Electronic Supplementary Information

Directional Anchoring Patterned Liquid-Infused Superamphiphobic Surfaces for High-Throughput Droplet Manipulation

Weijian Liu, Xiao Luo, Changhao Chen, Guochen Jiang, Xinyu Hu, Hongjun Zhang, Minlin Zhong*

> Laser Materials Processing Research Center School of Materials Science & Engineering Tsinghua University Beijing, 100080, P.R. China Email: zhml@tsinghua.edu.cn

Figure S1. The design blueprint of directional-anchoring liquid-infused superamphiphobic surface.

Figure S2. The influence of the length (L) on the sliding angle and sliding angle difference. (a) The sliding angle of 4 μ L and 10 μ L droplets along the direction 1 (D1) on the surfaces with SLIS ">" shaped patterns. (b) The sliding angle of 4 μ L and 10 μ L droplets along the direction 2 (D2) on the surfaces with SLIS ">" shaped patterns. (c) The sliding angle difference along two directions.

Figure S3. The sliding angles and sliding angle differences of the SDAs with the width from 40 μ m to 240 μ m as the droplet volumes increase from 1 μ L to 20 μ L. (a) The sliding angles along direction 1 (D1). (b) The sliding angles along direction 2 (D2). (c) The sliding angle differences.

Figure S4. The comparison between the DASs and other related works. The DASs show superior sliding angle difference as the droplet volume increase from 1 μ L to 20 μ L. Especially, when the volume is 4 μ L, the sliding angle difference can achieve as high as ~77°.

Figure S5. The time-lapsed images of droplet being pulled along D1 on the superamphiphobic surface with hydrophobic ">" shaped patterns.

Figure S6. The time-lapsed images of droplet being pulled along D2 on the superamphiphobic surface with hydrophobic ">" shaped patterns.

Figure S7. The time-lapsed images of droplet being pulled along D1 on the superamphiphobic surface with SHL ">" shaped patterns.

Figure S8. The time-lapsed images of droplet being pulled along D2 on the superamphiphobic surface with SHL ">" shaped patterns.

Figure S9. (a) The sliding angle differences (SADs) of the superamphiphobic surfaces with SHL ">" shaped patterns after being stored in atmosphere for 30 days. (b) The SADs of DASs after being stored in atmosphere for 30 days.

Liquid	Surface energy(J/m2)	Contact angle(°)	Sliding Angle(°)
Water	72.8	158~160	0.8~1.1
Glycerol	64	152~153	0.9~1.2
Glycol	48.4	152~153	1.8-2.7
Peanut oil	34.5	154~155	3.9-4.6
Hexadecane	27.5	150~151	6.5~7.2
Tetradecane	26.6	151~152	9.5~10.3
Dodecane	25.4	152~154	10.0-11.2

Table S1. The contact angles and sliding angles of different liquid on superamphiphobic (SAB) surface.