Supplementary Information

The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia in vitro

liro Kiiski^a, Päivi Järvinen^a, Elisa Ollikainen^a, Ville Jokinen^b, and Tiina Sikanen^{*a}

^aFaculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland. E-mail: tiina.sikanen@helsinki.fi

^bDepartment of Materials Science and Engineering, School of Chemical Engineering Aalto University, Espoo, FI-02150, Finland

Liquid chromatography-mass spectrometry method development and validation parameters

The parameters of the liquid chromatography-mass spectrometry (LC-MS) method used for

the analysis of 3'-amino-3'-deoxythymidine (AMT) and zidovudine glucuronide (ATZ-G) in

Figure 5 are given in Table S1. The LC-MS method was validated in relevant parts for

quantitative detection of AMT and AZT-G. The critical method validation parameters are

presented in Figure S1 (selectivity; AMT), Figure S2 (selectivity; AZT-G), Table S2 (range,

linearity, accuracy, and precision; AMT), and Table S3 (range, linearity, accuracy, and

precision; AZT-G).

Table S1. LC-MS method parameters used for analysis of 3'-amino-3'-deoxythymidine (AMT, m/z 241.24) and zidovudine glucuronide (ATZ-G, m/z 442.15). SRM=selected reaction monitoring.

MS parameters	AMT, m/z 241.24	AZT-G, m/z 442.15			
Instrument	Waters Xevo TQ-S triple quadrupole MS				
Ionization mode	ES+ (positive mode electrospray	ES- (negative mode electrospray			
	ionization)	ionization)			
Capillary voltage	3 kV	2 kV			
Cone voltage	50 V	54 V			
Source Offset	50 V				
Source temperature	150 °C				
Desolvation temperature	500 °C				
Cone gas	150 L/h				
Desolvation gas	1000 L/h				
Nebuliser gas	7 bar				
SRM pairs (collision	241.24 -> 116.18 (20 V)	442.15 -> 124.34 (24 V)			
energy)	241.24 -> 98.78 (20 V)	442.15 -> 112.14 (22 V)			
LC parameters					
Instrument	Waters Acquity UPLC				
Column	Waters Acquity UPLC BEH C-18, 100 mm x 2.1 mm (i.d.), 1.7 µm (particle size)				
Precolumn	Waters Vanguard BEH C-18, 5mm x 2.1 mm (i.d.), 1.7 μm (particle size)				
Column temperature	40 °C				
Flow rate	300 μL/min				
Injection volume	1μL				
Eluent A	0.1% formic acid (aqueous)				
Eluent B	acetonitrile				
LC gradient					
Time	A%	B%			
0.00	100%	0%			
2.00	100%	0%			
7.00	35%	65%			
8.00	0%	100%			
9.0	0%	100%			
9.10	100% 0%				
10.0	100%	0%			

Figure S1. Selectivity of the LC-MS method for AMT. Representative ion chromatograms (SRM) of A) blank enzyme incubation matrix and B) blank enzyme incubation matrix spiked with 1 μ M AMT. The blank incubation matrix comprised of 0.1 M Tris 5 mM MgCl₂, 3 mM zidovudine (substrate), and 1 mM UDPGA and 1 mM NADPH (cosubstrates). The minor background peak at 1.2 min (AMT retention time) in (A) results from photocatalytic, nonenzymatic degradation of zidovudine (substrate) to AMT, as reported by Kurmi et al. (*RSC Adv.* **2017**, *7*, 18803) and was subtracted prior to quantitation of the enzymatically produced AMT.

Table S2. LC-MS method validation parameters for AMT. The linearity was determined by spiking the blank enzyme incubation matrix (0.1 M Tris 5 mM MgCl₂, 1 mM zidovudine, 1 mM UDPGA, 1mM NADPH) with AMT standard. The accuracy and precision were determined from n=6 repeated injections of blank incubation matrix spiked with 1.00 μ M AMT.

Parameter	Result
Range	0.050–10.0 μM
Linearity	y=130668x-4263 (R ² =0.9999)
Accuracy (n=6 injections, 1.00 μM)	107.0%
Precision (n=6 injections, 1.00 μM)	1.2%

Figure S2. Selectivity of the LC-MS method for AZT-G. Ion chromatograms (SRM) of A) blank enzyme incubation matrix (0.1 M Tris 5 mM MgCl₂, 1 mM zidovudine, 1 mM UDPGA) and B) enzyme incubation matrix spiked with 0.10 μ M zidovudine-glucuronide.

Table S3. LC-MS method validation parameters for AZT-G. The linearity was determined by spiking the blank enzyme incubation matrix (0.1 M Tris 5 mM MgCl₂, 1 mM zidovudine, 1 mM UDPGA) with AZT-G standard. The accuracy and precision were determined from n=6 repeated injections of blank incubation matrix spiked with 0.10 μ M AZT-G.

Parameter	Result
Range	0.001–5.00 μM
Linearity	y=8.8x+200 (R ² =0.9994)
Accuracy (n=6 injections, 0.100 μM)	108.0%
Precision (n=6 injections, 0.100 μM)	4.4%

Table 4. Best-fit values for the rate constant k (min⁻¹) of oxygen-depletion in rectangular OSTE channels in static conditions for different off-stoichiometric and stoichiometric thiol-ene compositions, including the impact of heat treatment (HT, 110 °C, overnight) as well as surface biotinylation on k. PETMP = pentaerythritol tetrakis(3-mercaptopropionate), TMPTMP = trimethylolpropane tris(3-mercaptopropionate), PI = photoinitiator (0.1%, m/v, TPO-L). The allyl component in all compositions was triallyl-1,3,5-triazine-2,4,6(*1H*,*3H*,*5H*)-trione (TATATO). nd = not determined

Bulk composition						
Thiol component (postcure treatment)	+50 mol-% thiol	+25 mol-% thiol	stoichiometric	+25 mol-% allyl, w/ PI		
PETMP	0.049 min ⁻¹	0.038 min ⁻¹ a)	0.034 min ⁻¹	0.0072 min ⁻¹		
PETMP	0.0034 min ⁻¹	nd	nd	nd		
(heat treated)						
PETMP (biotinylated)	0.039 min ⁻¹	nd	nd	nd		
ТМРТМР	0.014 min ⁻¹	nd	0.018 min ⁻¹	0.013 min ⁻¹		
TMPTMP (heat treated)	0.0016 min ⁻¹	nd	nd	nd		

^{a)} For +25 mol-% thiol-rich composition of PETMP, the rate constant was also determined in the presence of the PI and was 0.040 min⁻¹.