Constant-potential environment for activating and synchronizing cardiomyocytes colonies with on-chip ion-depleting perm-selective membranes†

Vivek a, b, Nicholas Chong c, Bradley Ellis c, Xiang Ren c, Satyajyoti Senapati a, b, d, Hsueh-Chia Chang a, b, c, d, * and Pinar Zorlutuna a, c, d, *

a Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
b Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA
c Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
d Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
† equal contribution
* Co-corresponding author: hchang@nd.edu, Pinar.Zorlutuna.1@nd.edu

1. Schematics of action potential and contraction-relaxation kinetics

![Diagram of action potential and contraction-relaxation kinetics](image)

Figure S1: Schematic diagram depicting the rat cardiomyocytes (rCMs) action potential superimposed with its contraction relaxation kinetics. Based on ref 1, 2

2. Control experiment of ‘ON’ and ‘OFF’ Voltage pulses with a 30s period without using CEM:

![Graph of normalized relative pixel motion](image)

Figure S2: The trace obtained from image analysis of rat cardiomyocytes (rCMs) without using a CEM with the applied voltage when it is switched ON and OFF.
3. Microfluidics and device fabrication:

Figure S3: Fabrication steps of the experimental platform. (a) A schematic of 3D-printed wax mold showing the sacrificial layer in orange color (i) side-view, (ii) bottom-view and after removal of the layer by dissolving in BIOACT VSO (Vantage Specialty Chemicals) solvent for 2 days (iii) side-view, (iv) bottom view (b) PDMS is poured on the wax print (indicated in blue) in 10:1 ratio and cured at 65°C for overnight (d) Plasma bonding of the PDMS chip on a microscopic glass slide after dissolving the wax print in DMSO.

4. Finite Element Simulation (FEM):

Figure S4: Schematics of computational domain and boundary conditions for leaky dielectric model of electrolytes

Leaky dielectric model of electrolytes ($\nabla^2 \sigma E = 0$) has been used to perform FEM simulations using Comsol Multiphysics 5.3a. Edge 1 represents ground and a finite potential is imposed on edge 2. Insulation boundary condition is imposed on all the other edges. The horizontal channel is modelled as deionised water with conductivity $3 \times 10^{-4} \, S/m$ (σ_1) and the vertical channel has been modelled with conductivity $8 \times 10^{-2} \, S/m$ (σ_2).

References:

