methods can now be applied, including confluence, morphology (e.g. circularity, diameter),
velocity, etc. (e) Overlay of cytoplasmic- and histone-labeled PC3-EPI and the processed brightfield channel
at a location on a chip from (d) as an example. The green fluorescent protein histone label is pseudo-colored
as blue. The mCherry cytoplasmic label is pseudo-colored as red. The mCherry image is subtracted from the
processed brightfield image to generate a HS5-only image, pseudo-colored as green.
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Figure 3: Population spatial distribution of cancer PC3-EPI and stromal HS5 cells for gradient
and control experiments. (a) Analysis performed on images in Fig. 7d—f within the main text to
determine the number of cancer cells in an experiment with 15 nM drug gradient at t = 0 days. The gradient
is established from the bottom of the chip (high-drug area) to the top of the chip (low-drug area). Images are
in heatmap form with cell number scale in a colorbar to the right of the spatial plot. (b) Similar plot as
in (a) but for cancer cells at t = 3 days. (c) Similar plot as in (a) but for cancer cells at t = 6 days. (d—f)
Analyses performed on images in Fig. 7a—c within the main text to determine the number of cancer cells at
the relevant time points for the control (no drug gradient) experiment. (g) PC3-EPI cancer cell raw counts
for regions A, B, C, D outlined in Fig. 8g in the main text over 6 days within the 15 nM drug gradient
experiment. (f) Similar plot as in (g) but for stromal cell raw counts within the same experiment over 6 days.
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