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[Lifespan evaluation of the PCB-based chip]

In atmospheric UFPs, ionic matter (e.g., Na+, NO3-, NH4+, Cl-, S4O2-) are important components.1-3 Thus, we used NaCl UFPs 

as test aerosol. The mean diameter and number concentration of NaCl UFPs were settled to be 50 nm and 104 N∙cm-3 because 

these are mean values in urban regions.4

5 UFPs that enter our sensor are mostly deposited on the impaction plate in the PCB-based UFP analysis chip, which causes the 

current fraction of the aerodynamic particle sizer ( ) to deviate from the initial measurement value ( ) by changing 𝑅𝑎,2 𝑅𝑎,2,𝑖𝑛𝑖

the structure of the aerodynamic particle sizer (i.e., overloading). In that case, the PCB-based UFP analysis chip must be 

replaced. Thus, the elapsed time, which  deviation from  becomes 5 % was decided to be the lifespan of the chip (𝑅𝑎,2 𝑅𝑎,2,𝑖𝑛𝑖

).𝜏𝑙𝑖𝑓𝑒

10 Figure S1(a) shows the long-term monitoring results of the currents from the aerodynamic particle sizer ( and the Faraday 𝐼𝑎,2) 

cup electrometer ( ). NaCl UFPs, whose concentration was approximately 13 times higher than the mean values in urban 𝐼𝑓

areas (1.3×105 N cm-3), were injected. Because the elapsed time that  showed over 5 % deviation was 35 hr,  was 𝑅𝑎,2 𝜏𝑙𝑖𝑓𝑒

determined to be 19 days (=13×35 hr). 

Figure S1(b) shows the UFPs deposition on the impaction plates in 2nd  stage after the monitoring. The overloading of NaCl 

15 UFPs lead to a changing of impaction plate structure and deviation of . In the previous studies, deviation from overloading 𝑅𝑎,2

of the impactor has been reported.5

As shown in Figure S1(a), overloading of the impaction plate did not result in a notable decrease in the reliability of the current 

values. Furthermore, it was found that  returned to , because the collected UFPs probably fell off from the impaction 𝑅𝑎,2 𝑅𝑎,2,𝑖𝑛𝑖

plate. Because of these reasons, if moderate accuracy is acceptable, the PCB-based UFP analysis chip is predicted to be usable 

20 for a longer time, even if the usage time that can ensure  measurement with high accuracy was set as .𝑅𝑎,2 𝜏𝑙𝑖𝑓𝑒
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Figure S1. (a) Long-term measurement result from our device when 50-nm-sized NaCl UFPs were introduced; (b) SEM images of the 

deposition pattern on the impaction plate of the 2nd stage after the experiment. 
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[Test aerosol information obtained from the reference system]

Figure S2. (a) The four parameters ( , , , ,  ,) of the test aerosols (Ag, DEHS) measured by the reference system (SMPS+ELPI); 𝑁𝑡𝑜𝑡 𝜌𝑝  𝜎 𝑑𝑚,𝑚

(b) the size distribution of test aerosols. The inset figure is the TEM images of Ag particles (scale bars equal 100nm).

5
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[One possible way to measure the geometric standard deviation ( )]𝜎

We suggest that measuring  can be achieved by refining our device: 2-stage cascade aerodynamic particle sizer (Figure S3). 𝜎𝑔

Owing to the semiconductor manufacturing process, the aerodynamic particle sizer stage can be easily added by modifying 

the microchannel structures of the microfluidic chip. In the circuit, only one additional channel of the electrometer is required.

5
Figure S3. Modified version of our device: adding an additional stage of the aerodynamic particle sizer.

The particle size distribution was assumed as a lognormal distribution in the algorithm. The measured current data set ( , 𝑅𝑚

, , ) will be related to the four parameters of UFPs (i.e., effective density ( ), median mobility diameter ( ), 𝑅𝑎,2 𝑅𝑎,3 𝐼𝑡𝑜𝑡 𝜌𝑝 𝑑𝑚,𝑚

10 total number concentration ( ), and geometric standard deviation ( )), which can be expressed as𝑁𝑡𝑜𝑡 𝜎𝑔

𝐼𝑡𝑜𝑡 = 𝐼(1)
𝑎,2 + 𝐼(1)

𝑎,3 +  𝐼(1)
𝑓 = 𝑒𝑄𝑠∫�̅�(𝑑𝑚)[1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝑁𝑡𝑜𝑡 ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,𝜎,𝑑𝑚)𝑑log 𝑑𝑚  . (S1)
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𝑅𝑚 =
𝐼𝑡𝑜𝑡 ‒ [𝐼(2)

𝑎,2 + 𝐼(2)
𝑎,3 +  𝐼(2)

𝑓 ]
𝐼𝑡𝑜𝑡

=
∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝜂𝑚(𝑑𝑚) ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

. (S2)

𝑅𝑎,2 =
𝐼(1)

𝑎,2

𝐼𝑡𝑜𝑡
=

∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝜂𝑎,2(𝑑𝑎) ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

(S3)

𝑅𝑎,3 =
𝐼(1)

𝑎,3

𝐼𝑡𝑜𝑡
=

∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ 𝜂𝑎,3(𝑑𝑎) ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

∫�̅�(𝑑𝑚) ∙ [1 ‒ 𝜂𝑎,1(𝑑𝑎)] ∙ [1 ‒ 𝜂𝑎,2(𝑑𝑎)] ∙ 𝐷𝑙𝑜𝑔(𝑑𝑚,𝑚,,𝜎,𝑑𝑚)𝑑log 𝑑𝑚

  ,  (S4)

In the same way like the early algorithm, the four equations can be used to make four databases:  using 𝑑𝑚,𝑚 = 𝑓1(𝜎𝑔,𝑅𝑚)

equation S2, and  using equation S2-4,  using 𝜌𝑝,1 = 𝑓2(𝜎𝑔,𝑑𝑚,𝑚,𝑅𝑎,1) 𝜌𝑝,2 = 𝑓3(𝜎𝑔,𝑑𝑚,𝑚,𝑅𝑎,2) 𝑁𝑡𝑜𝑡 = 𝐼𝑡𝑜𝑡/𝑓4(𝜎𝑔,𝑑𝑚,𝑚)

equation S1. If  and  are retrieved accurately, the output of the 2nd and 3rd databases should be the same ( ). 𝜎𝑔 𝑑𝑚,𝑚 𝜌𝑝,1 ≈ 𝜌𝑝,2

To achieve this, we suggest one of the possible retrieval algorithms (Figure S4). In the algorithm, subscript c indicates 

5 parameters are candidate values.  are scanned from the settled range, for example, 1 to 3. Then, subsequent candidate 𝜎𝑔,𝑐

values ( ,  , ) and residual error between  and  ( ) are obtained. The algorithm can resolve , 𝑑𝑚,𝑚,𝑐 𝜌𝑝,𝑐 𝜌𝑝,1 𝜌𝑝,2 𝜌𝑝,1 𝜌𝑝,2 𝐸𝑟𝑟𝑐 𝑑𝑚,𝑚,𝑐

, , and  at the minimum , which will be printed as , ,  and .𝜎𝑔,𝑐 𝜌𝑝,𝑐 𝑁𝑡𝑜𝑡,𝑐 𝐸𝑟𝑟𝑐 𝑑𝑚,𝑚 𝜎𝑔 𝜌𝑝 𝑁𝑡𝑜𝑡

Figure S4. Possible retrieval algorithms for measuring geometric standard deviation.
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[Effect on hydroscopic particle growth]

Figure S5 shows the experimental setup for evaluating the effect on hydroscopic particle growth. N2 (99.9 % purity) carrier 

gas was supplied to the particle generation and humidty control sections using three mass flow controllers (MFCs; VIC-D220, 

MFC Korea, KR). In the particle generation section, NaCl particles were generated from the atomizer (model 9302, TSI Inc., 

5 USA) where NaCl solution with a concentration of 0.15 mg L-1 were splitted into nano droplets by being impacted on the 

impaction plate at a near-sonic speed. These droplets were dehydrated by passing through the diffusion dryer and became NaCl 

particles. The relative humidity of Flow #1 that carried NaCl particles was approximately 60 %RH. Meanwhile, Flow #2 was 

fully dehydrated (0 %RH), and Flow #3 was fully saturated (100 %RH) by passing through a humidifier. In the mixing valve, 

these three flows were mixed together. The corresponding relative humidty can be estimated by using

% 𝑅𝐻 =
60 ∙ 𝑄1 + 100 ∙ 𝑄3

𝑄1 + 𝑄2 + 𝑄3
 ,

(S5)

10 where  is the volumetric flow rate of Flow #x. Thus, by adjusting the volumetric flow rates, the relative humidity of the 𝑄𝑥

mixed flow entering the measurement section can be controlled. 

Figure S5. Experimental setup for evaluating the effect on hydroscopic particle growth, which consists of (a) particle generation, (b) 

humidity control and (c) measurement sections.

15

Figure S6 shows the real-time measurement results of measuring NaCl particles in a humidity-changing environment. When 

relative humidity was 16.7 %RH (lower than the efflorescence humidity = 45 %RH), the mean mobility diameter ( ) and 𝑑𝑚,𝑚

particle density ( ) were respectively 40.7 nm and 1.7 g cm-3, which were close to, but slightly lower than the bulk density of 𝜌𝑝

NaCl.6 The reason for this is that since NaCl particles are brittle, they presumably bounced off the impaction plate and collected 

20 in the filter,7 leading to a lower current fraction of the aerodynamic particle sizer (Ra,2), and hence lower . When relative 𝜌𝑝 

humidity was 80 %RH (higher than the deliquescence humidity = 75 %RH), they grew into spherical droplets via 

heterogeneous nucleation. The corresponding  and  were respectively 54.6 nm and 1.3 g cm-3, which approached to the 𝑑𝑚,𝑚 𝜌𝑝

bulk density of water (1 g cm-3). The above results supported the previous studies, which reported hydroscopic particles in 

ambient air, mainly composed of ionic matter, tend to grow into droplets by absorbing water vapor in humid environments.8, 9

25
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Figure S6. The real-time measurement results of measuring NaCl particles in a humidity-changing environment.

[Properties of the machine learning algorithm]

The machine learning algorithm consists of 7 layers and 30 neurons per layer. This is the number of optimized layers and 

neurons showing the lowest error rate. As the activation function, the function with the lowest error was used after comparing 

5 and evaluating the four functions of sigmoid, tanh, ReLU, and Leaky ReLu. Each function has different characteristics.10

The sigmoid function has been frequently used since it naturally activates the values of individual neurons in the form of an 

S-shaped curve. It can be expressed as

𝜎(𝑥) =  
1

1 + 𝑒 ‒ 𝑥 (S6)

10

Figure S7. Sigmoid function 

Since the sigmoid function range is 0<x<1, the weight( ) is all positive or all negative according to the gradient( ) and learning 𝑤 𝛿

15 data( ), so the learning direction is limited. As a result, it causes low learning speed and convergence rate. 𝑥

To solve this problem, tanh came out. It is to adjust the size and position of the sigmoid function. It can be defined as

tanh (𝑥) = 2𝜎(2𝑥) ‒ 1 =
𝑒𝑥 ‒ 𝑒 ‒ 𝑥

𝑒𝑥 + 𝑒 ‒ 𝑥 (S7)
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Figure S8. tanh function 

Since the range of tanh is -1<x<1, learning speed and convergence speed are faster than sigmoid. 

However, sigmoid and tanh function may cause the vanishing gradient problem, which converges weight to zero and the 

5 learning speed is still slow. To solve these problems, ReLU, which has no vanishing gradient problem and is faster than the 

previous activation function more than 6 times, has been developed. It can be express as

𝑓(𝑥) = 𝑚𝑎𝑥(0,𝑥) (S8)

Figure S9. ReLU function 

10

When  is positive, the gradient is constant at 1 and differentiation is convenient, so computational complexity is low. 𝑥

Therefore, the learning speed is 6 times faster than sigmoid or tanh. However, if  is negative, the gradient is unconditionally 𝑥

zero. To overcome this shortcoming, Leaky ReLU was devised and can be expressed as

𝑓(𝑥) = 𝑚𝑎𝑥(0.01𝑥,𝑥) (S9)

15

Figure S10. Leaky ReLU function 

It has the same characteristics as ReLU except the gradient is 0.01 when  is negative.𝑥
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Although it is true that later functions are more advanced, an activation function suitable for each situation differs.11, 12 As a 

result of comparing and evaluating all four functions, the ReLU function was selected because of showing slightly higher 

performance than others.

As a method to minimize the loss, we use adam optimizer, which showed good performance in various situations. 13, 14

5 Since the problem that the neural network is trying to solve is non-convex optimization, it may not be possible to find the 

optimal point depending on the starting point. Therefore, it is very important to set initial values for learning parameters  such 

as weights and biases of each layer. Thus, we use the HE uniform, which is known to be the most suitable initializing function 

for ReLU. Moreover, there is a risk of overfitting, which only adapts to the learning data as the learning period increases, 

resulting in poor performance. To prevent overfitting, early stopping, which is a method of adjusting epoch numbers, was used. 

10 As a result, the upper limit epoch was set at 10,000, but the epoch may vary depending on learning by early stopping. Also, 

L1 and L2 regularization, which is a method of adjusting weight decays, were used.

The machine learning algorithm was constructed as shown in Table S1 and the result of the comparative evaluation as shown 

in Table S2

Training set Test set Layer Neuron
Parameter 

optimization

Weight 

initialization
Epoch Regularization

78,000 11,000 7 30 Adam HE uniform 10,000
Early stopping, 

L1, L2

15 Table S1. Properties of machine learning algorithm 

Activation function Sigmoid Tanh ReLU Leaky ReLU

Error rate (%) 9.39 8.22 3.56 6.75

Table S2. Error rate according to activation function
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