Supporting information for:

Smartphone-Based Multiplex 30-minute Nucleic Acid Test of Live Virus from Nasal Swab Extract

Fu Sun,^a Anurup Ganguli,^b Judy Nguyen,^c Ryan Brisbin,^d Krithika Shanmugam,^d David L. Hirschberg,^{c,d} Matthew B. Wheeler,^e Rashid Bashir,^{a,b} David M. Nash,^f and Brian T. Cunningham^{*,a,b}

^a Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Illinois, USA

^b Department of Bioengineering, University of Illinois at Urbana-Champaign, Illinois, USA

^c RAIN Incubator, Tacoma, Washington, USA

^d Department of Interdisciplinary Arts and Sciences & The Center for Urban Waters, University of Washington Tacoma, Washington, USA

^e Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA

^f Private equine veterinarian, Kentucky, USA

*Corresponding author. E-mail: bcunning@illinois.edu. Tel.: +1 217 333 2301. Fax: +1 217 244 6375.

Table of Contents

Table S1. Sequences of the primers used for detecting five equine pathogens	S3
Table S2. Sequences of the primers used in control assays	S4
Table S3. Recipe for LAMP reaction mix	S4
Table S4. Recipe for PCR reaction mix	S 5
Fig. S1: Off-chip verification of the LAMP assay specificity	S 5
Fig. S2: On-chip characterization of four LAMP assays	S6
Fig. S3: On-chip multiplex detection of equine pathogen DNA	S6
Fig. S4: Off-chip PCR for quantification of EHV1 DNA	S7
Fig. S5: Real-time PCR reactions of horse nasal swab samples	S7
Table S5: PCR quantification results of horse nasal swab samples	S8
Fig. S6: On-chip detection of the positive horse nasal swab sample 1	S9
Fig. S7: On-chip detection of the positive horse nasal swab sample 2	S9
Fig. S8: On-chip detection of the negative horse nasal swab sample 1	S10
Fig. S9: On-chip detection of the negative horse nasal swab sample 2	S10

Pathogens	Assay	Sequences				
Streptococcus equi	LAMP	F3: AAA ACT AAG TGC CGG TGC				
subsp. equi		B3: GAG GCG CCT TTT AGA AGA				
(S. equi)		FIP: TAC GAC TAA CCT CAG AGT TCG CTA TCA GTA TTA GTT GCA ACA AGT G				
		BIP: CGA CTC CAA GAT TAT CGC GTG ATT GAA CTT TTT GGG CTG ATG A				
		Loop F: ACA GTT GTC CCT CCC AAC A				
		Loop B: GCG ATA TAG CCA TAA GTG GAG ATG				
Streptococcus equi	LAMP	F3: AAA GAC CCT CAT GGG AAA T				
subsp. zooepidemicus		B3: CCT TAG TTG CCG CAT AGG				
(S. 200)		FIP: CCT GAC TAA CCA AAT ATA AGC CCT TGA GCT GGA CGA TAA GAC CT				
		BIP: TGT TGG ACG TAT TTT GGT TGC TCT TCT GAG CCT TCT AAA CCT G				
		Loop B: GGT GTC ATT ATT AAC ATG GCC TCT				
Equine herpesvirus 1	LAMP	F3: GGC ATT TAC GTG TGG TCC TT				
(EHV1)		B3: TCG CGG GCA TTT TTG TAC C				
		FIP: GTC CAG CAA CGG TGC GTT GTG GCA CGC TCG TTA ACA GT				
		BIP: CGA GCC TGA AGG GGG AAA ACT GGA GCT GTG TGG AAA GTA GC				
		Loop F: AGG TTG AGA CGG TAA CGC TG				
		Loop B: CAC GTG CGT CGC AA				
	PCR	F: GCG CCA GCT GTT TAA CCT TC				
		R: CGG GCA TTT TTG TAC CAC CG				
Equine herpesvirus 4	LAMP	F3: CAA GAC GTA ACA ACG GGA GT				
(EHV4)	(EHV4) B3: CGC AAG TAA CGG CGA TGA					
		FIP: CGC TCT CCG TTT TCT TCC GAC AAG CCA CCC AGG ATT AGT CAA				
		BIP: TTA CCC GGA CGG CCT TCC AAC GGG CAT GTC CTC AAC AA				
		Loop F: GCC TGC TAC TCC GCA TG				
		Loop B: AGC GTT GTA TAT GAT GCA TCC CCT				
Equine influenza virus LAMP F3: ATG CAA TGC TAG GAG ACC		F3: ATG CAA TGC TAG GAG ACC				
(EIV)		B3: AGA AAC TAT CGG CTG ATC C				
		FIP: TGT CAT ATG GGT AGC AAT TGC TGC AGT ATG AGA ATT GGG ACC T				
		BIP: GCA TCC TCA GGA ACA TTR GAY TCC GTT TTG AGT GAC AC				
		Loop F: AAA GCG CTG CTT CTT TCT				
		Loop B: AGG GAT TCA CAT GGA CAG				

Table S1. Sequences of the primers used for detecting five equine pathogens. LAMP primers were designed for S. equi and S. zoo, targeting the seM and sorD genes respectively.¹ The primers for EHV1,^{2, 3} EHV4² and EIV⁴ were obtained from literature.

Pathogens	Assay	Sequences		
Escherichia coli	LAMP	F3: TGA CTA AAA TGT CCC CGG		
(E. coli)		B3: CGT TCC ATA ATG TTG TAA CCA G		
		FIP: GAA GCT GGC TAC CGA GAC TCC CAA AAG CAA CAT GAC CGA		
		BIP: GCG ATC TCT GAA CGG CGA TTC CTG CAA CTG TGA CGA AG		
		Loop F: GCC GCA TAA TTT AAT GCC TTG TCA		
		Loop B: ACG CGA AAG ATA CCG CTC T		
Equine herpesvirus 3 LAMP		F3: AAA ACG GGG ATA ACG AGC		
(EHV3)		B3: GCG AGA GTA GCT GTT GTG		
		FIP: CTT CTG CTG TCC GCA CTC AGG ATC TCC GTG GTA CAC C		
		BIP: GAC CAA CTA CGC GGG TAT CGG ACA ATG AGG CCG ATG AG		
		Loop F: CTC ATC TTG GGA GTG TGT CTC		
		Loop B: GGA CCG GAC ACG AGA ATG		
Scrambled primers	LAMP	F3: AGC TTC ATT ATT AGA CCA CTT GC		
with no target (SC) B3: GTC TAT TAT TCC GAA TCA CG				
		FIP: GAG TAT CAC ATG TAA GGA CTT CTA ATA CAA CTT CGT CTC AAT TCC		
		BIP: GTT ACT GTT GGT ACT ACA ACT AGC TCC TGG TTC TTG TTA TAC AAT A		
		Loop F: ACT CCG GCG TGA GTA GTA AT		
		Loop B: CGA TGG GTG TGC AGG ACT CA		

Table S2. Sequences of the primers used in control assays. The primers for E. coli⁵ were from literature. The EHV3 primers were designed to target the glycoprotein G (gG) gene (GenBank: AF081188.1).

Component	Final Concentration	20 µL Reaction
10mM dNTPs	1.4 mM	2.8 μL
10X Isothermal Amplification Buffer	1X	2 μL
5M Betaine	0.4 M	1.6 μL
100mM Magnesium Sulfate Solution	6 mM	1.2 μL
12.5X LAMP Primer Mix	1X	1.6 μL
(2.5 μM of F3 and B3, 20 μM of FIP and BIP,		
and 10 μ M of Loop F and Loop B primers)		
8000 units/mL Bst 2.0 Warmstart DNA Polymerase	640 units/mL	1.6 μL
20X Evagreen Dye	1X	1 μL
DEPC-treated nuclease-free water	-	1.8 μL
Template DNA	-	6.4 μL

Table S3. Recipe for LAMP reaction mix. For on-chip tests, primer mix was deposited on chips separately, and it was replaced by nuclease-free water in the reaction mix. Betaine was obtained from Sigma Aldrich. Evagreen dye was from Biotium. Primers were synthesized by Integrated DNA Technologies (IDT). All the other reagents were from New England Biolabs.

Component	Final Concentration	20 µL Reaction
2X Luna Universal qPCR Master Mix	1X	10 µL
Forward primer (10 μM)	0.25 μM	0.5 μL
Reverse primer (10 μM)	0.25 μM	0.5 μL
DEPC-treated nuclease-free water	-	4 μL
Template DNA	-	5 μL

Table S4. Recipe for PCR reaction mix. Primers were synthesized by Integrated DNA Technologies (IDT). The qPCR Master Mix is from New England Biolabs.

Fig. S1: Off-chip verification of the LAMP assay specificity. The real-time reaction curves of (a) the E. coli DNA (a positive control for on-chip tests) against all the other primers to confirm that it won't interact with other assays; (b) the SC primers (a set of scrambled primers as a negative control for on-chip tests) against all the other templates to confirm that it will not amplify under good conditions; (c) the EIV plasmids against the other four equine assay primers. (d) Summary of the specificity of the LAMP assays.

Fig. S2: On-chip characterization of four LAMP assays using plasmid DNA templates. The boxplots of the average channel intensities of positive and negative samples are plotted for a) S. equi, b) S. zoo, c) EHV4, and d) EIV at 1000 copies/µL. Each boxplot is based on eight experimental duplicates.

Fig. S3: On-chip multiplex detection of equine pathogen DNA. The amplified chips and the corresponding channel intensities are shown for a) S. zoo and b) EHV4 at 1000 copies/µL.

Fig. S4: Off-chip PCR for quantification of EHV1 DNA. a) The real-time PCR reaction curves of EHV1 plasmid at log concentrations; b) The PCR standard curve for quantification of EHV1 genome copies.

Fig. S5: Real-time PCR reactions of six horse swab samples. All nasal swabs were collected from healthy horses and were negative samples originally. Positive samples (Pos. Swab 1~3) have EHV1 viruses spiked in at decreasing concentrations. Calculated concentrations of EHV1 genome copies in the samples are shown in Table S5.

Sample	Ct	Copies	Avg. Copies	Avg. Conc. (copies/mL)
	21.43	30146	31629	6.33X10 ⁶
Pos. Swab 1	21.30	32788		
	21.34	31952		
Pos. Swab 2	24.45	4279		7.95X10⁵
	25.33	2423	3977	
	24.14	5229		
Pos. Swab 3	29.32	184	274	5.48X104
	28.63	287		
	28.32	351		
Neg. Swab 1	36.35	2	1	200
	36.9	1		
	-	0		
Neg. Swab 2	-	0		
	36.05	2	1	200
	-	0		
Neg. Swab 3	-	0		
	-	0	2	400
	34.81	5		

Table S5: PCR quantification results of the horse nasal swab samples. C_t : threshold cycle. The numbers of EHV1 genome copies were computed using the standard curve in Fig. S4:

$$\frac{\# of EHV1 copies}{reaction} = exp \left(\frac{C_t - 37.385}{-3.562}\right)$$

Fig. S6: On-chip detection of the positive horse swab sample 1. The smartphone pictures taken at a) 65 °C and b) 80 °C of the amplified chip and corresponding average channel intensities.

Fig. S7: On-chip detection of the positive horse swab sample 2. The smartphone pictures taken at a) 65 °C and b) 80 °C of the amplified chip and corresponding average channel intensities.

Fig. S8: On-chip detection of the negative horse swab sample 1. The smartphone pictures taken at a) 65 °C and b) 80 °C of the amplified chip and corresponding average channel intensities.

Fig. S9: On-chip detection of the negative horse swab sample 2. The smartphone pictures taken at a) 65 °C and b) 80 °C of the amplified chip and corresponding average channel intensities.

References

- 1 W. Chen, H. Yu, F. Sun, A. Ornob, R. Brisbin, A. Ganguli, V. Vemuri, P. Strzebonski, G. Cui and K. J. Allen, *Analytical chemistry*, 2017, **89**, 11219-11226.
- 2 M. Nemoto, K. Tsujimura, T. Yamanaka, T. Kondo and T. Matsumura, *Journal of veterinary diagnostic investigation*, 2010, **22**, 30-36.
- 3 G. A. Perkins, L. B. Goodman, E. J. Dubovi, S. G. Kim and N. Osterrieder, *Journal of Veterinary Internal Medicine*, 2008, **22**, 1234-1238.
- 4 M. Nemoto, T. Yamanaka, H. Bannai, K. Tsujimura, T. Kondo and T. Matsumura, *Journal of virological methods*, 2011, **178**, 239-242.
- 5 F. Wang, 2011.