Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Amnion-on-a-chip: modeling human amniotic development in mid-gestation from pluripotent

stem cells

Yujuan Zhu, a,d,f Hui Wang, a,d,f Fangchao Yin, a,d Yaqiong Guo, a,d Fei Li e, Dong Gao, e and Jianhua

Qin *a,b,c,d

^a CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences.

^b Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China

Academy of Sciences, Shanghai, China

^c CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of

Sciences, Shanghai, China

^d University of Chinese Academy of Sciences, Beijing, China

- ^e Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
- ^f Y. Zhu and H. Wang contributed equally to this work.

Corresponding author: Prof. J. Qin, E-mail: jhqin@dicp.ac.cn

Figures

Figure S1, Schematic of the microfluidic chip design. The chip was fabricated with multichannels, including two parallel microchannels (height, 1 mm; width, 1 mm) separated by a gel microchannel (height, 1 mm; width, 1.2 mm) in the middle. The dimensions of micropillar and cross-section are indicated on the right.

Figure S2, a, Real-time tracing of a single cell cavity in the same field of view from day 1 to 9. b, Bright-field images of epithelial protrusions from hPSC cavity. The white square highlights epithelial protrusions (white arrows). Scale bar, $100 \mu m$.

Figure S3, The expression of pluripotency markers during the formation of squamous cavity. a-b, Fluorescent staining for pluripotent markers OCT4 (a) and SOX2 (b). A series of images stained were obtained from the bottom to the top of cell cavity. Scale bar, 100 μ m (a). 50 μ m (b). c, Western Blot analysis of pluripotent marker OCT4 in cell cavity at different days.

Figure S4. Characteristic of asymmetric amniotic sac-like tissue. a, Representative right-field image showing a asymmetric cyst with a squamous and columnar pole. b, Immunostaining for OCT4 in cell cavities at 5 days of differentiation. **c**, Staining for GATA3 and F-actin in cell cavities at 15 days of differentiation. White arrows indicate GATA3-positive cells at the squamous pole. Scale bars, 25 μ m.

Figure S5. Invasive behavior in amnion-like cavities. a, Confocal micrographs and bright field images showing cell invasion from cell cavity. White arrows indicated cell migrated from cell cavities. F-actin (green) was stained. Scale bars, 50 μ m. b-c, qRT-PCR analysis of BRA, SNAI2, CDH1 and CDH2 for hPSC (control) and cell cavities at 5 and 10 days of differentiation. mRNA expression was normalized against a GAPDH control and data were plotted as the mean \pm SD, with three biological triplicates. * *P* < 0.05. ** *P* < 0.01, *** *P* < 0.001, n.s., not significant.

Figure S6. RNA-seq displayed mRNA expression of amnion-specific genes in hPSC, D10, D15 and D20 hPSC-amnion. * P < 0.05. ** P < 0.01, *** P < 0.001, n.s., not significant.

Figure S7. a, Upregulated gene set-PPARA activates gene expression in hPSC-amnion comparing with hPSC. b, A pie chart showing the significantly altered genes in D15 and D20 hPSC-amnion compared to hPSC. In total, 7181 DEGs were detected in D15 hPSC-amnion and 4568 DEGs D20

hPSC-amnion. 4110 DEGs were overlapped in both D15 and D15 hPSC-amnion, including 2852 upregulated genes and 1258 downregulated genes. c, Enriched pathway analysis of 4110 DEGs with Enrichr. e, Gene ontology (GO) functional classification of 4110 DEGs.

Primer name	Sequence
OCT4A	Fw 5'-GGA GAA GCT GGA GCA AAA CC-3'
	Rv 5'-TGG CTG AAT ACC TTC CCA AA-3'
NANOG	Fw 5'-GAT TTG TGG GCC TGA AGA AA-3'
	Rv 5'-CTT TGG GAC TGG TGG AAG AA-3'
CDH2	Fw 5'- ATC AAC CCC ATA CAC CAG CC-3'
	Rv 5'- GTC GAT TGG TTT GAC CAC GG-3'
VTCN1	Fw 5'- TCT GGG CAT CCC AAG TTG AC-3'
	Rv 5'- TCC GCC TTT TGA TCT CCG ATT-3'
GABRP	Fw 5'- TTT CTC AGG CCC AAT TTT GGT-3'
	Rv 5'- GCT GTC GGA GGT ATA TGG TGG-3'
MUC16	Fw 5'- GGA GCA CAC GCT AGT TCA GAA-3'
	Rv 5'- GGT CTC TAT TGA GGG GAA GGT-3'
HAND1	Fw 5'- CCA AGG ATG CAC AGT CTG G-3'
	Rv 5'- AGG AGG AAA ACC TTC GTG CTG-3'
ITGB6	Fw 5'- GCA AGC TGC TGT GTG TAA GGA A-3'
	Rv 5'- CTT GGG TTA CAG CGA AGA TCA A-3'
AQP1	Fw 5'- GCC ATC GGC CTC TCT GTA GCC-3'
	Rv 5'- CTA TTT GGG CTT CAT CTC CAC-3'
KRT24	Fw 5'- CGT CAT CAC CTC TCC TAT TC-3'
	Rv 5'- AGA CCA CAT CTG CTT CCA-3'
CDH1	Fw 5'- TCT TCA ATC CCA CCA CGT ACA-3'
	Rv 5'- TGC CAT CGT TGT TCA CTG GA-3'
CLDN6	Fw 5'- TGT TCG GCT TGC TGG TCT AC-3'
	Rv 5'- CGG GGA TTA GCG TCA GGA C-3'
SNAI2	Fw 5'-CGA ACT GGA CAC ACA TAC AGT G-3'
	Rv 5'-CTG AGG ATC TCT GGT TGT GGT-3'
BRACHYURY	Fw 5'- TGC TGC AAT CCC ATG ACA-3'
	Rv 5'- CGT TGC TCA CAG ACC ACA-3'
KRT17	Fw 5'-AAG ATC CGT GAC TGG TAC CAG AGG-3'
	Rv 5'-GAT GTC GGC CTC CAC ACT CAG G-3'
POSTN	Fw 5'- GAA AGG GAG TAA GCA AGG GAG-3'
	Rv 5'- ATA ATG TCC AGT CTC CAG GTT G-3'
GAPDH	Fw 5'-GTG GAC CTG ACC TGC CGT CT-3'
	Rv 5'-GGA GGA GTG GGT GTC GCT GT-3'

Table S1. A list of primer pairs for qRT-PCR.

Additional files that are not embedded into this file include:

Data files S1 to S4

File S1. Upregulated genes specific to fetal amnion in hPSC-amnion at D10, 15 and 20.

File S2. Upregulated gene set-PPARA activates gene expression in D15 and D20 hPSC-amnion comparing with hPSC.

File S3. The overlapped DEGs in groups of D15 and D20 hPSC-amnion comparing with hPSC.

File S4. Upregulated genes in both mid-gestation amnion (compared to early gestation amnion) and later hPSC-amnion (compared to early hPSC-amnion).