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Supplementary Methods

Deep neural network and transfer learning. To test the label-free specificity of optophysical
phenotyping in multi-ATOM, a neural-network-based model was built to conduct lung cancer subtype
classification and H2170 detection in spike-in test.

Lung cancer subtype classification - The neural network model was employed to classify 3 lung cancer
subtypes (adenocarcinoma, squamous cell carcinoma, small cell carcinoma) from 7 cell lines (H358,
H1975, HCC827, H520, H2170, H526, H69) based on the single-cell images captured from the multi-
ATOM system. Three replicates (batches) of cell image datasets, each consisting of ~120,000 cells per
cell line, were obtained on different dates. 69 optophysical features were extracted as the input of the
neural network. A dataset with 14,000 cells, having 1,000 cells per cell line from 2 of the batches, was
used to train the classification model, whereas the remaining batch was used as the test set. The model
was first trained with the training set for 25 epochs at a learning rate of 0.005 with a mini-batch size of
128.

Here, transfer learning was applied to the neural network models for adapting the batch-to-batch
variations. With such, the batch effects could be practically overcome by using a small set of labeled data
from the new batch each time, streamlining the workflow for time-critical laboratory routine. The general
approach of transfer learning starts from training the neural network model with the source datasets
(Batch A and B in our case). Then, the model was further trained using another (small) dataset for another
task (i.e. classification of batch C). Upon successful transfer of knowledge, the resultant training curve
will have a few advantages, including a higher intercept (Improved starting position), a higher initial
slope (Fewer epochs or data required) and a higher resultant asymptote (i.e. higher classification
accuracy). ! It has been demonstrated as a promising model in single-cell analysis 2, as in this study,
similar concepts of minimizing batch effect have yet been commonly adopted in image-based cellular
analysis. To overcome the batch effects among the training and test data, 100 cells per cell line from the
test data were isolated to form a transfer learning dataset. Such dataset was further used to train the neural
network for 120 epochs, at a learning rate of 0.005 with a mini-batch size of 128. Python was employed
to develop the classification model. With the developed classification model, a test set of 105,000 cells
(with 15,000 cells per cell line in the test batch) was used to assess the classification accuracy. To
facilitate a thorough examination, the three batches were interchanged between the source datasets and
test dataset, which is also the transfer learning dataset. Through integrating the performance of each
models, the prediction accuracies were then reported within a range. By increasing the size of the transfer
learning dataset, the accuracy improved and levelled off at around 95% with 500 cells per cell line (Fig.
S8). The prediction accuracies of the training set and test set were monitored continuously to prevent
overfitting, while the leveling off of the accuracy in the test set helps in avoiding underfitting.

The overall classification procedures can be divided into 3 steps, training, transfer learning retraining
and testing. For all of these computations, we used a consumer grade computer with a CPU (6 cores, 12
threads; 4.00 GHz), a 64 GB RAM. We only rely on the CPU for the computations. The training time
takes the longest, of around 0.346 s per epoch. Then, the transfer learning could be accomplished with a
speed of 10 times faster due to the reduction of sample size, which takes around 0.028 s per epoch. With
the training accomplished, the testing was done at a speed of 1,133,624 cells/s at last.

Spike-in test - In the spike-in test, the neural-network-based model was used to spot the H2170 from
peripheral blood mononuclear cell (PBMC). In order to prove the significance of all the optophysical
phenotypes, 3 classification models were trained: one was trained and tested only based on 2 phenotypes
(cell area and volume), one was trained and tested based on easily measurable bulk phenotypes (volume,
attenuation density and dry mass density), whereas the other are based on 81 optophysical phenotypes.
To train the first two models, a training set with 1,000 H2170 cells and 5,000 PBMCs was used. For the
model with 81 phenotypes, the training set was composed of 1,000 H2170 cells and 6,000 PBMCs. They




were trained for 200 epochs at a learning rate of 0.0001 with a mini-batch size of 128 respectively. As in
the lung cancer subtype classification, Python was employed to develop the classification model in a
consumer grade computer with a CPU (6 cores, 12 threads; 4.00 GHz), a 64 GB RAM. Following that,
3 test sets with different spike ratios of 1 in 1,000 (H2170: 234 cells, PBMC: 26,618 cells), 1 in 10,000
(H2170: 26 cells, PBMC: 118,762 cells) and 1 in 100,000 (H2170: 4 cells, PBMC: 144,121 cells) were
employed to evaluate their classification performance.

Supplementary Note S1: Full list of optophysical phenotypes and their hierarchical categories

BF STD Var
BF STD Skewness
BF STD Kurtosis
BF STD Range
BF STD Peak
BF STD Min
BF STD Centroid Displacement
Attenuation Density Optical BF STD Radial Distribution
Amplitude Var Density BF Fiber Texture Centroid Displacement
. Amplitude Skewness BF Fiber Texture Radial Distribution
gg);!sfgl/ Amplitude Kurtosis BF Fiber Texture Pixel >Upper Percentile
Peak Amplitude BF Fiber Texture Pixel >Median
Peak Absorption BF Fiber Mean
Amplitude Range BF Fiber Variance
Dry Mass Density BF Fiber Skewness
Dry Mass Var BF Fiber Kurtosis
Dry Mass Skewness Phase STD Mean
Dry Mass Radial Distribution Phase STD Var
Dry Mass Centroid Displacement Phase STD Skewness
Global Peak Phase Phase STD Kurtosis
Phase Var Ll Phase STD Centroid Displacement
Phase Skewness Phase STD Radial Distribution
Mass Phase Kurtosis Fit Texture Mean
Density Phase Range Fit Texture Variance
Phase Min Fit Texture Skewness
Phase Radial Distribution Fit Texture Kurtosis
Phase Centroid Displacement Fit Texture Centroid Displacement
Mean Phase Arrangement Fit Texture Radial Distribution
Phase Arrangement VVar Mass Phase Entropy Mean
Phase Arrangement Skewness Density Phase Entropy Var
Phase Orientation Var Phase Entropy Skewness
Phase Orientation Kurtosis Phase Entropy Kurtosis
BF Entropy Mean Phase Entropy Centroid Displacement
BF Entropy Var Phase Entropy Radial Distribution
BF Entropy Skewness Phase Fiber Centroid Displacement
BF Entropy Kurtosis Phase Fiber Radial Distribution
Local Optic_:al BF Entropy Range Phase Fiber Pixel >Upper Percentile
Density BF Entropy Peak Phase Fiber Pixel >Median
BF Entropy Min Phase Fiber Mean
BF Entropy Centroid Displacement Phase Fiber Var
BF Entropy Radial Distribution Phase Fiber Skewness
BF STD Mean Phase Fiber Kurtosis

All the optophysical phenotypes were extracted with a custom MATLAB code. Optical density
phenotypes were based on the brightfield (BF) image of the cell whereas mass density phenotypes were
extracted dry mass density map which is converted from the quantitative phase image (¢) using the well-



known linear relationship between refractive index and mass density of most intracellular biomolecules.
The slope of this relationship, dn/dc, is called the specific refractive increment. Specific refractive
increments for most biomolecules, (especially those for proteins and nucleic acids) fall within a very
narrow range (0.19 ml/g) ° and thus permits valid evaluation of cell mass inferred from the quantitative

phase (¢).

Bulk features

Bulk features were extracted according to the mask of the cell in quantitative phase image, using basic
thresholding. They describe the cell size, cell mass, and the cell shape (i.e. Circularity, Eccentricity,
Aspect Ratio, Orientation).

Global texture features

In each BF and ¢ images, the global texture phenotypes were extracted based on the statistical distribution
of the gray-scale values in the images. They include four basic statistical moments of the global
distribution (i.e. mean, variance, skewness and kurtosis), and the peak, minimum values and the range of
the distribution. Also included is the dry mass density, which is extracted based on the assumption that
the cell in suspension is in spherical shape. The phase arrangement phenotypes characterize the phase
distribution along the radial directions, i.e. distribution of phase times its corresponding radial position.
The phase orientation phenotypes on the other hand describe the relationship of phase values, its angular
position and angular “repetitiveness”. The phase values were first represented in the angular coordinates.
Then the distribution was Fourier transformed to obtain a distribution of phase in the angular frequency
domain. The statistical moments of this distribution were used as the phenotypes. We also quantified the
centroid displacement and radial distribution of the mass density phenotypes. Centroid displacement
measures the displacement of the weighted centroid of the mass/phase from the unweighted centroid
obtained from the mask alone. Radial distribution characterizes the tendency of distribution going closer
to the edge or to the centre of the cell.

Local texture features

To extract the local texture phenotypes, various local filters were used. They include entropy filter with
a kernel size of 2um, standard deviation filter with kernel size of 1 um, and Hessian-based multiscale
filter. The features extracted with these filters have “Entropy”, “STD” for optical density features and
mass density features, and “Fiber” in their feature names. Hence, Phase STD, Phase Entropy and Phase
Fiber phenotypes are equivalent to BF STD, BF Entropy and BF Fiber phenotypes, but performed in the
quantitative phase map of the cell. We also quantified the centroid displacement and radial distribution
of these local texture features. Finally, the Fit Texture phenotypes were obtained by characterizing the
statistical moments of the profile that emphasizes the high spatial frequency of the phase. It was obtained
by subtracting the phase profile of the cell with a smoothed phase profile of the cell (computed from a
fitted polynomial surface, along the x and y directions up to the 5th degree). The subtracted profile thus
contains the high spatial frequency details of the cell.



Supplementary Note S2: Theory of phase retrieval in multi-ATOM
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Multi-ATOM simplified schematic.

Here we describe a theoretical model using Fourier optics analysis to validate the phase-gradient and
thus the phase quantified by multi-ATOM. In this analysis, the aperture size of the optics is assumed to
be significantly larger in diameter than the extent of light field in the x-y plane. The overall schematic is
shown in simplified schematic. In multi-ATOM, when a focused spectrally-encoded light illuminates
on a biological cells on the sample plane S (focused by the objective lens L1), the local phase gradient
of the cell would create a wavefront tilt in each minimally resolvable spectrally-encoded beam along the
spectral shower (i.e. along y-direction). For clarity without loss of generality, here we consider only one
minimally resolvable spectrally-encoded beam, denoted as E,(x;, y;) as the input illuminating field (as
shown in simplified schematic). (xs, y,) are the coordinates on the front focal plane of L1. We also omit
the diffraction grating between the L2 and knife-edge as it does not alter beam propagation characteristic
along the x-direction. Based on the above configuration, the field right after the sample plane, which has
the amplitude profile of A(x,, y;) and phase profile of ¢(xs, ys), is expressed as:

. 1
Es(xs'ys) = A(xs'ys)ejqb(xs'yS) ]/1f T(Eo(xi' yi)) (1)
1

where F stands for 2D Fourier transform operation (the notation follows the convention adopted in ref.
®). Note that the phase profile of ¢ (xs, y.) is referred to the relative phase to the background phase of the
medium within which the cell is suspended; A is the wavelength of the light; and f; is the focal length of
the lens L1. (x,, ys) is the coordinate on the sample plane. Subsequently, a knife-edge K, located on the
Fourier plane of the sample plane S, is used to half-block the light field along the x-direction —an essential
procedure to decode the quantitative phase. The field is thus expressed as:

1+ sgn(xy) 1
T PG 30) @

Ex (X, Vi) =

where sgn(x;) is the sign function along the x-direction; and (xy, y,) is the coordinate on the knife-
edge plane. The lens L2 has a focal length of f;. Afterwards, the light is coupled to a single-mode fiber
positioned on the Fourier plane of the knife-edge K (i.e. conjugate plane of sample plane S) through the
relay lens L3. As a result, the detected light field is written as:

1
Eq(xq,ya) :ET(Ek(xk'yk)) (3)

where f, is the focal length of the relay lens L3; (x4, y4) is the coordinate on the detection plane. We

further employ smooth phase approximation 7, e/®®s¥9) ~ 1 + jg(x,,vs) ~ 1 +j§7¢ . which is
N

generally valid for biological cells. Hence, the detection field can then be written as,
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x4]. Note that the coordinate arguments are dropped for the sake of simplicity. Hence, the integrated
intensity received at the fiber is
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xXq] — i * T(EO)} dx,dy,. When the knife edge is applied from the opposite direction, the intensity is
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Thus, the phase gradient can be extracted from the subtraction of the intensities obtained from opposite
knife edges (i.e. Egs (5-6)), i.e.

Ix+ — I _ C3 0¢
LY+1~ Box

(7)

And the same derivation can be applied to the knife edges applied in the y-direction. It proves that the intensity-
only measurement in multi-ATOM vyields phase-gradient information along both the x- and y-directions. By
applying this interrogation across the sample plane (as multi-ATOM is essentially a scanning technology), phase

gradient images (Vo (x,y) = 27('5 (x,y) + i§7¢ (x,y)) can be obtained. The QPI can then be obtained by applying
complex Fourier integration on the phase gradient images,

¢(x,y) = CF - Im {FYNF - F[Ve (x, y)1}} (8)
_(FoV/[2mj - k(x,y)] k(x,y) # 0
where NF = { 0 k(x,y) =0

where Im is the imaginary part of a complex number; and F~1 is inverse Fourier transform operator; NF
is a normalization factor for quantifying the phase and avoiding singularity in the integration operation;
k(x,y) is the 2D wavenumber; FOV is the 2D field-of-view; CF is the calibration factor for correcting
the systematic phase deviation arise from non-ideal system setting. On the other hand, the bright-field,
i.e. amplitude, image of the cell (BF (x, y)) is the sum of two images obtained from opposite knife edges
normalized by the background (i.e. B, regions without samples).

BF(xy)—l( +L,7)== (1y++1y‘) 9



We validate the complex field information (i.e. amplitude and quantitative phase) extracted from multi-
ATOM by Fourier light-scattering analysis, as shown in Fig. S3, compared with both Mie-scattering
theory as well as the experimentally measured results.

Figure S1: Imaging setup
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A general schematic of the multi-ATOM system integrated with the fluorescence detection module. BS:
Beam splitter. DG: Diffraction grating. RL: Relay lens. DM: Dichroic mirror. CL: Cylindrical lens. The
optical system consists of two integrated parts: the multi-ATOM and fluorescence detection module.
Without using dedicated interferometry, multi-ATOM acquires the complex-field image information at
high speed by optical time-stretch combined with multiplexed differential phase-gradient contrast
encoding. For each cell, the 2D complex-field information (i.e., bright-field and QPI) were retrieved from
the four different phase-gradient contrasts based on an algorithm using complex Fourier integration.® In
the fluorescence detection module, two continuous wave (CW) lasers (wavelength: 488nm and 532nm)
were employed to generate line-shaped fluorescence excitation, that were spatially overlapped with the
multi-ATOM illumination (Fig. 1). The two epi-fluorescence signals were detected by two
photomultiplier tubes (PMT) separately. In the analog electronics backend, we multiplexed the PMT-
detected signals by frequency modulation (11.8 MHz and 35.4 MHz respectively, using a multichannel
direct digital synthesizer). The multiplexed signals were then separated by digital demodulation and low-
pass filtering (Fig. S2). The same FPGA was configured to synchronously obtain the signal from multi-
ATOM and fluorescence detection from each single cell at high-speed.

Multiplexer



Figure S2: Fluorescence detection scheme
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(@) Working principle of the fluorescence signal multiplexing scheme. Two channels of fluorescence
signal were detected by two separate photomultiplier tubes (PMTs). Then the signals were modulated by
two carrier signals at the frequencies much higher than the fluorescence signal bandwidth (100 kHz).
The modulated signals were then combined together and digitized by an analog-to-digital conversion
(ADC) circuit. (b) Working principle of the fluorescence signal recovery (demodulation). The
multiplexed signal was modulated with their corresponding carrier frequencies respectively. A low-pass
filter was applied to retrieve the selected fluorescence channel. (c) Experimental verification of 2-color
fluorescence multiplexing scheme in multi-ATOM using a mixed population of microspheres, consisting
of label-free and 2-color fluorescently-labelled microspheres. (Left) A 2D scatter plot shows four distinct
regions, each of which corresponds (1) orange fluorescent beads and (2) doublets with orange and cyan
fluorescence (3) label-free beads and (4) cyan fluorescent beads. The cyan and orange fluorescence
signals were modulated at the frequencies of 11.8 MHz, 35.4 MHz. (Right) Examples of the (left) bead
images (middle) cyan fluorescence signal, and (right) orange fluorescence signal that correspond to the
4 regions of the scatter plot respectively.



Figure S3: Fourier light scattering analysis and validation of multi-ATOM
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(@) A phase profile of the simulated sphere (diameter of 11.8 um) used for analysis. (b-c) The retrieved
BF and quantitative phase (¢) images based on our Fourier optics model. (d) The far-field light scattering
pattern computed from the complex field obtained from (b) and (c). (e) The angular light scattering (ALS)
profile computed from (d) (blue). This is consistent with the ALS of the bead with the same size, obtained
experimentally from the multi-ATOM system (red). They also in good agreement with the ALS of the
sphere evaluated based on the classical Mie light scattering theory (black).
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Figure S4: Batch effect in single-cell spatial optophysical phenotyping
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An example of the batch effect observed in the optophysical phenotypic profile of the H358 cells. The
cells are imaged by multi-ATOM on three different days using the same setup and system configuration.
We used UMAP to visualize the high-dimensional data on the three different datasets. The batch effect
is manifested by the three separate clusters in the UMAP plot.



Figure S5: The influence of batch effect on neural network classification - comparing between the
single-batch-trained model and the multi-batch-trained model
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Confusion matrices (left) of single-batch-trained model (training datasets: Batch C) and (right) of multi-
batch-trained model (training datasets: Batch A + B). For both of the model, they were trained with
14,000 cells from the training datasets and tested with 105,000 cells from Batch C. The prediction results
are reported above. The superior performance of the single-batch-trained model when compared with the
others indicates the presence of batch effect. Color gradient of the grids are set proportional to the value
within it. Darker colors mean higher values. The highest value in each row is marked with white texts.

Figure S6: The significance of the high-dimensional optophysical phenotypes in improving the
classification accuracy in comparing with the common biophysical features
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Confusion matrices (left) with the common biophysical features (i.e. cell size, the averaged mass/optical
density) and (right) with the high-dimensional optophysical phenotypic profile. The transfer-learning-
assisted results are reported above. Color gradient of the grids are set proportional to the value within it.
Darker colors mean higher values. The highest value in the row is marked with white texts.



Figure S7: The significance of transfer-learning-assisted neural network in improving the

classification accuracy using label-free optophysical phenotypes
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Confusion matrices (left) before and (right) after transfer learning. Color gradient of the grids are set
proportional to the value within it. Darker colors mean higher values. The highest value in the row is
marked with white texts.

Figure S8 : Classification accuracy with different transfer learning sample size
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The prediction accuracy curves were acquired by training the transfer-learning-assisted neural network
with different size of the transfer learning dataset, ranging from an empty dataset to 1,000 cells per cell
line. With more transfer learning data, the classification accuracy increases and levels off at around 95%.



Figure S9 (same as Fig. 2e): Mean phenotypic heatmap and correlations with the feature labels
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Figure S10: Correlation matrix of hierarchical spatial optophysical phenotypes
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Figure S11: Color-encoded spatial optophy3|cal phenotype map
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(Left) 3D PCA plot of the three lung-cancer subtypes based o‘n the spatial obtophysicalﬁphenotypes (same

as Fig. 2f). (Right) the optophysical phenotypes that show distinguishing differences among the three
subtypes.




Figure S12 (same as Fig. 3c): Ranking of phenotypes (with the feature labels) in classifying
H2170 and PBMC
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Figure S13: The roles of label-free optophysical phenotypes and EpCAM expression for
classification of H2170 cells and PBMC.

Optophysical phenotypes EpCAM expression Bulk +EpCAM Optophysical + EpCAM
Predicted Class Predicted Class Predicted Class Predicted Class
H2170 PBMC H2170 PBMC H2170 PBMC H2170 PBMC
o (=] o o
r~ ~ ~ ~
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Sensitivity: 91.1% Sensitivity: 99.1% Sensitivity: 85.2% Sensitivity: 99.7%
Specificity: 100.0% Specificity: 99.9% Specificity: 100.0% Specificity: 99.9%
Accuracy: 98.5% Accuracy: 99.7% Accuracy: 97.5% Accuracy: 99.8%

Confusion matrices comparing the performances of neural network model using (Left) optophysical
phenotypes only, (middle left) EpCAM expression only, (middle right) easily measurable bulk features
with EpCAM expression and (right) optophysical phenotypes with EpCAM expression for detecting lung
cancer cells in PBMCs. Using label-free optophysical phenotypes allows high accuracy (98.5%) and
sensitivity (91.1%). Despite the lower accuracy than that using EpCAM expression, using both
optophysical phenotypes and EpCAM expression can further augment both sensitivity (99.7%) and
accuracy (99.8%), demonstrating the essential role of optophysical phenotypes in cancer cell detection
in PBMCs. Compared to the use of EpCAM expression alone, using both optophysical phenotypes and
EpCAM expression indeed increases the number of true positives detected by 119, which improved both
the sensitivity and accuracy despite a slight compromise of specificity (<0.1%). The superior sensitivity
(99.7%) of using both optophysical phenotypes and EpCAM expression in comparison with that of using
easily measurable bulk features with EpCAM expression also justifies the importance of the high-
dimensional optophysical phenotypic profile. However, when comparing the EpCAM-expression-only
model and the model of bulk features with EpCAM expression, the accuracy is decreased (from 99.7%
to 97.5%) after the addition of bulk features. Further investigation is required to explain this change.

Figure S14: Cell viability of H1975 and H358 cells treated with Osimertinib

100 H358 (resistant)
—8— H1975 (susceptible)
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The dose-response curves (across 5 orders of magnitude of osimertinib concentration) were acquired by
the MTT assays after 72 hours of drug treatment. The MTT assay was done on a 96-well plate. The error
bar is constructed from the standard deviation of 2 replicates.
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Figure S15 (same as Fig. 4e): Ranking of phenotypes (with the feature labels) in showing the

response to the Osimertinib treatment
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Figure S16: Fluorescence images of H1975 in response to the osimertinib treatments

Control 10nM 100nM

Fluorescence images of osimertinib-treated H1975 (fixed with 4% paraformaldehyde). The red channel
represents actin (stained by Alexa Fluor 546 phalloidin) whereas the blue channel represents nucleus

(stained by DAPI). Each image is 40um x 40um.



Figure S17: Overall ranking of the spatial features obtained from fluorescence images of cells

treated with Osimertinib
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The ranking is arranged in a descending order of Spearman’s correlation coefficients of individual

features from left to right.



Table S1: Feature equation table (List of variables used can be found in Table S2)

Feature name Abbreviation Equation
Area A Lpix” - Npiy
Volume 4 4 Lininor 2 Lmajor
7 (R (R
Circularity 4mA/P
Eccentricity Leuip
Lmajor
Aspect Ratio Lminor
Lmajor
Orientation Omajor
Dry Mass MD,ye0 A ﬂ
— || MD(x,y) dxd
mall, (x,y) dxdy
Attenuation Density /[,(1=0D(x,y)) dxdy
Npix
. . . L
Amplitude Variance Gop ﬂ (0D(x,y) — OD)? dxdy/(Npix — 1)
A
Amplitude Skewness J[,(0D(x,y) — 0D)? dxdy/Npix
oop*
Amplitude Kurtosis JI,(0D(x,y) — OD)* dxdy/Npix
dop*
Peak Amplitude max {OD(x,y)}
Peak Absorption min {OD(x,y)}
Amplitude Range max{0D (x,y)} — min {OD(x,y)}
Dry Mass Density DMD J[, DMD (x,y) dxdy
Npix
. 2 _
Dry Mass Variance Opmp ﬂ (DMD (x,y) — DMD)? dxdy/(Nypsx — 1)
A
Dry Mass Skewness J[,(DMD(x,y) — DMD)? dxdy/Npix
Opmp°
Dry Mass Radial J[,DMD(r,6) r drd6
Distribution ffA DMD(r,8) drdd
Dry Mass Centroid
Dig/placement \/(xDMD,cen - xcen)z + (.VDMD,cen - ycen)z : Lpix
Peak Phase max {MD(x,y)}
Phase Minimum min {MD(x,y)}
Phase Radial J[,7-MD(r,6) drdo
Distribution
J[,MD(r,6) drdo
Phase Centroid
Displacement \[(xDMD,cen - xcen)z + (YDMD,cen - ycen)z ' Lpix
Mean Phase J[,MD(r,6) r drdo

Arrangement f fA MD(r,8) drdo



Phase Arrangement B
Variance

Phase Arrangement
Skewness

Phase Orientation Ompang”
Variance

Phase Orientation

Kurtosis
BF Entropy Mean (0] )
BF Entropy Variance Oopent”

BF Entropy Skewness

BF Entropy Kurtosis

BF Entropy Range
BF Entropy Peak
BF Entropy Min

BF Entropy Centroid
Displacement

BF Entropy Radial

Distribution

BF STD Mean ODsrp
BF STD Variance iyl
BF STD Skewness

BF STD Kurtosis

BF STD Range
BF STD Peak
BF STD Min

BF STD Centroid
Displacement

BF STD Radial
Distribution

BF Fiber Texture
Centroid Displacement

JI,(MD(r,6) r)? drdd
ffA MD (rr 9) drd@
J[,(MD(r,6) - )* drd6
O-MDarrz ) ffA MD (T, 9) drd6

fooo(ﬁb(w) - w)? dw
I MD(w) dw

fooo(IVfD(w) - w)* dw
Oupang? * Jy MD(w) dw

IJ, ODene (x,y) dxdy
N,

pix
ffA(ODent(x: 3/) - ODent )dedy
Npi — 1
ffA(ODent(x: }’) — ODene )3dxdy/Npix

3
Oopent

ffA(ODent(x: }’) — OD¢pe )4dxdy/Npix

4
Oopent

max{0Den, (x,y)} — min {OD,,,.(x,y)}

max {ODene (x, )}
min {ODent(xt y)}

\[(xODent,cen - xcen)2 + (yODent,cen - ycen)Z

J[, 7 ODep(r, 6) drd6
.UA OD¢pt(r,0) drd6

ffA ODgrp(x,y) dxdy
N

pix
ffA(ODSTD(x: ¥) — ODgrp )?dxdy
Npix — 1

ffA(ODSTD(x: ¥) — ODsrp )3dXdY/Npix

3
Oopstd

ffA(ODSTD(x: y) — ODgrp )4dXdY/Npix

4
Oopstd

max{0Dgsrp (x,y)} — min {ODgrp (x,y)}

max {ODgrp (x,¥)}
min {ODgrp (x,y)}

ffA r- ODSTD (T’, 9) deG
ffA ODgrp(r,6) drdf

' Lpix

\/(xODSTD,cen - xcen)z + (YODSTD,cen - ycen)z ' Lpix

— 2 — 2
\/(XODfiber,cen xcen) + (yODfiber,cen ycen) Lpix



BF Fiber Texture Radial
Distribution

BF Fiber Texture
Pixel>Upper Percentile

BF Fiber Texture
Pixel>Median

BF Fiber Mean

BF Fiber Variance

BF Fiber Skewness

BF Fiber Kurtosis

Phase STD Mean

Phase STD Var

Phase STD Skewness

Phase STD Kurtosis

Phase STD Centroid
Displacement

Fit Texture Mean

Fit Texture Variance

Fit Texture Skewness

Fit Texture Kurtosis

Fit Texture Centroid
Displacement

Fit Texture Radial
Distribution

Phase Entropy Mean

Phase Entropy Var

Oszber

2
O-ODfiber

MDgrp

2
OMDstd

MDy,;

2
OMDfit

MDep,

2
OMDent

ffA r: ODfiber (7", 6) drd6
ffA ODfiber (T, 9) drdé

Number of pixels in ODg;pe,(x,y) > 75th percentile
Npix

Number of pixels in ODg;pe,(x,y) > median
Npix
If, ODgiper (x,y) dxdy
Npix
ffA(ODfiber(x, }’) - ODbeer )2 dxdy
Npi — 1
ffA(ODfiber (X, 3/) - ODflber )dedy/Npix
UODfiber3

ffA(ODfiher(x' y) - ODbeer )4dXdy/Npix
O-ODfiber4
ffA MDgrp(x,y) dxdy
Npix
ffA(MDSTD(x' y) — MDsrp )*dxdy
Npi — 1
ffA(MDSTD(x' y) — MDgrp )3dXdy/Npix

3
OMDstd

ffA(MDSTD(x' y) — MDgrp )4dXdy/Npix

4
OMDstd

\/(XMDSTD,cen - xcen)z + (yMDSTD,cen - ycen)z ' Lpix
JI, MDye (x,y) dxdy
Npix
JI,(MDy(x,y) — MDy,, )*dxdy
Npi — 1
JI,(MDyi(x,y) — MDy,; )3dxdy /Ny
UMDfit3

JI,(MDy;(x,y) — MDy, )*dxdy /Ny

4
OMDfit

\/(xMDfit,cen - xcen)z + (yMDfit,cen - ycen)z ' Lpix

ffAT . MDfit(T’ 9) drd@
ffA MDfit(T’ 9) drdo

J[, MDepe (x, y) dxdy
N

pix
ffA(MDent(xr y) = MD.p,, )*dxdy
Npi — 1




Phase Entropy Skewness

Phase Entropy Kurtosis

Phase Entropy Centroid
Displacement

Phase Entropy Radial
Distribution

Phase Fiber Centroid
Displacement

Phase Fiber Radial
Distribution

Phase Fiber Pixel>Upper

Percentile

Phase Fiber

Pixel>Median

Phase Fiber Mean MDsper
Phase Fiber Var UMDfiber2

Phase Fiber Skewness

Phase Fiber Kurtosis

ffA(MDent(x: 3’) - MDent )dedy/Npix
UMDent3
ffA(MDent(x: y) - MDent )4dxdy/Npix

4
OMDent

\/(xMDent,cen - xcen)2 + (yMDent,cen - yCETL)Z ' Lpix

J[,7* MD¢p (r, ) drd6
JI,MD¢p(r,6) drd6

— 2 — 2.
\/(xMDfiber,cen xcen) + (yMDfiber,cen ycen) Lpix

ffA 7 MDgiper (1, 6) drdd
ffA MDfL'ber (r,0) drdé

Number of pixels in MDy;,er(x,y) > 75th percentile

Npix
Number of pixels in MDgjp.,(x,y) > median
Npix
ffA MDfiber (x, y) dXdy
Npix
ffA(MDfiber(xx J’) - MDbeer )2 dXdy
Npi — 1
. —_— MD.. 3 .
A
ff (Mthher(x'y) Mszber) dXdy/NpLx
O-MDfibers
. —_— MD... 4 .
A
ff (MDflber(x:y) MDflber) dxdy/NpLx

4
O-MDfiber




Table S2: List of variables and abbreviations

Variable Description Equation/Remarks
c Contour of binary mask
CM Cell mask function CM(x,y) = {(1) ifoir}zlsei(ﬁ/eigill
i A-MD(x,
DMD Dry mas density map DMD(x, ) = . h((xj,))
h Cell height map Lo L
h(x,y) = J () = (= Xeen)” + ( — Yeen)?)
Uiyt Distance between foci of
ellipse
Linajor Major axis length
Loninor Minor axis length
Lyix Physical length of one
pixel
MD Mass density map MD(x,y)
MD(6) Mass density projected to
polar angle
MD(w) Mass density in angular MD(w) = F(MD(0))

MDgrp ger (X, y)

MDgrp (x,y)

MDcubic (x' y)

MDyi(x,y)

MDent(x' y)

MDgiper (x,y)

ODent(x' y)

ODgrp ker )

frequency domain

Mean value of QPI
within STD filter kernel

QPI STD map

Cubic polynomial
surface fit of mass
density map

Fit texture map of mass
density map

Entropy filtered mass
density map

Fiber texture enhanced
mass density map

Pixel number in cell
mask

Optical density map

Amplitude mean

Entropy filtered optical
density map

Mean value of BF within
STD filter kernel

x+wsTtp/2 y+WsTp/2
fX—WSTD/Z fy_WSTD/Z MD (u: v) dvdu

2
Wstp

Jx+WsTD/2 jy+WsTD/2\/(MD (u, v) _ 7MDSTD,keT(x! y))z p

W 2
X-WsTp/2 Yy-WsTD/2 STD

MD(XJY) - MDcubic(x:y)

255

Z Pmp k- log, Pump k
k=0

FF(MD(x,y)), ref.®

.U- CM(x,y)dA

0D(x,y)

ﬂ. 0D (x,y) dxdy [Ny
A
255

Z Pop,k log, Pop,k
k=0

X+WsTD/2 (Y+WsTD/2
fx‘WSTD/Z y-wsTp/2 0D (u,v) dvdu

2
WsTD

vdu



ODgsrp(x,y) BF STD map

vdu

fx+WSTD/2 J-y+WsTD/2 \](OD (u, v) _ —ODSTD,ker(xr y))z p

P
x-wstp/2 Yy-wsTp/2 STD

Fiber texture enhanced
optical density map

ODfibe‘r(x' y) FF(OD(x,y)), ref. 9

P Perimeter jg <dx)2 . <dy)2 .
- J\\ds de
Pup i (%, ¥) Normalized histogram y) = number of pixels in kernel (W) with MD =k
counts W't_h'n kernel of Pup %, y) = Total number of pixels in kernel
mass density map , where k = 0 to 255
Pop (X, ¥) Normalized histogram y) = number of pixels in kernel (We,,) with OD = k
counts within kernel of oY) = Total number of pixels in kernel
optical density map , Where k = 0 to 255
r,0 Polar coordinates
centered at cell centroid
Went Kernel size of entropy
filter
Wsrp Kernel size of STD filter
X,y Cartesian coordinates
Xcen Coordinates of cell J[,x - CM(x,y) dxdy I,y CM(x,y) dxdy
Yeen centroid Xcen = Noix »Yeen = Noix
XMD cen Coordinates of mass J[,x-MD(x,y) dxdy
W density weighted cell XMD,cen = N
centroid h
/[,y MD(x,y) dxdy
YMD,cen = N
pix
XpMD cen Coordinates of dry mass J[,x-DMD(x,y) dxdy
VoMb cen dentsit)_/dweighted cell XpMDcen = Nyix
centroi
/[,y - DMD(x,y) dxdy
YDpMDcen = N
pix
XMDent,cen Coordinates of entropy JI, % - MDgye (x,y) dxdy
M Denticen filtered MD weighted XMDent,cen = Ny
cell centroid
ffAy * MDept(x,y) dxdy
YMDent,cen = N
pix
Xmpfiber cen Coordinates of fiber JI, % - MDgiper (x,y) dxdy

enhanced MD weighted

XMDfiber,cen =

YMDfiber,cen I troid Npix
cell centroi
ffAy ' MDfiber(xt J/) dxdy
YMDfiber,cen = N
pix
Xupfit.cen Coordinates of MD fit JI,x - MDg; (x,y) dxdy
Yubfit.con texttur(? C}Neighted cell XMDfit,cen = Noix
centroi
J[,y - MDs(x,y) dxdy
YMDfit,cen = N
pix
XMDSTD,cen Coordinates of STD JI,x - MDgyp (x, y) dxdy
YMDSTD,cen filhered tl\/l[_:jweighted XMDSTD,cen = Npix
cell centroi
ffAy * MDgrp(x,y) dxdy
YMDSTD,cen =

N,

pix



DD Coordinates of entropy _ JIx - ODene (x,y) dxdy

Yopent,cen filte:[rec_idOD weighted cell Xopent,cen = Noox
centroi
ffA y ’ ODent(x, }’) dXdy
Yopent,cen = N.
pix
Xobfiber.cen Coordinates of fiber I, % ODsiper(x, ) dxdy
Yobfiver.cen en“ancetd C_)dD weighted XoDfiber,cen = Ny
cell centroi
ffA y: ODfiber (xl 3’) d'xdy
Yobpfiver,cen = N
pix
XoDSTD,cen Coordinates of STD JI,x - ODsrp (x,y) dxdy
YoDSTD,cen filte:[rec_deD weighted cell XopsTD,cen = N
centroi
ffA v ODSTD (xl 3’) d'xdy
YoDSTD,cen = N
pix
a Specific refractive 0.19 ml/g (ref. %)
increment
Gmajor Angle between major
axis and x-axis
F Fourier transform
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