Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2020

3D-printed glycerol microfluidic fuel cell

Katia-Emiko Guima,^a Pedro-Henrique L. Coelho,^a Magno A. G. Trindade,^{bc} and Cauê Alves Martins^a

^aPhysics Institute, Federal University of Mato Grosso do Sul – Av. Costa e Silva, 79070900, Campo Grande, MS, Brazil.

^bFaculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12. Dourados-MS, 79804-970, Brazil.

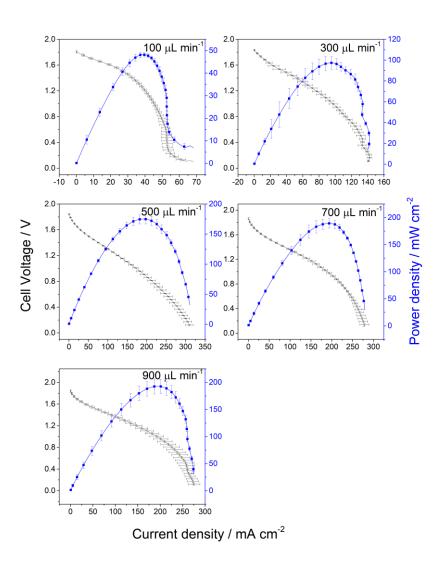
^cUnesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, CEP 14800900 Araraquara (SP), Brazil.

*cauemartins@ufms.br

*Corresponding Author. Phone: +55 67 9 9262-4202

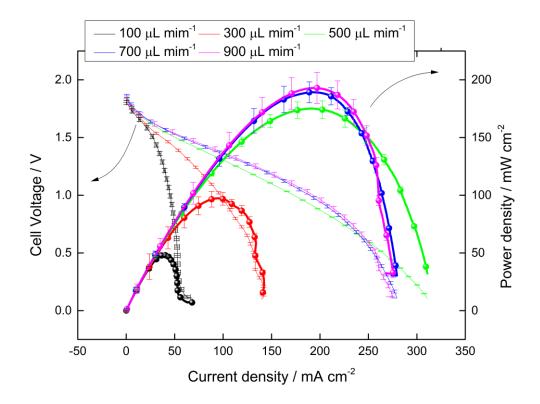
e-mail: cauemartins@ufms.br

Section I: Printing parameters and microfluidic fuel cell	pg 2	
Section II: Performance of the 3D-printed direct glycerol microfluidic fuel cells	pg 2	


Section I: Printing parameters and microfluidic fuel cell

Piece	BT/min	FL/cm	PW/g	MC/US\$	Resolution (Slice thickness)/ mm
µFC (PLA)	16	~85.00	2.54	0.38	0.1
Bottom part	6	~52.00	1.34	1.47	0.1

Table S1. Printing parameters of the microfluidic fuel cell


BT = Building time; FL=Filament length; PW=Plastic weight; MC=Material cost.

Section II: Performance of the 3D-printed direct glycerol microfluidic fuel cells

Figure S1. Polarization and power density curves for the 3D-printed direct glycerol mixed-media microfluidic fuel cell with Pt/C/CP as anode and cathode in the flow-through configuration. Microfluidic fuel cells were fed by N₂-saturaded 1 M of glycerol in 1 M KOH and 1 M H2SO4 6% HClO. Polarization

curves were measured from open-circuit voltage to 0.1 V at 0.01 V s⁻¹. The different flow rates are annotated in the figure.

Figure S2. Polarization and power density curves for the mixed-media direct glycerol 3D-printed microfluidic fuel cell with electrodes in a flow-through configuration. Polarization curves were measured from open-circuit voltage to 0.1 V at 0.01 V s-1 for N₂-saturated 1 M glycerol in 1 M KOH and 1 M H₂SO₄ in 6% NaClO. All measurements performed in triplicate at flow rates indicated in the Figure.