# **Supplemental materials**

# A point-of-care selenium nanoparticle-based test for the combined

# detection of anti-SARS-CoV-2 IgM and IgG in human serum and

### blood

Zhizeng Wang, <sup>‡</sup>a Zhi Zheng, <sup>‡</sup>a Hangzhan Hu, <sup>‡</sup>a Qianwen Zhou, <sup>a</sup> Xiaoquan Li, <sup>b</sup> Wei Liu, <sup>c</sup> Zhigang Liu, <sup>b</sup> Yaohui Wang, <sup>\*</sup>a Yuanfang Ma.<sup>\*</sup>a

\* Yaohui Wang: wangyaohui2017@henu.edu.cn, Yuanfang Ma: mayf@henu.edu.cn

<sup>a</sup> Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China

<sup>b</sup> The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.

<sup>c</sup> Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.

‡ Zhizeng Wang, Zhi Zheng and Hangzhan Hu contributed equally to this work.

#### Contents

| 1. | Results of nucleoprotein purification and activity verification | S2  |
|----|-----------------------------------------------------------------|-----|
| 2. | SDS-PAGE for figure 2A                                          | S3  |
| 3. | HPLC for figure 2B                                              | S4  |
| 4. | Preparation and labeling of selenium nanoparticles              | S5  |
| 5. | Detailed information of limit of detection for Figure 3         | S6  |
| 6. | Limit of detection separate for anti-SARS-CoV-2 IgM and IgG     | S8  |
| 7. | Comparison of the effects of commercial kits                    | S9  |
| 8. | Basic information of contributors for figure 4                  | S11 |
| 9. | Basic information of contributors for figure 6 and table 1      | S12 |
| 10 | Results for Table 1 in manuscript                               | S26 |
| 11 | . Preparation methods of conjugate pad and reaction pad         | S43 |

#### **1** Results of nucleoprotein purification and activity verification

The recombinant SARS-CoV-2 nucleoprotein, purified by affinity chromatography, was expressed in HEK293 cells. There was a clear band at approximately 50 kDa by SDS-PAGE (Fig. S1A), and the purity of the nucleoprotein was calculated to be 98.14% by HPLC (Fig. S1B). The protein-binding activity of SARS-CoV-2 nucleoprotein and the antibody was detected by ELISA. The EC50 was 0.471 ng/mL (Fig. S1C).



Figure S1 SARS-CoV-2 nucleoprotein purification SDS-PAGE results. Abbreviation: M, marker lane. 1) NP (1  $\mu$ g). 2) NP (2  $\mu$ g). 3) NP (4  $\mu$ g). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; EC<sub>50</sub>, concentration for 50% of maximal effect; HPLC, high performance liquid chromatography

## 2 SDS-PAGE for figure S1A

Nucleoprotein was verified by SDS-PAGE, the full image is shown in figure S1 for Figure 2A in manuscript.



Figure S2 Full image of nucleoprotein verification by SDS-PAGE. BSA, bovine serum albumin.

### 3 HPLC for figure S1B

Purity of nucleoprotein was tested by HPLC (TSKgel G3000SWXL, flow rate 0.5 mL/min). Result of purity was 98.14% according to relative peak area (Figure S2).



Figure S3 Chromatogram and results of nucleoprotein

### 4 Preparation and labeling of selenium nanoparticles

A selenium nanoparticle solution was prepared by ascorbic acid reduction with SDS and PEG as templates. The solution of selenium nanoparticles and selenium nanoparticle -conjugated nucleoprotein was clear and translucent, and a beam of light could pass through the solution, which has had a favorable Tyndall effect (Fig. S4).



Figure S4 Appearance and characterization of SeNPs. (A) Appearance of SeNPs after synthesis; (B) conjugated with protein

#### 5 Detailed information of limit of detection for Figure 3

With the + representing the intensity of color development, we show the naked eye judgment results of three limit of detection tests by three people. The detection results are shown in figure S5 and the judgement result by naked eyes are shown in table S1.



Figure S5 Results of test and statistical for limit of detection for anti-SARS-CoV-2 IgM and IgG detection in human serum. IgG, anti-nucleoprotein IgG; IgM, anti-nucleoprotein IgM; C, control line; G, G test line; M, M test line.

|                  |       | 0             |      |      | ,    |     |    |   |   |   |
|------------------|-------|---------------|------|------|------|-----|----|---|---|---|
| IgG/IgM conce    | entra | ation (ng/mL) | 200  | 100  | 50   | 20  | 10 | 5 | 2 | 0 |
|                  |       | Zhizeng Wang  | ++++ | +++  | +++  | ++  | +  | + | ± | - |
|                  | 1     | Zhi Zheng     | ++++ | ++++ | +++  | ++  | +  | + | - | - |
|                  |       | Hangzhan Hu   | ++++ | +++  | ++   | ++  | +  | + | - | - |
| Naked result for |       | Zhizeng Wang  | ++++ | ++++ | +++  | +++ | ++ | + | - | - |
| IgG by different | 2     | Zhi Zheng     | ++++ | ++++ | ++++ | +++ | ++ | + | - | - |
| persons          |       | Hangzhan Hu   | +++  | +++  | ++   | ++  | +  | + | - | - |
|                  |       | Zhizeng Wang  | ++++ | ++++ | +++  | +   | ++ | + | - | - |
|                  | 3     | Zhi Zheng     | ++++ | +++  | ++   | +   | +  | + | - | - |
|                  |       | Hangzhan Hu   | +++  | +++  | ++   | +   | +  | + | - | - |
|                  |       | Zhizeng Wang  | +++  | ++   | +    | +   | -  | - | - | - |
|                  | 1     | Zhi Zheng     | +++  | ++   | +    | +   | -  | - | - | - |
|                  |       | Hangzhan Hu   | +++  | ++   | +    | +   | -  | - | - | - |
| Naked result for |       | Zhizeng Wang  | ++   | +++  | ++   | +   | -  | - | - | - |
| IgM by different | 2     | Zhi Zheng     | ++   | ++   | +    | +   | -  | - | - | - |
| persons          |       | Hangzhan Hu   | +++  | ++   | +    | +   | -  | - | - | - |
|                  |       | Zhizeng Wang  | +++  | +++  | ++   | +   | -  | - | - | - |
|                  | 3     | Zhi Zheng     | +++  | ++   | +    | +   | -  | - | - | - |
|                  |       | Hangzhan Hu   | ++   | ++   | +    | +   | -  | - | - | - |

Table S1 Judgment results for limit of detection by different persons

#### 6 Limit of detection separate for anti-SARS-CoV-2 IgM and IgG

Anti-nucleoprotein IgM (1 mg/mL) and anti-nucleoprotein IgG (1 mg/mL) were diluted to different concentrations with negative serum and added to the kit for the LOD. Finally, the LOD of IgG and IgM in serum was determined to be 5 ng/L (Figure S6A, S6B), and 20 ng/mL (Figure S6C, S6D) by the naked eye and GraphPad Prism.



Figure S6 Sensitivity of separate detection for anti-SARS-CoV-2 IgM and IgG detection in human serum. IgG, anti-nucleoprotein IgG; IgM, anti-nucleoprotein IgM; C, control line; G, G test line; M, M test line.

#### 7 Comparison of the effects of commercial kits

Three commercial SARS-CoV-2 antibody detection kits based on colloidal gold labeling recombinant protein were chose to compare their LOD. The A corporation kit for total antibody detection, the B corporation kit is for IgG and IgM detection, and the C corporation kit is for IgG and IgM combined monitoring. A kit cannot detect IgG and IgM with lower concentrations of 100 ng/mL and 500 ng/mL (figure S7). The LOD of B kit for IgG and IgM was 20 ng/mL and 100 ng/mL (figure S8). The LOD of C kit for IgG was 20 ng/mL, and it can not detect IgM with lower concentrations of 500 ng/mL (figure S9). The production information was shown in table S2.

| ar                    | anti-SARS-CoV-2 antibody detection based on colloidal gold |                                                               |                                |        |                               |         |  |
|-----------------------|------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|--------|-------------------------------|---------|--|
| Number of corporation | Serial Nur                                                 | nber                                                          | Productio                      | n Date | Expiration                    | on date |  |
| А                     | W195004                                                    | 149                                                           | 2020.04                        | 4.24   | 2020.                         | 10.24   |  |
| В                     | 202004                                                     | )8                                                            | 2020.04                        | 4.28   | 2020.                         | 10.28   |  |
| С                     | 202003                                                     | )5                                                            | 2020.03                        | 3.20   | 2021.0                        | 03.19   |  |
| IgG<br>IgM<br>(ng     | 100<br>500<br>/mL)<br>C C T C<br>nCoV nCoV                 | 10<br>50<br>0<br>c<br>T<br>C<br>T<br>C<br>T<br>C<br>T<br>nCoV | 5<br>20<br>0<br>C<br>T<br>nCoV |        | 0<br>0<br>C<br>C<br>T<br>nCoV |         |  |

Table S2 Product information of lateral flow kit for

Figure S7 Detection limit of A corporation kit used for anti-SARS-CoV-2 IgM and IgG detection in human serum. IgG, anti-nucleoprotein IgG; IgM, anti-nucleoprotein IgM; C, control line; T, test line.



Figure S8 Detection limit of B corporation kit used for anti-SARS-CoV-2 IgM and IgG detection in human serum. IgG, anti-nucleoprotein IgG; IgM, anti-nucleoprotein IgM; C, control line; T, test line.



Figure S9 Detection limit of C corporation kit used for anti-SARS-CoV-2 IgM and IgG detection in human serum. IgG, anti-nucleoprotein IgG; IgM, anti-nucleoprotein IgM; C, control line; G, G test line; M, M test line.

## 8 Basic information of contributors for figure 4

Positive serum samples of influenza, anti-nucler antibody, rheumatoid factor were collected from the Huaihe Hospital of Henan University for cross reactivity verification.

| No. | No. of in<br>figure 5 | Sex    | Age     | Disease/Index                        | Notes |
|-----|-----------------------|--------|---------|--------------------------------------|-------|
| 1   | 8                     | male   | 11      | Influenza B positive                 |       |
| 2   | 9                     | male   | 9 mouth | Influenza A positive                 |       |
| 3   | 10                    | male   | 19      | Influenza B positive                 |       |
| 4   | 11                    | female | 14      | Influenza B positive                 |       |
| 5   | 12                    | male   | 78      | Influenza A positive                 |       |
| 6   | 13                    | female | 73      | Influenza B positive                 |       |
| 7   | 16                    | male   | 86      | Anti-nucler antibody positive        |       |
| 8   | 17                    | female | 18      | Anti-nucler antibody positive        |       |
| 9   | 18                    | female | 38      | Anti-nucler antibody positive        |       |
| 10  | 19                    | male   | 30      | Rheumatoid factor (RF)<br>positive   |       |
| 11  | 20                    | female | 54      | RF positive                          |       |
| 12  | 23                    | female | 63      | Anti-nucler antibody+<br>RF positive |       |
| 13  | 24                    | male   | 33      | Anti-nucler antibody+<br>RF          |       |
| 14  | 25                    | female | 68      | Anti-nucler antibody+<br>RF positive |       |
| 15  | 26                    | male   | 90      | Anti-nucler antibody+<br>RF positive |       |
| 16  | 27                    | female | 49      | Anti-nucler antibody+<br>RF positive |       |

Table S3 Clinical sample information from the Huaihe Hospital of Henan University

#### 9 Basic information of contributors for figure 6 and table 1

A total of 353 cases were tested: 90 (positive) clinically confirmedCOVID-19 patients, 186 COVID-19 negative persons, 51 normal humans and 26 medical workers who supported Wuhan during the epidemic. The basic information of all the contributors are shown in table S4-table S7.

| No. | Sex    | Age | COVID-19 or not(+/-) | Judgement method | Notes          |
|-----|--------|-----|----------------------|------------------|----------------|
| H1  | female | 36  | -                    | RT-PCR           |                |
| H2  | female | 56  | +                    | RT-PCR           |                |
| Н3  | female | 56  | +                    | RT-PCR           |                |
| H4  | male   | 28  | -                    | RT-PCR           |                |
| H5  | female | 45  | +                    | RT-PCR           |                |
| H6  | male   | 38  | +                    | RT-PCR           |                |
| H7  | male   | 55  | +                    | RT-PCR           |                |
| Н8  | male   | 63  | +                    | RT-PCR           |                |
| Н9  | male   | 65  | +                    | RT-PCR           |                |
| H10 | female | 55  | +                    | RT-PCR           |                |
| H11 | male   | 45  | +                    | RT-PCR           |                |
| H12 | female | 42  | +                    | RT-PCR           |                |
| H13 | female | 72  | +                    | RT-PCR           | False negative |
| H14 | female | 63  | +                    | RT-PCR           |                |
| H15 | male   | 25  | +                    | RT-PCR           |                |
| H16 | female | 69  | +                    | RT-PCR           |                |
| H17 | male   | 42  | +                    | RT-PCR           |                |
| H18 | male   | 56  | +                    | RT-PCR           |                |
| H19 | male   | 56  | +                    | RT-PCR           |                |
| H20 | male   | 84  | +                    | RT-PCR           |                |
| H21 | male   | 36  | +                    | RT-PCR           |                |
| H22 | male   | 57  | -                    | RT-PCR           |                |
| H23 | male   | 64  | +                    | RT-PCR           |                |
| H24 | female | 44  | +                    | RT-PCR           |                |
| H25 | male   | 49  | +                    | RT-PCR           |                |
| H26 | male   | 70  | +                    | RT-PCR           |                |
| H27 | female | 64  | +                    | RT-PCR           |                |
| H28 | male   | 53  | -                    | RT-PCR           |                |
| H29 | female | 24  | +                    | RT-PCR           |                |

Table S4 Clinical sample information from the Fire God Mountain Hospital

| H30  | male   | 87 | + | RT-PCR |                    |
|------|--------|----|---|--------|--------------------|
| H101 | male   | 51 | + | RT-PCR |                    |
| H102 | female | 57 | + | RT-PCR |                    |
| H103 | female | 51 | + | RT-PCR |                    |
| H104 | male   | 77 | + | RT-PCR |                    |
| H105 | male   | 43 | + | RT-PCR |                    |
| H106 | male   | 45 | + | RT-PCR |                    |
| H107 | male   | 45 | + | RT-PCR |                    |
| H108 | male   | 40 | + | RT-PCR |                    |
| H109 | male   | 72 | - | RT-PCR |                    |
| H110 | female | 54 | + | RT-PCR |                    |
| H111 | female | 91 | + | RT-PCR |                    |
| H112 | female | 65 | + | RT-PCR | False negative     |
| H113 | male   | 62 | + | RT-PCR |                    |
| H114 | female | 48 | + | RT-PCR |                    |
| H115 | male   | 55 | + | RT-PCR |                    |
| H116 | male   | 43 | + | RT-PCR |                    |
| H117 | male   | 65 | + | RT-PCR |                    |
| H118 | male   | 57 | + | RT-PCR |                    |
| H119 | female | 37 | + | RT-PCR |                    |
| H120 | female | 40 | + | RT-PCR |                    |
| H121 | female | 42 | + | RT-PCR |                    |
| H122 | male   | 67 | + | RT-PCR |                    |
| H123 | male   | 69 | + | RT-PCR |                    |
| H124 | female | 27 | + | RT-PCR |                    |
| H125 | male   | 64 | + | RT-PCR |                    |
| H126 | male   | 52 | - | RT-PCR | IgM False positive |
| H127 | female | 84 | + | RT-PCR |                    |
| H128 | male   | 46 | + | RT-PCR |                    |
| H129 | male   | 72 | + | RT-PCR |                    |

| H130 | male   | 77 | + | RT-PCR |                |
|------|--------|----|---|--------|----------------|
| H131 | male   | 54 | + | RT-PCR |                |
| H132 | male   | 64 | + | RT-PCR |                |
| H133 | male   | 51 | + | RT-PCR |                |
| H134 | male   | 65 | + | RT-PCR |                |
| H135 | female | 68 | + | RT-PCR |                |
| H136 | male   | 72 | + | RT-PCR |                |
| H137 | male   | 54 | + | RT-PCR |                |
| H138 | male   | 61 | + | RT-PCR |                |
| H139 | male   | 45 | + | RT-PCR |                |
| H140 | female | 57 | + | RT-PCR |                |
| H141 | female | 36 | + | RT-PCR | False negative |
| H142 | male   | 40 | + | RT-PCR |                |
| H143 | female | 42 | - | RT-PCR |                |
| H144 | male   | 43 | - | RT-PCR |                |
| H145 | male   | 43 | + | RT-PCR |                |
| H146 | female | 55 | + | RT-PCR |                |
| H147 | male   | 69 | + | RT-PCR |                |
| H149 | female | 57 | + | RT-PCR |                |
| H150 | male   | 54 | + | RT-PCR |                |
| H159 | male   | 52 | - | RT-PCR |                |
| H160 | female | 69 | + | RT-PCR |                |
| H161 | male   | 69 | + | RT-PCR |                |
| H162 | female | 68 | + | RT-PCR |                |
| H163 | female | 27 | + | RT-PCR |                |
| H164 | male   | 54 | + | RT-PCR |                |
| H165 | male   | 54 | + | RT-PCR |                |
| H166 | female | 47 | + | RT-PCR |                |
| H167 | female | 47 | + | RT-PCR |                |
| H168 | female | 37 | + | RT-PCR |                |

| H169 | male   | 72 | + | RT-PCR |                    |
|------|--------|----|---|--------|--------------------|
| H170 | male   | 61 | + | RT-PCR |                    |
| H171 | male   | 46 | + | RT-PCR |                    |
| H172 | male   | 25 | - | RT-PCR | IgM False positive |
| H173 | male   | 72 | + | RT-PCR |                    |
| H174 | female | 34 | + | RT-PCR |                    |
| H175 | male   | 63 | - | RT-PCR |                    |
| H176 | female | 55 | - | RT-PCR |                    |
| H177 | male   | 43 | - | RT-PCR | IgM False positive |
| H178 | female | 42 | - | RT-PCR |                    |
| H179 | female | 34 | - | RT-PCR |                    |
| H180 | male   | 40 | + | RT-PCR |                    |
| H181 | female | 57 | + | RT-PCR |                    |
| H182 | male   | 45 | + | RT-PCR |                    |
| H183 | female | 36 | - | RT-PCR |                    |
| H184 | female | 56 | + | RT-PCR | False negative     |
| H185 | female | 57 | + | RT-PCR |                    |

| No. | Sex    | Age | COVID-19<br>or not(+/-) | Judgement method  | Notes                                      |
|-----|--------|-----|-------------------------|-------------------|--------------------------------------------|
| 1   | male   | 25  | -                       | Clinical symptoms | Pulmonary disease                          |
| 2   | male   | 77  | -                       | Clinical symptoms | Respiratory diseases                       |
| 3   | male   | 60  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 4   | female | 81  | -                       | Clinical symptoms | Neurological disease                       |
| 5   | male   | 68  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 6   | female | 69  | -                       | Clinical symptoms | Nephrosis                                  |
| 7   | female | 52  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 8   | female | 49  | -                       | Clinical symptoms | Neurological disease                       |
| 9   | male   | 57  | -                       | Clinical symptoms |                                            |
| 10  | female | 65  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 11  | male   | 80  | -                       | Clinical symptoms | Emergency disease                          |
| 12  | male   | 80  | -                       | Clinical symptoms | Emergency disease                          |
| 13  | male   | 49  | -                       | Clinical symptoms | Neurological disease                       |
| 14  | male   | 66  | -                       | Clinical symptoms | Neurological disease                       |
| 15  | male   | 79  | -                       | Clinical symptoms | Neurological disease                       |
| 16  | male   | 79  | -                       | Clinical symptoms | Neurological disease                       |
| 17  | male   | 81  | -                       | Clinical symptoms | Surgical disease                           |
| 18  | male   | 81  | -                       | Clinical symptoms | Surgical disease                           |
| 19  | female | 84  | -                       | Clinical symptoms | Disease of the aged                        |
| 20  | male   | 78  | -                       | Clinical symptoms | Surgical disease                           |
| 21  | female | 76  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 22  | female | 63  | -                       | Clinical symptoms | Thoracic disease                           |
| 23  | male   | 75  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 24  | female | 66  | -                       | Clinical symptoms | Cardiovascular disease                     |
| 25  | male   | 69  | -                       | Clinical symptoms | Surgical disease                           |
| 26  | male   | 75  | -                       | Clinical symptoms | Neurological disease                       |
| 27  | female | 72  | -                       | Clinical symptoms | Disease of the aged,<br>IgM false positive |
| 28  | male   | 78  | -                       | Clinical symptoms | Surgical disease                           |
| 29  | male   | 69  | -                       | Clinical symptoms | Respiratory disease                        |

Table S5 Clinical sample information of non-COVID-19 patients from the First Affiliated Hospital of Henan University

| 30 | male   | 59  | - | Clinical symptoms | Cardiovascular disease |
|----|--------|-----|---|-------------------|------------------------|
| 31 | female | 47  | - | Clinical symptoms | Critical illness       |
| 32 | female | 51  | - | Clinical symptoms | Orthopedic disease     |
| 33 | female | 54  | - | Clinical symptoms | Cardiovascular disease |
| 34 | female | 53  | - | Clinical symptoms | Cardiovascular disease |
| 35 | female | 53  | - | Clinical symptoms | Cardiovascular disease |
| 36 | female | 50  | - | Clinical symptoms | Cardiovascular disease |
| 37 | male   | 53  | - | Clinical symptoms | General disease        |
| 38 | female | 67  | - | Clinical symptoms | Cardiovascular disease |
| 39 | female | 56  | - | Clinical symptoms | General disease        |
| 40 | male   | 70  | - | Clinical symptoms | Emergency disease      |
| 41 | male   | 79  | - | Clinical symptoms | Disease of the aged    |
| 42 | female | 70  | - | Clinical symptoms | Cardiovascular disease |
| 43 | female | 60  | - | Clinical symptoms | Neurological disease   |
| 44 | male   | 49  | - | Clinical symptoms | Pulmonary disease      |
| 45 | male   | 82  | - | Clinical symptoms | General disease        |
| 46 | male   | 37  | - | Clinical symptoms | Cardiovascular disease |
| 47 | female | 84  | - | Clinical symptoms | Digestive disease      |
| 48 | male   | 100 | - | Clinical symptoms | Neurological disease   |
| 49 | male   | 92  | - | Clinical symptoms | Endocrine disease      |
| 50 | female | 66  | - | Clinical symptoms | Neurological disease   |
| 51 | male   | 72  | - | Clinical symptoms | Thoracic disease       |
| 52 | male   | 69  | - | Clinical symptoms | Digestive disease      |
| 53 | female | 56  | - | Clinical symptoms | Skin disease           |
| 54 | female | 35  | - | Clinical symptoms | Cardiovascular disease |
| 55 | female | 68  | - | Clinical symptoms | Cardiovascular disease |
| 56 | female | 74  | - | Clinical symptoms | Cardiovascular disease |
| 57 | male   | 80  | - | Clinical symptoms | Emergency disease      |
| 58 | female | 81  | - | Clinical symptoms | Cardiovascular disease |
| 59 | female | 82  | - | Clinical symptoms | Surgical disease       |
| 60 | male   | 70  | - | Clinical symptoms | Emergency disease      |
| 61 | male   | 59  | - | Clinical symptoms | Cardiovascular disease |

| 62 | male   | 81 | - | Clinical symptoms | Cardiovascular disease |
|----|--------|----|---|-------------------|------------------------|
| 63 | female | 21 | - | Clinical symptoms | Digestive disease      |
| 64 | female | 83 | - | Clinical symptoms | Cardiovascular disease |
| 65 | male   | 79 | - | Clinical symptoms | Neurological disease   |
| 66 | male   | 49 | - | Clinical symptoms | Neurological disease   |
| 67 | male   | 75 | - | Clinical symptoms | Neurological disease   |
| 68 | male   | 81 | - | Clinical symptoms | Cardiovascular disease |
| 69 | male   | 69 | - | Clinical symptoms | Respiratory disease    |
| 70 | male   | 63 | - | Clinical symptoms | Respiratory disease    |
| 71 | male   | 76 | - | Clinical symptoms | Nephrosis              |
| 72 | male   | 78 | - | Clinical symptoms | Surgical diseases      |
| 73 | male   | 59 | - | Clinical symptoms | Cardiovascular disease |
| 74 | male   | 43 | - | Clinical symptoms | Cardiovascular disease |
| 75 | female | 88 | - | Clinical symptoms | Cardiovascular disease |
| 76 | male   | 50 | - | Clinical symptoms | Cardiovascular disease |
| 77 | male   | 73 | - | Clinical symptoms | General disease        |
| 78 | female | 53 | - | Clinical symptoms | Cardiovascular disease |
| 79 | female | 54 | - | Clinical symptoms | Cardiovascular disease |
| 80 | female | 30 | - | Clinical symptoms | Cardiovascular disease |
| 81 | male   | 70 | - | Clinical symptoms | Pulmonary disease      |
| 82 | female | 54 | - | Clinical symptoms | Cardiovascular disease |
| 83 | female | 65 | - | Clinical symptoms | Cardiovascular disease |
| 84 | male   | 45 | - | Clinical symptoms | Cardiovascular disease |
| 85 | male   | 85 | - | Clinical symptoms | Cardiovascular disease |
| 86 | female | 85 | - | Clinical symptoms | Cardiovascular disease |
| 87 | male   | 78 | - | Clinical symptoms | Nephrosis              |
| 88 | male   | 38 | - | Clinical symptoms | Surgical disease       |
| 89 | female | 66 | - | Clinical symptoms | Neurological disease   |
| 90 | male   | 57 | - | Clinical symptoms | Cardiovascular disease |
| 91 | male   | 72 | - | Clinical symptoms | Neurological disease   |
| 92 | female | 80 | - | Clinical symptoms | Respiratory diseases   |
| 93 | female | 67 | - | Clinical symptoms | Cardiovascular disease |

| 94  | female | 59 | - | Clinical symptoms | Surgical disease       |
|-----|--------|----|---|-------------------|------------------------|
| 95  | male   | 50 | - | Clinical symptoms | General disease        |
| 96  | male   | 76 | - | Clinical symptoms | Cardiovascular disease |
| 97  | male   | 54 | - | Clinical symptoms | Infectious disease     |
| 98  | male   | 76 | - | Clinical symptoms | Cardiovascular disease |
| 99  | male   | 57 | - | Clinical symptoms | Neurological disease   |
| 100 | male   | 15 | - | Clinical symptoms | Paediatric disease     |
| 101 | female | 85 | - | Clinical symptoms | Digestive disease      |
| 102 | male   | 68 | - | Clinical symptoms | Surgical disease       |
| 103 | male   | 81 | - | Clinical symptoms | Cardiovascular disease |
| 104 | female | 52 | - | Clinical symptoms | Disease of the aged    |
| 105 | male   | 30 | - | Clinical symptoms | Emergency disease      |
| 106 | female | 75 | - | Clinical symptoms | Digestive disease      |
| 107 | female | 60 | - | Clinical symptoms | Surgical disease       |
| 108 | female | 75 | - | Clinical symptoms | Digestive disease      |
| 109 | female | 71 | - | Clinical symptoms | Disease of the aged    |
| 110 | female | 76 | - | Clinical symptoms | Neurosurgical disease  |
| 111 | male   | 80 | - | Clinical symptoms | Emergency disease      |
| 112 | male   | 29 | - | Clinical symptoms | Cardiovascular disease |
| 113 | female | 39 | - | Clinical symptoms | Gynecological disease  |
| 114 | male   | 49 | - | Clinical symptoms | Neurological disease   |
| 115 | male   | 75 | - | Clinical symptoms | Neurological disease   |
| 116 | female | 73 | - | Clinical symptoms | Cardiovascular disease |
| 117 | male   | 79 | - | Clinical symptoms | Neurological disease   |
| 118 | female | 61 | - | Clinical symptoms | Gynecological disease  |
| 119 | female | 79 | - | Clinical symptoms | Cardiovascular disease |
| 120 | male   | 65 | - | Clinical symptoms | Disease of the aged    |
| 121 | male   | 68 | - | Clinical symptoms | Surgical disease       |
| 122 | female | 73 | - | Clinical symptoms | Cardiovascular disease |
| 123 | male   | 60 | - | Clinical symptoms | Cardiovascular disease |
| 124 | female | 65 | - | Clinical symptoms | Orthopedic disease     |
|     |        | 70 |   |                   | IgM false positive     |
| 125 | male   | 70 | - | Clinical symptoms |                        |

| 126 | male   | 82 | - | Clinical symptoms | Disease of the aged    |
|-----|--------|----|---|-------------------|------------------------|
| 127 | female | 73 | - | Clinical symptoms | Cardiovascular disease |
| 128 | male   | 81 | - | Clinical symptoms | Cardiovascular disease |
| 129 | male   | 90 | - | Clinical symptoms | Cardiovascular disease |
| 130 | male   | 49 | - | Clinical symptoms | Digestive disease      |
| 131 | female | 54 | - | Clinical symptoms | Cardiovascular disease |
| 132 | male   | 64 | - | Clinical symptoms | Cardiovascular disease |
| 133 | male   | 64 | - | Clinical symptoms | Cardiovascular disease |
| 134 | male   | 64 | - | Clinical symptoms | General disease        |
| 135 | male   | 75 | - | Clinical symptoms | Rehabilitation disease |
| 136 | male   | 75 | - | Clinical symptoms | Rehabilitation disease |
| 137 | female | 23 | - | Clinical symptoms | Surgical disease       |
| 138 | male   | 37 | - | Clinical symptoms | Urological disease     |
| 139 | male   | 41 | - | Clinical symptoms | Endocrine disease      |
| 140 | female | 3  | - | Clinical symptoms | Paediatric disease     |
| 141 | female | 69 | - | Clinical symptoms | Neurological disease   |
| 142 | male   | 78 | - | Clinical symptoms | Urological disease     |
| 143 | male   | 71 | - | Clinical symptoms | Neurological disease   |
| 144 | male   | 49 | - | Clinical symptoms | Endocrine disease      |
| 145 | male   | 65 | - | Clinical symptoms | Cardiovascular disease |
| 146 | female | 86 | - | Clinical symptoms | Respiratory disease    |
| 147 | female | 62 | - | Clinical symptoms | Digestive disease      |
| 148 | female | 20 | - | Clinical symptoms | Obstetric disease      |
| 149 | female | 86 | - | Clinical symptoms | Respiratory disease    |
| 150 | male   | 33 | - | Clinical symptoms | Nephrosis              |
| 151 | male   | 76 | - | Clinical symptoms | General disease        |
| 152 | male   | 80 | - | Clinical symptoms | Nephrosis              |
| 153 | male   | 65 | - | Clinical symptoms | Cardiovascular disease |
| 154 | male   | 68 | - | Clinical symptoms | Infectious disease     |
| 155 | male   | 70 | - | Clinical symptoms | Neurological disease   |
| 156 | female | 75 | - | Clinical symptoms | Digestive disease      |
| 157 | female | 85 | - | Clinical symptoms | Cardiovascular disease |

| 158 | male   | 79 | - | Clinical symptoms | General disease                       |
|-----|--------|----|---|-------------------|---------------------------------------|
| 159 | male   | 79 | - | Clinical symptoms | General disease<br>IgM false positive |
| 160 | male   | 50 | - | Clinical symptoms | Neurological disease                  |
| 161 | male   | 37 | - | Clinical symptoms | Rehabilitation disease                |
| 162 | female | 77 | - | Clinical symptoms | Neurological disease                  |
| 163 | male   | 80 | - | Clinical symptoms | Emergency disease                     |
| 164 | female | 60 | - | Clinical symptoms | Orthopedic disease                    |
| 165 | female | 78 | - | Clinical symptoms | Neurological disease                  |
| 166 | female | 57 | - | Clinical symptoms | Surgical disease                      |
| 167 | male   | 80 | - | Clinical symptoms | Emergency disease                     |
| 168 | male   | 80 | - | Clinical symptoms | Emergency disease                     |
| 169 | male   | 80 | - | Clinical symptoms | Emergency disease                     |
| 170 | female | 49 | - | Clinical symptoms | Neurological disease                  |

| No. | Sex    | Age | COVID-19 or not (+/-) | Judgement method  | Notes              |
|-----|--------|-----|-----------------------|-------------------|--------------------|
| 1   | male   | 61  | -                     | Clinical symptoms |                    |
| 2   | female | 39  | -                     | Clinical symptoms |                    |
| 3   | male   | 36  | -                     | Clinical symptoms |                    |
| 4   | female | 32  | -                     | Clinical symptoms |                    |
| 5   | female | 55  | -                     | Clinical symptoms |                    |
| 6   | male   | 44  | -                     | Clinical symptoms |                    |
| 7   | female | 42  | -                     | Clinical symptoms |                    |
| 8   | female | 35  | -                     | Clinical symptoms |                    |
| 9   | female | 26  | -                     | Clinical symptoms | IgM False positive |
| 10  | male   | 28  | -                     | Clinical symptoms |                    |
| 11  | female | 27  | -                     | Clinical symptoms |                    |
| 12  | female | 32  | -                     | Clinical symptoms |                    |
| 13  | female | 30  | -                     | Clinical symptoms |                    |
| 14  | male   | 30  | -                     | Clinical symptoms |                    |
| 15  | female | 41  | -                     | Clinical symptoms |                    |
| 16  | male   | 35  | -                     | Clinical symptoms |                    |
| 17  | male   | 25  | -                     | Clinical symptoms |                    |
| 18  | male   | 25  | -                     | Clinical symptoms |                    |
| 19  | male   | 38  | -                     | Clinical symptoms |                    |
| 20  | female | 24  | -                     | Clinical symptoms |                    |
| 21  | male   | 27  | -                     | Clinical symptoms |                    |
| 22  | female | 26  | -                     | Clinical symptoms |                    |
| 23  | female | 24  | -                     | Clinical symptoms |                    |
| 24  | female | 26  | -                     | Clinical symptoms |                    |
| 25  | female | 35  | -                     | Clinical symptoms |                    |
| 26  | male   | 25  | -                     | Clinical symptoms |                    |
| 27  | male   | 32  | -                     | Clinical symptoms |                    |
| 28  | male   | 26  | -                     | Clinical symptoms |                    |

Table S6 Clinical sample information of 51 normal persons from the Joint National Laboratory forAntibody Drug Engineering of Henan University

| 29 | female | 27 | - | Clinical symptoms |  |
|----|--------|----|---|-------------------|--|
| 30 | female | 25 | - | Clinical symptoms |  |
| 31 | female | 25 | - | Clinical symptoms |  |
| 32 | female | 25 | - | Clinical symptoms |  |
| 33 | male   | 25 | - | Clinical symptoms |  |
| 34 | female | 29 | - | Clinical symptoms |  |
| 35 | female | 27 | - | Clinical symptoms |  |
| 36 | male   | 26 | - | Clinical symptoms |  |
| 37 | female | 25 | - | Clinical symptoms |  |
| 38 | female | 24 | - | Clinical symptoms |  |
| 39 | female | 27 | - | Clinical symptoms |  |
| 40 | female | 29 | - | Clinical symptoms |  |
| 41 | female | 28 | - | Clinical symptoms |  |
| 42 | female | 26 | - | Clinical symptoms |  |
| 43 | female | 24 | - | Clinical symptoms |  |
| 44 | female | 26 | - | Clinical symptoms |  |
| 45 | female | 31 | - | Clinical symptoms |  |
| 46 | male   | 26 | - | Clinical symptoms |  |
| 47 | male   | 25 | - | Clinical symptoms |  |
| 48 | male   | 24 | - | Clinical symptoms |  |
| 49 | male   | 31 | - | Clinical symptoms |  |
| 50 | male   | 34 | - | Clinical symptoms |  |
| 51 | male   | 34 | - | Clinical symptoms |  |

|     |        |     | 0 1                   |                  |       |
|-----|--------|-----|-----------------------|------------------|-------|
| No. | Sex    | Age | COVID-19 or not (+/-) | Judgement method | Notes |
| 1   | male   | 39  | -                     | RT-PCR           |       |
| 2   | male   | 37  | -                     | RT-PCR           |       |
| 3   | female | 30  | -                     | RT-PCR           |       |
| 4   | female | 37  | -                     | RT-PCR           |       |
| 5   | female | 29  | -                     | RT-PCR           |       |
| 6   | female | 28  | -                     | RT-PCR           |       |
| 7   | male   | 51  | -                     | RT-PCR           |       |
| 8   | male   | 32  | -                     | RT-PCR           |       |
| 9   | female | 29  | -                     | RT-PCR           |       |
| 10  | female | 32  | -                     | RT-PCR           |       |
| 11  | female | 31  | -                     | RT-PCR           |       |
| 12  | female | 26  | -                     | RT-PCR           |       |
| 13  | female | 30  | -                     | RT-PCR           |       |
| 14  | female | 34  | -                     | RT-PCR           |       |
| 15  | male   | 34  | -                     | RT-PCR           |       |
| 16  | female | 44  | -                     | RT-PCR           |       |
| 17  | male   | 29  | -                     | RT-PCR           |       |
| 18  | female | 28  | -                     | RT-PCR           |       |
| 19  | male   | 47  | -                     | RT-PCR           |       |
| 20  | male   | 36  | -                     | RT-PCR           |       |
| 21  | male   | 39  | -                     | RT-PCR           |       |
| 22  | female | 34  | -                     | RT-PCR           |       |
| 23  | female | 36  | -                     | RT-PCR           |       |
| 24  | male   | 49  | -                     | RT-PCR           |       |
| 25  | female | 31  | -                     | RT-PCR           |       |
| 26  | female | 34  | -                     | RT-PCR           |       |

Table S7 Clinical samples 26 non-COVID-19 persons from medical workers who supported Wuhan during the epidemic

#### **10** Results for Table 1 in manuscript

The detection results of samples from the Fire God Mountain Hospital are shown in figure S10-S12 and table S6. A total of 106 specimens, of which 90 were positive for COVID-19 and 16 were negative by RT-PCR. There were 87 single positive results, 77 IgG positive results, 75 IgM positive samples, 63 double positive results of IgG and IgM, 3 false positives for IgM (number H126, H172 and H177) and 5 false negative (number H13, H112, H141, H173 and H184).

| Sample<br>number | HI<br>COVID-19<br>IgG/IgM    | H2<br>COVID-19<br>IgG/IgM     | H3<br>COVID-19<br>IgG/IgM   | H4<br>COVID-19<br>IgG/IgM      | H5<br>COVID-19<br>IgG/IgM     | H6<br>COVID-19<br>IgG/IgM    | 147<br>COVID-19<br>IgG/IgM  | H8<br>COVID-19<br>IgG/IgM               | H9<br>COVID-19<br>IgG/IgM     | HIO<br>COVID-19<br>IgG/igM  |
|------------------|------------------------------|-------------------------------|-----------------------------|--------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------------------|-------------------------------|-----------------------------|
|                  | C G M                        | C G M                         | C G M                       | C L<br>G M                     | C G M                         | C G M                        | C G M                       | C I<br>G M                              | C<br>G<br>M                   | C G<br>G M                  |
|                  |                              | 0                             |                             |                                |                               | 0                            | 0                           | 0                                       | 6                             | 6                           |
|                  | HII<br>COVID-19<br>IgG/IgM   | HI2<br>COVID-19<br>IgG/IgM    | HI3<br>COVID-19<br>IgG/IgM  | H(F<br>COVID-19<br>IgG/IgM     | HIS<br>COVID-19<br>IgG/IgM    | HI6<br>COVID-19<br>IgG/IgM   | HI7<br>COVID-19<br>IgG/IgM  | (118<br>COVID-19<br>IgG/IgM             | HIP<br>COVID-19<br>IgG/IgM    | U20<br>COVID-19<br>IgG/IgM  |
|                  | C G M                        | C G M                         | C C<br>G<br>M               | C I<br>G M                     | C L<br>G L<br>M               | C —<br>G M                   | C -<br>G M                  | C G<br>M                                | C G<br>G M                    | C -<br>G M                  |
|                  | 0                            | 0                             | 0                           | 0                              | 0                             | 0                            | 0                           | 0                                       | 0                             | 0                           |
|                  | Kovid-19                     | Xore<br>COVID-19<br>IgG/IgM   | HZZ<br>COVID-19<br>IgG/IgM  | COVID-19<br>IgG/IgM            | H25<br>COVID-19<br>IgG/IgM    | M26<br>COVID-19<br>IgG/IgM   | HM<br>COVID-19<br>IgG/IgM   | H 28<br>COVID-19<br>IgG/IgM             | M29<br>COVID-19<br>IgG/IgM    | 130<br>COVID-19<br>IgG/IgM  |
|                  | C<br>G<br>M                  | C C<br>G<br>M                 | C<br>G<br>M                 | C -<br>G M                     | C G M                         | C G M                        | C G<br>M                    | C G<br>M                                | C G<br>G M                    | C G<br>G M                  |
|                  | 3                            |                               | 0                           | 9                              | 0                             | 0                            | 0                           | 0                                       | 0                             | 0                           |
|                  | H/131<br>COVID-19<br>IgG/IgM | /-//52<br>COVID-19<br>IgG/IgM | HI03<br>COVID-19<br>IgG/IgM | 1-1 104<br>COVID-19<br>IgG/IgM | 14/0j-<br>COVID-19<br>IgG/IgM | /1/06<br>COVID-19<br>IgG/IgM | COVID-19<br>IgG/IgM         | HINS<br>COVID-19<br>IgG/IgM             | I-/103<br>COVID-19<br>IgG/IgM | HIID<br>COVID-19<br>IgG/IgM |
|                  | C –<br>G M                   | C<br>G                        | C<br>G                      | C G M                          | C I<br>G M                    | C<br>G<br>M                  | C<br>G<br>M                 | C<br>G<br>M                             | C<br>G<br>M                   | C<br>G<br>M                 |
|                  | 0                            |                               |                             |                                | 0                             |                              |                             | 0                                       | 0                             | 0)                          |
|                  | HIII<br>COVID-19<br>IgG/IgM  | H//2<br>COVID-19<br>IgG/IgM   | HII3<br>COVID-19<br>IgG/IgM | Frink<br>COVID-19<br>IgG/IgM   | HAF<br>COVID-19<br>IgG/IgM    | H116<br>COVID-19<br>IgG/IgM  | HIIN<br>COVID-19<br>IgG/IgM | F148<br>COVID-19<br>IgG/IgM             | HI19<br>COVID-19<br>IgG/IgM   | H/26<br>COVID-19<br>IgG/IgM |
|                  | C –<br>G M                   | C –<br>G M                    | C I<br>G M                  | C I<br>G M                     | C –<br>G –<br>M               | C –<br>G M                   | C –<br>G M                  | C U U U U U U U U U U U U U U U U U U U | C T<br>G M                    | C –<br>G M                  |
|                  | 0                            | 0                             |                             |                                |                               | 0                            | 0                           |                                         | 0                             | 0                           |
|                  | HIZ<br>COVID-19<br>IgG/IgM   | HINZ<br>COVID-19<br>IgG/IgM   | HI23<br>COVID-19<br>IgG/IgM | H/24<br>COVID-19<br>IgG/IgM    | H/lef<br>COVID-19<br>IgG/IgM  | HI2<br>COVID-19<br>IgG/IgM   | Hrz7<br>COVID-19<br>IgG/IgM | HIN8<br>COVID-19<br>IgG/IgM             | Frrag<br>COVID-19<br>IgG/IgM  | MAD<br>COVID-19<br>IgG/IgM  |
|                  | C G M                        | C G<br>M                      | C G M                       | C -<br>G M                     | C G<br>M                      | C G M                        | C G M                       | C G M                                   | C G M                         | C<br>G<br>M                 |
|                  |                              | 9                             | 0                           | 0                              | 0                             | 0                            | 0                           | 0                                       | 0                             | 0                           |

Figure S10 Detection result of some samples from the Fire God Mountain Hospital

| Sample<br>number | Hibi<br>COVID-19<br>IgG/IgM | 11132<br>COVID-19<br>IgG/IgM | H133<br>COVID-19<br>IgG/IgM | WI74<br>COVID-19<br>IgG/IgM | 1-1135<br>COVID-19<br>IgG/IgM | H  36<br>COVID-19<br>IgG/IgM | HI37<br>COVID-19<br>IgG/IgM       | H138<br>COVID-19<br>IgG/IgM      | 1/13<br>COVID-19<br>IgG/IgM | UI40<br>COVID-19<br>IgG/IgM |
|------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------|-----------------------------------|----------------------------------|-----------------------------|-----------------------------|
|                  | C G M                       | C G M                        | C L<br>G M                  | COM                         | CGM                           | CGM                          | C G M                             | C G M                            | CGM                         | C G M                       |
|                  | 0                           | 0                            | 0                           | 0                           | 0                             | 0                            | 0                                 | 0                                | 0                           | 0                           |
|                  | HILL<br>COVID-19<br>IgG/IgM | COVID-19<br>IgG/IgM          | UI43<br>COVID-19<br>IgG/IgM | MU44<br>COVID-19<br>IgG/IgM | H 145<br>COVID-19<br>IgG/IgM  | VI46<br>COVID-19<br>IgG/IgM  | UIU<br>COVID-19<br>IgG/IgM        | WI49<br>COVID-19<br>IgG/IgM      | MI50<br>COVID-19<br>IgG/IgM |                             |
|                  | C G M                       |                              |                             |                             | C C C C                       | G M                          | G H                               |                                  | C G M                       |                             |
|                  | 0                           |                              | 0                           |                             |                               |                              |                                   | 0                                | 0                           |                             |
|                  | COVID-19<br>IgG/IgM         | Hise<br>COVID-19<br>IgG/IgM  | HI61<br>COVID-19<br>IgG/IgM | H162<br>COVID-15<br>IgG/IgM | H163<br>COVID-15<br>IgG/IgM   | HI64<br>COVID-19<br>IgG/IgM  | HI65<br>COVID-19<br>IgG/IgM       | V/166<br>COVID-19<br>IgG/IgM     | HIG7<br>COVID-19<br>IgG/IgM | HIB9<br>COVID-19<br>IgG/IgM |
|                  | C<br>G<br>M                 | C<br>G<br>M                  | C<br>G<br>M                 | C G<br>G M                  | C =<br>G<br>M                 | C<br>G<br>M                  | C<br>G<br>M                       | C<br>G<br>M                      | C<br>G<br>M                 | C G M                       |
|                  |                             |                              |                             | 0                           | 0                             |                              |                                   | 0                                |                             |                             |
|                  | H169<br>COVID-19<br>IgG/IgM | H 170<br>COVID-19<br>IgG/IgM | 14171<br>COVID-1<br>IgG/IgM |                             | 72 H                          | 173 F<br>ID-19 COV           | //74 +<br>/ID-19 CON<br>6/IgM IgC | /175- 1<br>/1D-19 CC<br>5/1gM Ig | -/176<br>DVID-19 C<br>G/IgM | H177<br>OVID-19<br>IgG/IgM  |
|                  | C G M                       | C G M                        | C<br>G<br>M                 | C G M                       | C<br>G<br>M                   | C .<br>G<br>M                | C<br>G<br>M                       | C<br>G<br>M                      |                             |                             |
|                  |                             |                              |                             | 0                           |                               |                              | 0                                 |                                  |                             |                             |
|                  | HI78<br>COVID-19            | H(79<br>COVID-19<br>IaG/IaM  | COVID-1                     |                             |                               | 8 2 41<br>D-19 COV           | 83 (4<br>/1D-19 CO                | VID-19 C                         | 4185<br>OVID-19             |                             |
|                  | C G M                       | C G<br>G M                   | C G M                       | CGM                         | CGM                           | C<br>G<br>M                  | C<br>G<br>M                       | C G M                            |                             |                             |
|                  | 0                           | 0                            | 0                           |                             |                               |                              | 0                                 |                                  | <b>O</b> •                  |                             |

Figure S11 Detection result of some samples from the Fire God Mountain Hospital



Figure S12 Auxiliary judgment result of samples H1-H30 from the Fire God Mountain Hospital

| No. | H1   | H2   | H3   | H4   | H5   | H6   | H7   | H8   | H9   | H10  |
|-----|------|------|------|------|------|------|------|------|------|------|
| lgG | -    | +++  | -    | -    | ++   | +++  | ++   | +++  | +++  | ++   |
| lgM | -    | +    | ++   | -    | +    | -    | +    | -    | ++   | +    |
| No. | H11  | H12  | H13  | H14  | H15  | H16  | H17  | H18  | H19  | H20  |
| lgG | +++  | ++   | -    | +++  | +++  | +++  | +++  | -    | ++   | ++   |
| lgM | ++   | ++   | -    | +    | +    | ++   | +    | -    | +++  | -    |
| No. | H21  | H22  | H23  | H24  | H25  | H26  | H27  | H28  | H29  | H30  |
| lgG | ++   | -    | +++  | +++  | +++  | +++  | +++  | -    | +    | +++  |
| lgM | +    | -    | ++   | -    | ++   | +    | ++   | -    | -    | +    |
| No. | H101 | H102 | H103 | H104 | H105 | H106 | H107 | H108 | H109 | H110 |
| lgG | ++   | +++  | ++   | +++  | -    | ++   | +    | ++   | -    | +++  |
| lgM | ++   | ++   | +    | ++   | +++  | -    | +    | ++   | -    | ++   |
| No. | H111 | H112 | H113 | H114 | H115 | H116 | H117 | H118 | H119 | H120 |
| lgG | ++   | -    | +++  | +++  | +++  | ++   | +++  | +++  | +++  | +    |
| lgM | +    | -    | +++  | +++  | +    | ++   | ++   | ++   | ++   | +    |
| No. | H121 | H122 | H123 | H124 | H125 | H126 | H127 | H128 | H129 | H130 |
| lgG | +++  | +++  | +++  | -    | +++  | -    | +++  | +++  | ++   | +++  |
| lgM | +++  | +    | ++   | +    | +++  | +    | +++  | ++   | -    | ++   |
| No. | H131 | H132 | H133 | H134 | H135 | H136 | H137 | H138 | H139 | H140 |
| lgG | +++  | +++  | ++   | ++   | +++  | +++  | +    | +++  | +++  | +++  |
| lgM | +++  | ++   | ++   | ++   | ++   | +++  | ++   | +++  | ++   | ++   |
| No. | H141 | H142 | H143 | H144 | H145 | H146 | H147 | H149 | H150 | H159 |
| lgG | -    | +    | -    | -    | +++  | -    | +++  | +    | +++  | -    |
| lgM | -    | +++  | -    | -    | +++  | +    | +++  | +    | +++  | -    |
| No. | H160 | H161 | H162 | H163 | H164 | H165 | H166 | H167 | H168 | H169 |
| lgG | +++  | +++  | +++  | +    | +++  | +    | +++  | +++  | -    | +++  |
| lgM | +++  | ++   | +    | +    | ++   | -    | +++  | +++  | +    | -    |
| No. | H170 | H171 | H172 | H173 | H174 | H175 | H176 | H177 | H178 | H179 |
| lgG | +++  | ++   | -    | -    | ++   | -    | -    | -    | -    | -    |
| lgM | ++   | -    | ++   | -    | +++  | -    | +    | ++   | -    | -    |
| No. | H180 | H181 | H182 | H183 | H184 | H185 |      |      |      |      |
| lgG | +++  | +    | +++  | -    | -    | ++   |      |      |      |      |
| lgM | +++  | ++   | +    | -    | -    | -    |      |      |      |      |

Table S8 Judgement result of Fire God Mountain Hospital

The detection results of samples from the First Affiliated Hospital of Henan University are shown in figure S13-S18 and table S9. There are 3 false IgM positive samples (number 27, 124, 159) of all the 170 negative samples by clinical symptoms.



Figure S13 Detection result of some non-COVID infector from the Fire God Mountain Hospital



Figure S14 Detection result of some non-COVID infector from the Fire God Mountain Hospital



Figure S15 Detection result of some non-COVID infector from the Fire God Mountain Hospital



Figure S16 Detection result of some non-COVID infector from the Fire God Mountain Hospital



Figure S17 Auxiliary judgment result of negative COVID-19 samples 1-90



Figure S18 Auxiliary judgment result of negative COVID-19 samples 91-170

| No. | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | +   | -   | -   | -   |
| No. | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| lgG |     |     |     |     |     |     |     |     |     |     |
| lgM |     |     |     |     |     |     |     |     |     |     |

Table S9 Judgement result of non-COVID-19 samples

|     |     |     |     |     |     | -   |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| No. | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | +   | -   | -   | -   | -   | -   | -   |
| No. | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| No. | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | +   | -   |
| No. | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 |
| lgG | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| lgM | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |

The detection results of 51 normal person samples from the Joint National Laboratory for Antibody Drug Engineering of Henan University are shown in figure S19 and table S10. There is one false IgM positive sample (number 9) of all the 51 normal persons. The testing process and results are photographed in the clean bench, so the photographing effect is not good, but it does not affect the interpretation of the results. Sample No. 23 was not tested and result collected at the same time with other samples. We combined the results.

| COVID-19<br>IgG/IgM<br>C<br>G<br>M | COVID-19<br>IgG/IgM<br>C<br>G<br>M | COVID-19<br>IgG/IgM<br>C<br>G<br>M  | COVID-19<br>IgG/IgM<br>C<br>G<br>M      | COVID-19<br>IgG/IgM<br>C<br>G<br>M | 6<br>COVID-19<br>IgG/IgM<br>G<br>M             | C C C M                                                       | 8<br>covid-19<br>lgG/gM                  | YID-19<br>GrigM<br>C<br>G<br>M           | о<br>ир-19<br>Злам                 |
|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|
| 0                                  | 0                                  | 6                                   | 6                                       | 0                                  |                                                |                                                               | 6                                        | 0                                        | •                                  |
|                                    |                                    | 19 COVID-1<br>19 GOVID-1<br>19 GARM | Ig<br>COVID-1<br>IgG/IgM<br>C<br>G<br>M | COVID-1<br>IgG/IgM<br>C<br>G<br>M  | rig<br>Ig<br>COVID-1<br>IgG/IgM<br>C<br>G<br>M | IP<br>COVID-15<br>IgG/IgM<br>C<br>G<br>M                      | /2<br>COVID-19<br>IgG/IgM<br>C<br>G<br>M | lq<br>COVID-19<br>IgG/igM<br>C<br>G<br>M | COVID-19<br>IgGAgM<br>C<br>G<br>M  |
| C<br>G<br>M                        |                                    | COVID-19<br>IgG/IgM<br>C<br>G<br>M  | CVID-19<br>IgGrIgM<br>C<br>G<br>M       | COVID-19<br>IgG/IgM<br>C<br>G<br>M | 2-6<br>COVID-19<br>IgG/IgM<br>C<br>G<br>M      | 2-7<br>COVID-19<br>IgG/IgM<br>C<br>G<br>M                     | 2.ÿ<br>COVID-19<br>IgGIgM<br>C<br>G<br>M | COVID-19<br>IgG/IgM<br>C<br>G<br>M       | SOVID-19<br>IgG/IgM<br>C<br>G<br>M |
|                                    | -19 covno-<br>igangk<br>C F<br>M   | 10 COVID-<br>IgGight<br>C G F<br>M  |                                         | COVID-1<br>IgGAgM<br>C C<br>M      | G G                                            | e covib-te<br>igGigm<br>C C C C C C C C C C C C C C C C C C C | 37<br>COVID-19<br>IgG/igM<br>C<br>G<br>M | COVID-19<br>Igg/igM<br>C<br>G<br>M       | COVID-19<br>IgG/IgM<br>C C M<br>M  |
| COVID-11<br>IgG31gM<br>C<br>G<br>M | covid-19<br>lgGigM<br>C<br>G<br>M  | COVID-19<br>IgGigM<br>C F G<br>M    |                                         | COVID-19<br>IgG/IgM<br>E<br>G<br>M | 416<br>ovib-19<br>GG/gM<br>F<br>C<br>G<br>M    | 47<br>VID-19<br>GrigM<br>= C =<br>M                           | D-19<br>GM<br>19G/IgM<br>C<br>G<br>M     | C G M                                    | COVID-19<br>IgGAgM<br>C<br>G<br>M  |

Figure S19 Detection results of normal person samples

| No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----|----|----|----|----|----|----|----|----|----|----|
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| IgM | -  | -  | -  | -  | -  | -  | -  | -  | +  | -  |
| No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| IgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| lgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| lgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| IgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 51 |    |    |    |    |    |    |    |    |    |
| lgG | -  |    |    |    |    |    |    |    |    |    |
| IgM | -  |    |    |    |    |    |    |    |    |    |

Table S10 Judgement result of 51 normal person samples

The detection results of blood samples from 26 medical workers are shown in figure S20 and table S11. The detection were completed with finger blood by themselves in quarantine hotel. Blood and dilution was added excessively and leading to unclean detection background, but it does not affect the interpretation of the results.



Figure S20 Detection results of 26 blood samples from 26 medical workers

| No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----|----|----|----|----|----|----|----|----|----|----|
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| lgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| lgG | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| lgM | -  | -  | -  | -  | -  | -  | -  | -  | -  | -  |
| No. | 21 | 22 | 23 | 24 | 25 | 26 |    |    |    |    |
| lgG | -  | -  | -  | -  | -  | -  |    |    |    |    |
| lgM | -  | -  | -  | -  | -  | -  |    |    |    |    |

Table S11 Judgement result of 26 blood samples from 26 medical workers

#### 11 Preparation methods of conjugate pad and reaction pad

The preparation of conjugate pad and sample pad in the lateral flow kit is very important, including the raw materials used. In addition to what is shown in the manuscript, we also the method of kit and add it to the supplemental materials.

**Preparation of conjugate pad**: The labeled proteins was resuspended in working solution (10 mM PBS pH 7.4 containing 0.05% Tween 20, 1% BSA, 5% sucrose, and 5% trehalose), and sprayed with rate of 8μL/min by dispense platform (Shanghai Jiening Biotechnology Co., Ltd., XYZ3010) at room temperature, and dry for 12 hours at 37°C.

**Preparation of reaction pad**: The anti-human IgG (Fapon Biotech Inc. 20200221), anti-human IgM (Fapon Biotech Inc. 20180221-2) and anti-His antibody (Luoyang Baiaitong Experimental materials center, C010106) was diluted to 4 mg/mL, 4 mg/mL and 1mg/mL by PBS (10mM, pH7.4), respectively, and spraying onto G test line, M test line and control line of nitrocellulose membrane at room temperature, and dry for 6 hours at 37°C.