Supplementary Information

Continuous Microfluidic Fabrication of Anisotropic Microparticles for Enhanced

Wastewater Purification

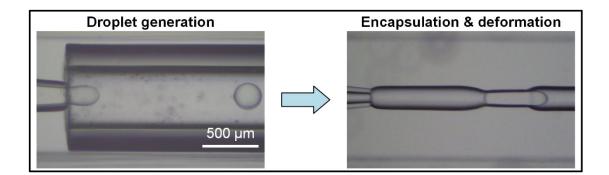
Xiaokang Deng^a, Yukun Ren^{*ab}, Likai Hou^{*c}, Tianyi Jiang^a and Hongyuan Jiang^{*a}

^a School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92,

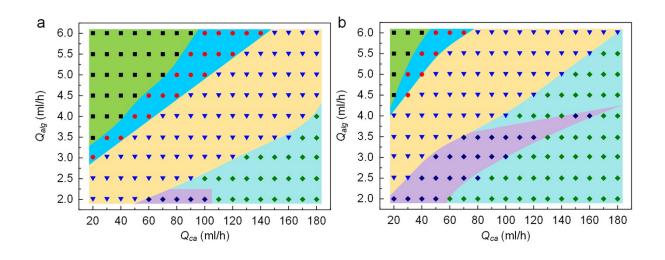
Harbin, Heilongjiang, PR China 150001.

^b State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi

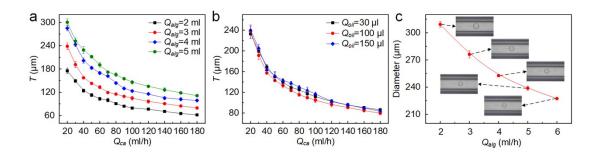
Street 92, Harbin, Heilongjiang, PR China 150001.

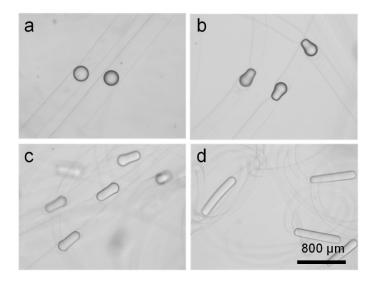

^c College of Metrology and Measurement Engineering, China Jiliang University, Xueyuan

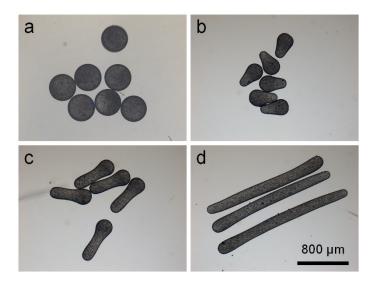
Street 258, Hangzhou, Zhejiang, P.R. China, 310018.

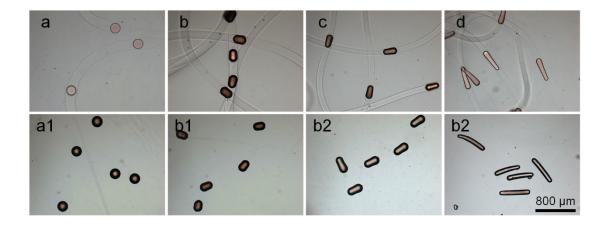

*Corresponding Author.

E-mail: rykhit@hit.edu.cn, houlikai@cjlu.edu.cn, jhy_hit@hit.edu.cn


Keywords: anisotropic microparticles, tailored shapes, oil-droplets-filled microfibers, wastewater purification, microfluidics


Figure S1 Optical images showing the fabrication of monodisperse oil-droplet precursors (left) and the encapsulation of deformed oil-droplet templates into microfiber (right).


Figure S2 (a) Phase diagram for various shapes of oil-encapsulants within microfiber under different flow rates of middle alginate (Q_{alg}) and outer calcium chloride (Q_{ca}) phases, while the flow rate of inner oil phase (Q_{oil}) is fixed at 50 µl h⁻¹. (b) Phase diagram for various shapes of oil-encapsulants within microfiber under different flow rates of Q_{alg} and Q_{ca} , while Q_{oil} is fixed at 200 µl h⁻¹. The viscosity of oil phase is 0.431 Pa·s.


Figure S3 (a) The relationship between the thickness of microfiber and Q_{ca} under different Q_{alg} , the Q_{oil} is fixed at 100 µl h⁻¹. (b) The relationship between the thickness of microfiber and Q_{ca} under different Q_{oil} , the Q_{alg} is fixed at 3 ml h⁻¹. (c) The relationship between the diameter of oil-droplet precursors and Q_{alg} under fixed Q_{ca} :40 ml h⁻¹ and Q_{oil} : 100 µl h⁻¹.

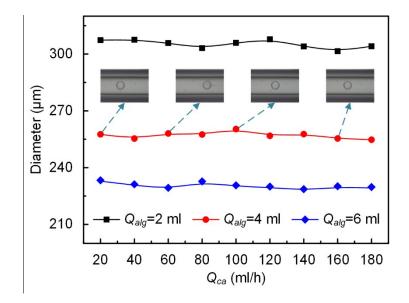

Figure S4 (a-d) Optical micrographs of four different kinds of oil-droplet templates within microfibers: (a) spherical shape (b) pear-like shape (c) maraca -like shape and (d) rod-like shape.

Figure S5 (a-d) Optical micrographs of magnetic PDMS microparticles with their shapes ranging from (a) sphere to (b) pear-like, (c) maraca-like and (d) rod-like.

Figure S6 (a-d) Optical micrographs of ETPTA-droplet templates within microfiber and (a1d1) their corresponding solidified microparticles with shapes changing from (a,a1) sphere to (b,b1) ellipsoid, (c,c1) maraca-like and (d,d1) rod-like, where the oil-droplet templates are dyed with oil red O.

Figure S7 The relationship between the diameter of oil-droplet precursors and Q_{ca} under different Q_{alg} , the Q_{oil} is fixed at 100 µl h⁻¹.

Supplementary Video

Video S1 The generation process of microfibers containing deformed oil-droplet templates based on droplet micfluidics.

Video S2 The breakup process of rod-like droplet within microfibers after collection.