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Table S1. Values of parameters used for numerical simulations. 

Parameters Value 

Viscosity of oil (ηcp) 30 mPa∙s 

Density of oil (ρcp) 880 kg/m3 

Viscosity of water (ηdp) 1 mPa∙s 

Density of water ρdp 1000 kg/m3 

Interfacial tension (γ) 8 mN/m (due to the presence of surfactant) 

Inner diameter of needle (Dneedle) 60 µm 
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Figure S1. Simulation results for droplet size vs flow rate of the dispersed phase. 
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Figure S2. Simulation results for droplet size vs flow field velocity 
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Figure S3. Simulation results for droplet size vs interfacial tension 
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Figure S4. Schematic of the revolving needle. 

 

The microdroplet production method used in our platform can be simplified to the case of droplet 

breakup in T-junction microfluidics channel. In this model, droplet breakup should occur when the 

drag force applied on the emerging droplet by the revolving needle overcomes the interfacial tension 

resisting deformation of the droplet1. The dispersed phase inertia is negligible due to its relatively small 

Weber’s number. The speed of the continuous phase flow vcp induce by the revolving needle can be 

estimated as: 

𝑣𝑐𝑝 =
2𝜋𝑟𝛺
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=
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30
 (S1) 

where Ω (RPM) is the revolving speed of the needle, and r is the distance from the needle tip to the 

axis of revolution (see Fig. S4). In the situation with low Reynolds number (𝑅𝑒 =
𝜌𝑐𝑝𝑣𝑐𝑝𝐷𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜂𝑐𝑝
≤  1), 

the drag force (Fdrag) exerted on a spherical droplet is a modification of the Stokes formula and can be 

expressed as: 

𝐹𝑑𝑟𝑎𝑔 = 3𝜋𝜂𝑐𝑝(𝑣𝑐𝑝 − 𝑣𝑑𝑟𝑜𝑝𝑙𝑒𝑡)𝐷𝑑𝑟𝑜𝑝𝑙𝑒𝑡 (S2) 

where ηcp is the viscosity of the continuous phase liquid, vdroplet is the droplet velocity, and Ddroplet is 

the droplet diameter. The capillary number Ca characterizing the relative importance of viscous 
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stresses and capillary pressure, and can be defined in terms of the continuous phase flow field that acts 

to deform the droplet: 

𝐶𝑎 =
𝜂𝑐𝑝𝑣𝑐𝑝

𝛾
 (S3) 

where γ is the interfacial tension. The interfacial tension would oppose the detachment of the droplet, 

and the interfacial tension force Fγ in our case can be calculated as:1 

𝐹𝛾 = 𝜋𝛾
𝐷𝑛𝑒𝑒𝑑𝑙𝑒

2

𝐷𝑑𝑟𝑜𝑝𝑙𝑒𝑡
 (S4) 

where Dneedle is the inner diameter of the needle used for the dispersed phase. Solving Equations S2-

S4, we therefore can estimate of the droplet diameter Ddroplet as: 

𝐷𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = √
𝐷𝑛𝑒𝑒𝑑𝑙𝑒

2

3𝐶𝑎(1 − 𝛽)
 (S5) 

where β is the ratio between vdroplet and vcp (i.e. β = vdroplet/vcp). Equation S5 indicates that the droplet 

diameter resulting from unconfined breakup is a function of the capillary number Ca, as well as the 

inner diameter of the needle. 
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Figure S5. Illustration of the revolving needle emulsion generator (RNEG) for double emulsification. 

a) Actual image of the RNEG for double emulsion setup. b) Generation process for double 

emulsification in observing cuvette. The inset shows enlarged production of double emulsification 

Scale bar is 500 µm. c) Zoomed-in schematic representation of the co-axis emulsification setup. d) 

Sequential snapshots showing the formation of w/o/w microdroplets using the RNEG (needle tip 

moves from right to left). 
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Figure S6. Production of EGaIn microdroplets using the RNEG. a) Images taken from a high-speed 

camera showing the production of liquid metal microdroplets at different flow rates. b) Plot of droplet 

diameter Ddroplet vs Q. The inset image shows EGaIn droplet produced under the condition of at Ω = 

3000 RPM and Q = 40 µL/min. 
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Figure S7. Sequential snapshots showing the jetting of PEGDA solution (Ω = 3000 RPM and Q = 200 

µL/min). Needle tip moves from right to left. 
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Table S2. Comparation of typical off-chip microdroplets generation techniques. 

Technique Throughput 
Droplet 

diameter (µm) 
Liquid 

Ref (in main 

manuscript) 

Centrifuges Noncontinuous ~50~100  Aqueous droplets 6, 7 

Capillary-based 

axisymmetric co-

flowing device 

0.1-2 µL/min ~30-230  Aqueous droplets 8 

Spinning Conical 

Frustum 
20-300 µL/min ~100-450  

Aqueous 

droplets; EGaIn; 

Hydrogel particle 

9 

Off-the-shelf 20-200 µL/min ~170-400  PDMS droplets 10-12 

Membrane-enabled Noncontinuous ~25-200  
Porous Silica 

Microparticles 
13 

Cross-interface 1-500nL/s ~30-80  Aqueous droplets 15 

Yield-stress fluids 

enabled 
50 µL/min ~250-1500 Aqueous droplets 19 

Particle-templated Noncontinuous ~40  Aqueous droplets 20 

In-air ejection 
Up to 2000 

µL/min 
~20-250  Hydrogel particle 21 

This work 
Up to 50 

µL/min 
~70-250  

Aqueous 

droplets; EGaIn; 

Hydrogel particle 
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