Supporting Information

MXene Interlayered Crosslinked Conducting Polymer Film for High Specific Absorption of Electromagnetic Interference Shielding

Pritom J. Bora^{1‡}, Amith G. Anil^{2‡}, Praveen C. Ramamurthy^{*2} and Daniel Q. Tan^{*1}

^{1.} Department of Materials Science and Engineering, Technion Israel Institute of Technology and Guangdong Technion Israel Institute of Technology, Shantou, Guangdong Province, China 515063.

² Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.

Corresponding authors E-Mail: <u>daniel.tan@gtiit.edu.cn</u>, <u>onegroupb203@gmail.com</u>

[‡] Contributions of both authors are equal.

Fig.S1. optical image of the prepared flexible crosslinked PEDOT:PSS- $Ti_3C_2T_x$ MXene nanocomposite film.

Fig.S2. Cross-section surface morphology of crosslinked PEDOT:PSS film.

Fig.S3. Powder XRD spectrum of MXene powder

Fig.S4. EMI SE of pristine PEDOT:PSS film (38±2 μm).

Cross -linked PEDOT:PSS film || Water insoluble|| Prepared in ONEGROUP

Fig.S5. A video demonstrating that crosslinked PEDOT:PSS film is water insoluble whereas pristine PEDOT:PSS is water soluble. Video link: <u>https://youtu.be/RKcQYObAmT8</u>

Calculation of Specific Shielding Effectiveness (SSE):

SSE value can be obtained by dividing the EMI SE (dB) with density of the film (material),³³ i.e., SSE = EMI SE/density = dB cm³ g⁻¹ (1)

However, SSE can't be taken as an intrinsically important parameter for application point of view as it has the basic limitation that it does not account for film thickness. Higher values of SSE can be obtained for higher thicknesses while maintaining low density, which however increases the net weight. Therefore, absolute EMI shielding effectiveness (SSEt) is a more realistic quantity, which can be expressed as³³:

The films were cut into specific dimension (2.3 cm x 1.0 cm) and weighed on a balance accurate to 0.01 mg. The thickness was determined by SEM. Knowing the volume and weight

enabled us to estimate the density. The obtained density was also cross verified by density column measurements. Using equation (1) and (2) SSE and SSE_t values were calculated respectively.

Electrodynamic simulation

The EM simulation was carried out by using Computer Simulation Technology (CST) microwave studio suit (2015), which is a standard high performing electromagnetic simulation software. Finite integration technique (FIT) was used as the foundation technique of CST, which is the integral form of Maxwell's equations. The solution of the equations requires the structure to be subdivided into small cells in frequency or time domain. Two basic solver modules provided in CST microwave studio i.e., time domain solver and frequency domain solver. Time domain solver is used for non-resonant structures, while frequency domain solver contains alternatives for resonant structure. In this work, simulation was carried out using frequency domain solver and standard tetrahedral mesh. Since, only waveguide simulation was carried out, following boundary conditions were assigned (**Figure S6**).

	olv in all directions	Inem	nai Bound	lanes	Boundary Temp	erature
Xmin:	electric (Et = 0)	~	Xmax:	elect	ric (Et = 0)	~
Ymin:	magnetic (Ht = 0)	~	Ymax:	magn	netic (Ht = 0)	~
Zmin:	open (add space)	~	Zmax:	open	(add space)	~
Cond.:	1000		S/m		Open Boundary	

Figure S6. Boundary conditions of EM (waveguide) simulation.

Table S1: Specific EMI shielding performance optimised with thickness of various shielding materials.

Туре		Filler	Filler wt%	Matrix	Thickness t (cm)	SE (dB)	SSE (dB cm ³ g ⁻ ¹)	SSE/t (dB cm ² g ⁻ ¹)	
		rGO	10	PEI	0.23	12.8	44	191.3	
		rGO	30	PS	0.2	29	64.4	257.6	
		rGO	16	PI	0.08	21	937	11712	
	Car	rGO/Fe ₃ O ₄	10	PEI	0.25	18	44	176	
Fo a m St ru ct ur es		SWCNT	7	PS	0.12	18.5	33	275	
	Bas	MWCNT	76.2	WPU	0.1	21.1	541	5410	
	ed	Carbon	/	PN resin	0.2	51.2	341	1705	F
		Carbon foam	bulk	/	0.2	40	241	1250	
		MWCNT	7	PS	0.18	26.2	243.5	1352	
		CNT	0.51#	Cellulose	0.25	40	519	2078	
		rGO/ SWCNT	0.28	PDMS	0.2	31	110.7	553.5	
		Graphite	/	PLA	0.2	45	64	321.4	Γ
	M eta	CuNi	Bulk	/	0.15	25	104	690	
		CuNi-CNT	Bulk	/	0.15	54.6	237	1580	
		Ag nanowires	4.5	PI	0.5	35	1208	2416	
		SS	1.1	РР	0.31	48	75	241.9	
		$Ti_3C_2T_x$ foam	Bulk	/	0.0060	70	318	53030	╞
	MX ene	MXene aerogel	Bulk	/	/	75	9904	/	
		$Ti_3C_2T_x$ aerogel	Bulk	/	0.1	48.5	8818	88182	
		Ti ₃ C ₂ T _x /CA aerogel	Bulk	/	0.0026	54.3	45	17586	
		rGO	7	PS	0.25	45.1	173	692	
		rGO/Fe ₃ O ₄	Bulk	/	0.03	24	31	1033	ſ
Solid S	Structures	rGO	25	PEDOT	0.08	70	67.3	841	
bond b	li uctures	MWCNT	20	PC	0.21	39	34.5	164	
	Carbo	MWCNT	15	ABS	0.11	50	47.6	432.7	
	n Deced	MWCNT	20	PS	0.2	30	57	285	
		CB	15	ABS	0.11	20	20.9	190	
		CB	37.5	EPDM	0.2	18	30.3	15.1	
		PDA/AgNP	/	PP	0.035	48.2	209.56	5987	
		Biochar	80	UHMWPE/ LLDPE	0.3	48.7	39	130	
	M	Copper	Bulk	/	0.31	90	10	32.3	
	eta	SS	Bulk	/	0.4	89	11 6	27.5	
	-	Ni fiber	7	PES	0.285	58	31	108.7	

		Ni filaments	7	PES	0.285	87	47	164.9	
		Al foil	Bulk	/	0.0008	66	24.4	30555	
		Cu Foil	Bulk	/	0.001	70	7.8	7812	
		Ti ₃ C ₂ T _x	Bulk	/	0.0011	68	28.4	25863	
MX ene Cond ucting Poly mer	MX ene	Ti ₃ C ₂ T _x	90	SA	0.0008	57	24.6	30830	
		Crosslinked PEDOT:PSS- Ti ₃ C ₂ T _x MXene			0.0006	41	62.5	89924	
	Cond ucting	PEDOT:PSS without crosslinking	Bulk	/	0.0040	20	30	10916	
	Poly mer	Crosslinked PEDOT:PSS	Bulk	/	0.0009	40	70	51480	

Table S2. Specific EMI shielding performance optimised with thickness of various shielding materials

Туре	Filler	Filler [wt.%]	Matrix	Thickness [mm]	Conductivity [S m ⁻¹]	EMI SE [dB]*	Ref
	rGO	7	PS	2.5	43.5	45.1	23
	rGO	10	PEI	2.3	0.001	22	7
	rGO	0.7	PDMS	1	180	300	34
	rGO	20	Wax	2.0	<0.1	29 ^Δ	35
Re	rGO	60#	Wax	0.35	2500	27	36
duc	rGO	7.5	WPU	1	16.8	34	37
ea	rGO	15	Epoxy	/	10	21	38
phe gra	rGO	30	PS	2.5	1.25	29	5
ne	rGO	10	PU	60	0.06	39.4	39
oxi	rGO	4	PI	0.073	2 x 10 ⁵	51	9
de	rGO	33	PANI	2.8	1800	34.2	40
(rG	S-doped rGO	15	PS	2	33	24.5 [§]	41
0)	B,N-doped rGO	Bulk	/	1.2	124	42^	42
	S-doped rGO	Bulk	/	0.15	3.1 x 10 ⁴	38.5 [§]	43
	Graphene film	Bulk	/	0.25	/	174	44
	Graphene film	Bulk	/	0.050	1.13 x 10 ⁴	60	45
	Graphene film	Bulk	/	0.008	105	20	46
	Graphene film	Bulk	/	0.015	2.4 x 10 ⁴	20.2§	47
	Graphene foam	Bulk	/	0.3	310	25	48
	rGO/δ-Fe ₂ O ₃	40	PVA	0.36	3	20.3	36

	rGO/y-Fe ₂ O ₃	75	PANI	2.5	80	51	49
	rGO/Fe ₃ O ₄	35	PVA	0.3	<0.1	15	50
	rGO/Fe ₃ O ₄	66	PANI	2.5	260	30 ^Δ	51
	rGO/CF/γ-Fe ₂ O ₃	50	Resin	0.4	1.7 x 10 ⁴	41.8	52
	rGO/Fe ₃ O ₄	10	PVC	1.8	7.7 x 10 ⁻⁴	13	53
	rGO/Fe ₃ O ₄	10	PEI	2.5	10-4	18	7
	rGO/MnO ₂	Bulk	/	3	/	57 ^Δ	54
	rGO/Fe ₃ O ₄	Bulk	/	0.25	5000	24	24
	rGO/Fe ₃ O ₄	Bulk	/	3	700	41	55
	rGO-BaTiO ₃	Bulk	/	1.5	/	41.7	56
	rGO-Ba Ferrite	Bulk	/	1	98	18	57
	rGO/CNT/Fe ₃ O ₄	Bulk	/	2	/	37.5	58
	СВ	15	SEBS	5	22	20	59
	Graphite	25#	PA 6,6	3.2	/	12§	60
	Graphite	7.05#	PE	2.5	10	51.6	61
	Graphite	18.7#	PE	3	/	33	62
	Graphite	2	Epoxy	5	2.6	11	63
	Graphite	15	ABS	3	16	6020	64
	MWCNT	76	WPU	0.8	2.1 x 10 ³	80	65
	CNT	0.66	Epoxy	2	516	33	66
	MWCNT	76.2	WPU	4.5	44.6	50	9
	MWCNT	15	Cellulose	0.15	/	350	6/
	MWCNT	40	PMMA	0.165	1000	27 _§	68
	MWCNT	15	PEDOT	2.8	1935	584	70
	MWCNT	10	PIT	2	30	424	70
	SWCNI	15	Epoxy	2	20	25	71
Car	SWCNT	20	PU	2	2.2 x 10 ⁻⁴	17	72
Nan	CNT	7	PS	/	/	18.5	8
otub	CNT	25	Coal tar	0.6	1.1 x 10 ³	-56	73
e	CNT	5	TPU	2	17.9	35.3	74
	CNT	2	UHMWPE	1	21.9	22.7	75
	MWCNT	7	PS	1.8	61.9	42	12
	CNT	3#	PDMS/cotton fibre	1.2	/	41	76
	MWCNT	3	Poly lactic acid	2	6.42	31	77
	CNT	5	PPS	2	72	49.6	78
	CNT	4	UHMWPE	1.6	30.1	32.6	79
	CF/Fe ₃ O ₄	10	Epoxy	13	0.2	20	80
	CF/Fe ₃ O ₄	5	PDMS	0.7	710	67.9	81
Con	CF	40#	PES	2.87	/	38§	82
bon	CF	10	PVDF	0.05	180	140	83
Fibe	CF	10#	РР	3.2	10	25	84
r	CF	15	PS	/	0.1	19	85
	CF/CNT	13	PS	1	0.215	21.9 ^	86
	CF-GN	17.2	Wax	0.27	800	28	87
	Vapour grown CF	5	PANI/DBSA /DVB	2	189	51	88

	2.71	1.0.11		_	100	• •	00
	N1	10#	РР	3	100	20	89
	Ni/CB	50	Resin	1	31.6	85	90
	Ni	40#	PVDF	1.95	<0.1	23	91
	Ni Fiber	7#	PES	2.85	/	58§	32
	Ni-Co Fiber	30	Wax	2.5	1.3 x 10 ³	41	92
	Ag/CF	4.5	Epoxy	2.5	/	38	93
	Ag Nanowires	75	Epoxy	0.04	4.7 x 103	35	94
	Ag Nanowires	14#	PANI	0.013	5.3 x 10 ⁵	50	95
	Ag Nanowires	2.5#	PS	0.8	1.9 x 10 ³	33	96
	Cu/Graphite	20	PVC	2	80	70	97
	Cu Nanowires	2.1#	PS	0.2	/	35	98
	Al Flakes	20#	PES	2.9	/	39§	82
	SS	1.1#	РР	3.1	0.1	48	18
	SS	10#	PES	3.08	/	35	82
	SS	Bulk	/	4	/	89§	32
	Copper	Bulk	/	3.1	/	90§	32
	Cu Foil	Bulk	/	0.010	8.0 x 10 ⁷	70	33
	Al Foil	Bulk	/	0.008	2.8 x 10 ⁷	66	33
	Flexible graphite	Bulk	/	3.1	1.351 x 10 ⁵	130	99
Me	Flexible graphite	Bulk	/	0.79	1.351 x 10 ⁵	102	99
tals	Carbon Foam	Bulk	/	2	2.4 x 10 ²	51.2	10
	Carbon Foam	Bulk	/	2	126.5	40§	11
	MoS ₂	30	Glass	1.5	100	24.2	100
	MoS ₂	60	Wax	2.4	2.2 x 10 ⁻⁵	-38(RL)	101
	rGO-SiO ₂	Bulk	/	1.5	33	38	102
	Ni Ferrite	/	PVDF	2	/	67	103
	Fe ₂ O ₃ /ash	60	РР	2	1	25.5	104
	Carbon Aerogel	Bulk	/	10	133.3	51	105
	Ba Ferrite	38.2	РРҮ	2	>1	12	106
	Ba Ferrite*	/	PEDOT	/	/	22.5△	107
	Zn Ferrite	50	PPY	2.7	/	-29 (RL)	108
	Mn Ferrite	15	PPY	1.5	/	-12 (RL)	109
	Fe ₂ O ₃	/	PEDOT	6	40	22.8	110
	Fe ₃ O ₄	40	PANI	2	/	-33 (RL)	111
	Carbonyl iron	50	РРҮ	2.2	/	-39(RL)	112
	Carbonyl iron	20	PVDF/5%CB	2	/	27	113

	Mo ₂ TiC ₂ T _x	Bulk	/	0.004	1.0 x 10 ⁴	23	33
	Mo ₂ TiC ₃ T _x	Bulk	/	0.0035	2.5 x 10 ⁴	26	33
	Ti ₃ C ₂ T _x	Bulk	/	0.045	4.8 x 10 ⁵	92	33
Conc uctin Poly mer	РЗНТ	Bulk	/	5.31 x 10 ⁻³	5.412 x 10 ⁻³	-44.4(RL)	114
	Polyaniline nanofibers	Bulk	/	5 x 10 ⁻²	1850	74 ^	115
	e Polypyrrole	40	PVC	/	~5	19 ^Δ	116
	PEDOT:PSS	Bulk	/	0.038	15	17	This work
	Crosslinked PEDOT:PSS- MXene	Bulk	/	0.006	38800	41	This work

* Values in bracket indicate maximum EMI SE value in measured range. EMI SE is obtained mainly in Xband (8.2 to 12.4 GHz), except otherwise specified; / - values not provided; # - Vol. %; RL - Reflection loss; SS - Stainless steel; Bulk - 100% pure material with no polymeric binder; Δ - Ku-band (12.4-18 GHz); § - L and S-band; 1-4 GHz; \diamond - Ultra high frequency (UHF); \Box -C band.

References

- 1 M. K. Lai, J. R. Wu, J. M. Yeh and S. H. Chang, *Phys. Status Solidi Appl. Mater. Sci.*, , DOI:10.1002/pssa.201900025.
- 2 P. J. Bora, A. G. Anil, K. J. Vinoy, P. C. Ramamurthy, Adv. Mater. Interfaces 2019, 1901353.
- 3 Y. Fan and C. J. Cornelius, J. Mater. Sci., 2013, 48, 1153–1161.
- J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. ge Zheng, ACS Appl. Mater. Interfaces, 2013, 5, 2677–2684.
- 5 D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang and Z.-M. Li, *J. Mater. Chem.*, 2012, **22**, 18772–18774.
- 6 Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, *RSC Adv.*, 2015, 5, 24342–24351.
- 7 B. Shen, W. Zhai, M. Tao, J. Ling and W. Zheng, *ACS Appl. Mater. Interfaces*, 2013, **5**, 11383–11391.
- 8 Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, *Nano Lett.*, 2005, 5, 2131–2134.
- 9 Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, Adv. Funct. Mater., 2016, 26, 303–310.
- 10 L. Zhang, M. Liu, S. Roy, E. K. Chu, K. Y. See and X. Hu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 7422–7430.
- 11 F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti and V. Mariani Primiani, *Carbon N. Y.*, 2012, **50**, 1972–1980.
- 12 J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang and G. Li, *ACS Sustain. Chem. Eng.*, 2019, 7, 9904–9915.
- 13 L.-Q. Zhang, S.-G. Yang, L. Li, B. Yang, H.-D. Huang, D.-X. Yan, G.-J. Zhong, L. Xu and Z.-M. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 40156–40167.

- 14 S. Zhao, Y. Yan, A. Gao, S. Zhao, J. Cui and G. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 26723–26732.
- 15 G. Wang, G. Zhao, S. Wang, L. Zhang and C. B. Park, J. Mater. Chem. C, 2018, 6, 6847–6859.
- 16 K. Ji, H. Zhao, J. Zhang, J. Chen and Z. Dai, *Appl. Surf. Sci.*, 2014, **311**, 351–356.
- 17 J. Ma, K. Wang and M. Zhan, *RSC Adv.*, 2015, **5**, 65283–65296.
- 18 A. Ameli, M. Nofar, S. Wang and C. B. Park, ACS Appl. Mater. Interfaces, 2014, 6, 11091–11100.
- 19 J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z.-Z. Yu, *Adv. Mater.*, 2017, 29, 1702367.
- 20 R. Bian, G. He, W. Zhi, S. Xiang, T. Wang and D. Cai, J. Mater. Chem. C, 2019, 7, 474–478.
- 21 M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal, C. B. Hatter, B. Anasori, C. M. Koo, T. Torita, Y. Soda, L. Zhang, L. Cheng and Y. Gogotsi, *Adv. Opt. Mater.*, 2019, 7, 1900267.
- 22 Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan and C. Lu, Adv. Mater. Interfaces, 2019, 6, 1802040.
- 23 D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang and Z.-M. Li, *Adv. Funct. Mater.*, 2015, **25**, 559–566.
- 24 W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, Q.-L. Zhao and M.-S. Cao, *J. Mater. Chem. A*, 2015, **3**, 2097–2107.
- 25 N. Agnihotri, K. Chakrabarti and A. De, *RSC Adv.*, 2015, 5, 43765–43771.
- 26 S. Pande, A. Chaudhary, D. Patel, B. P. Singh and R. B. Mathur, *RSC Adv.*, 2014, 4, 13839–13849.
- 27 M. H. Al-Saleh, W. H. Saadeh and U. Sundararaj, *Carbon N. Y.*, 2013, **60**, 146–156.
- 28 M. Arjmand, T. Apperley, M. Okoniewski and U. Sundararaj, Carbon N. Y., 2012, 50, 5126–5134.
- 29 P. Ghosh and A. Chakrabarti, Eur. Polym. J., 2000, 36, 1043–1054.
- 30 J. Gao, J. Luo, L. Wang, X. Huang, H. Wang, X. Song, M. Hu, L.-C. Tang and H. Xue, *Chem. Eng. J.*, 2019, **364**, 493–502.
- 31 S. Li, A. Huang, Y.-J. Chen, D. Li and L.-S. Turng, *Compos. Part B Eng.*, 2018, **153**, 277–284.
- 32 X. Shui and D. D. L. Chung, J. Electron. Mater., 1997, 26, 928–934.
- 33 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo and Y. Gogotsi, *Science (80-.).*, 2016, **353**, 1137–1140.
- 34 Z. Chen, C. Xu, C. Ma, W. Ren and H.-M. Cheng, *Adv. Mater.*, 2013, 25, 1296–1300.
- 35 B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan and M. S. Cao, *Nanoscale*, 2014, **6**, 5754–5761.
- 36 B. Yuan, C. Bao, X. Qian, L. Song, Q. Tai, K. M. Liew and Y. Hu, *Carbon N. Y.*, 2014, **75**, 178–189.
- 37 S.-T. Hsiao, C.-C. M. Ma, W.-H. Liao, Y.-S. Wang, S.-M. Li, Y.-C. Huang, R.-B. Yang and W.-F. Liang, *ACS Appl. Mater. Interfaces*, 2014, **6**, 10667–10678.
- 38 J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao and Y. Chen, *Carbon N. Y.*, 2009, **47**, 922–925.
- B. Shen, Y. Li, W. Zhai and W. Zheng, ACS Appl. Mater. Interfaces, 2016, 8, 8050–8057.
- 40 B. Yuan, L. Yu, L. Sheng, K. An and X. Zhao, J. Phys. D. Appl. Phys., 2012, 45, 235108.
- 41 F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S. M. Hong and C. M. Koo, *Compos. Struct.*, 2015, **133**, 1267–1275.

- 42 S. Umrao, T. K. Gupta, S. Kumar, V. K. Singh, M. K. Sultania, J. H. Jung, I.-K. Oh and A. Srivastava, *ACS Appl. Mater. Interfaces*, 2015, **7**, 19831–19842.
- 43 F. Shahzad, P. Kumar, Y.-H. Kim, S. M. Hong and C. M. Koo, ACS Appl. Mater. Interfaces, 2016, 8, 9361–9369.
- 44 P. Tripathi, C. R. Prakash Patel, A. Dixit, A. P. Singh, P. Kumar, M. A. Shaz, R. Srivastava, G. Gupta, S. K. Dhawan, B. K. Gupta and O. N. Srivastava, *RSC Adv.*, 2015, **5**, 19074–19081.
- 45 L. Zhang, N. T. Alvarez, M. Zhang, M. Haase, R. Malik, D. Mast and V. Shanov, *Carbon N. Y.*, 2015, **82**, 353–359.
- 46 B. Shen, W. Zhai and W. Zheng, Adv. Funct. Mater., 2014, 24, 4542–4548.
- 47 P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim and C. M. Koo, *Carbon N. Y.*, 2015, **94**, 494–500.
- 48 B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei and W. Zheng, *Carbon N. Y.*, 2016, **102**, 154–160.
- 49 A. P. Singh, M. Mishra, P. Sambyal, B. K. Gupta, B. P. Singh, A. Chandra and S. K. Dhawan, J. *Mater. Chem. A*, 2014, **2**, 3581–3593.
- 50 B. V Bhaskara Rao, P. Yadav, R. Aepuru, H. S. Panda, S. Ogale and S. N. Kale, *Phys. Chem. Chem. Phys.*, 2015, **17**, 18353–18363.
- 51 K. Singh, A. Ohlan, V. H. Pham, B. R., S. Varshney, J. Jang, S. H. Hur, W. M. Choi, M. Kumar, S. K. Dhawan, B.-S. Kong and J. S. Chung, *Nanoscale*, 2013, 5, 2411–2420.
- 52 A. P. Singh, P. Garg, F. Alam, K. Singh, R. B. Mathur, R. P. Tandon, A. Chandra and S. K. Dhawan, *Carbon N. Y.*, 2012, **50**, 3868–3875.
- 53 K. Yao, J. Gong, N. Tian, Y. Lin, X. Wen, Z. Jiang, H. Na and T. Tang, *RSC Adv.*, 2015, **5**, 31910–31919.
- 54 T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan and R. B. Mathur, *J. Mater. Chem. A*, 2014, **2**, 4256–4263.
- 55 M. Mishra, A. P. Singh, B. P. Singh, V. N. Singh and S. K. Dhawan, *J. Mater. Chem. A*, 2014, **2**, 13159–13168.
- 56 Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng and Z. Dongmei, *J. Mater. Chem. C*, 2016, 4, 371–375.
- 57 M. Verma, A. P. Singh, P. Sambyal, B. P. Singh, S. K. Dhawan and V. Choudhary, *Phys. Chem. Chem. Phys.*, 2015, **17**, 1610–1618.
- 58 A. P. Singh, M. Mishra, D. P. Hashim, T. N. Narayanan, M. G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B. P. Singh, A. Chandra, R. Vajtai, S. K. Dhawan, P. M. Ajayan and B. K. Gupta, *Carbon N. Y.*, 2015, 85, 79–88.
- 59 S. Kuester, C. Merlini, G. M. O. Barra, J. C. Ferreira, A. Lucas, A. C. de Souza and B. G. Soares, *Compos. Part B Eng.*, 2016, **84**, 236–247.
- 60 Q. J. Krueger and J. A. King, *Adv. Polym. Technol.*, 2003, **22**, 96–111.
- 61 X. Jiang, D.-X. Yan, Y. Bao, H. Pang, X. Ji and Z.-M. Li, *RSC Adv.*, 2015, **5**, 22587–22592.
- 62 V. Panwar and R. M. Mehra, *Polym. Eng. Sci.*, 2008, **48**, 2178–2187.
- G. De Bellis, A. Tamburrano, A. Dinescu, M. L. Santarelli and M. S. Sarto, *Carbon N. Y.*, 2011, **49**, 4291–4300.
- 64 V. K. Sachdev, K. Patel, S. Bhattacharya and R. P. Tandon, *J. Appl. Polym. Sci.*, 2011, **120**, 1100–1105.

- 65 Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang and Z. Zhang, *Carbon N. Y.*, 2016, **96**, 768–777.
- 66 Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao and Z.-Z. Yu, *Adv. Funct. Mater.*, 2016, **26**, 447–455.
- 67 L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan and D. Lua, *Carbon N. Y.*, 2009, **47**, 1905–1910.
- 68 H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejaković, J. W. Yoo and A. J. Epstein, *Appl. Phys. Lett.*, 2004, **84**, 589–591.
- 69 M. Farukh, A. P. Singh and S. K. Dhawan, *Compos. Sci. Technol.*, 2015, **114**, 94–102.
- 70 A. Gupta and V. Choudhary, *Compos. Sci. Technol.*, 2011, **71**, 1563–1568.
- 71 Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao and Y. Chen, *Carbon N. Y.*, 2007, **45**, 1614–1621.
- 72 Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo and Y. Chen, *Carbon N. Y.*, 2007, **45**, 821–827.
- 73 A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh, A. P. Singh, S. K. Dhawan and S. R. Dhakate, *ACS Appl. Mater. Interfaces*, 2016, **8**, 10600–10608.
- 74 D. Feng, D. Xu, Q. Wang and P. Liu, J. Mater. Chem. C, 2019.
- 75 W.-C. Yu, G.-Q. Zhang, Y.-H. Liu, L. Xu, D.-X. Yan, H.-D. Huang, J.-H. Tang, J.-Z. Xu and Z.-M. Li, *Chem. Eng. J.*, 2019, **373**, 556–564.
- 76 J. Li, Y.-J. Tan, Y.-F. Chen, H. Wu, S. Guo and M. Wang, Appl. Surf. Sci., 2019, 466, 657–665.
- 77 F. Ren, Z. Li, L. Xu, Z. Sun, P. Ren, D. Yan and Z. Li, *Compos. Part B Eng.*, 2018, 155, 405–413.
- 78 X.-P. Zhang, L.-C. Jia, G. Zhang, D.-X. Yan and Z.-M. Li, *J. Mater. Chem. C*, 2018, **6**, 10760–10766.
- 79 W.-C. Yu, J.-Z. Xu, Z.-G. Wang, Y.-F. Huang, H.-M. Yin, L. Xu, Y.-W. Chen, D.-X. Yan and Z.-M. Li, *Compos. Part A Appl. Sci. Manuf.*, 2018, **110**, 237–245.
- 80 M. Crespo, N. Méndez, M. González, J. Baselga and J. Pozuelo, *Carbon N. Y.*, 2014, 74, 63–72.
- 81 M. Bayat, H. Yang, F. K. Ko, D. Michelson and A. Mei, *Polymer (Guildf)*., 2014, 55, 936–943.
- 82 L. Li and D. D. L. Chung, *Composites*, 1994, **25**, 215–224.
- 83 B. O. Lee, W. J. Woo, H. S. Park, H. S. Hahm, J. P. Wu and M. S. Kim, *J. Mater. Sci.*, 2002, **37**, 1839–1843.
- A. Ameli, P. U. Jung and C. B. Park, *Carbon N. Y.*, 2013, **60**, 379–391.
- 85 Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, Adv. Mater., 2005, 17, 1999–2003.
- 86 Y. Yang, M. C. Gupta and K. L. Dudley, *Nanotechnology*, 2007, **18**, 345701.
- 87 W.-L. Song, J. Wang, L.-Z. Fan, Y. Li, C.-Y. Wang and M.-S. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 10516–10523.
- 88 V. Kumar, M. A. Muflikhun and T. Yokozeki, *Polym. Eng. Sci.*, 2019, **59**, 956–963.
- 89 K. Wenderoth, J. Petermann, K.-D. Kruse, J.-L. ter Haseborg and W. Krieger, *Polym. Compos.*, 1989, 10, 52–56.
- 90 F. El-Tantawy, N. A. Aal and Y. K. Sung, *Macromol. Res.*, 2005, 13, 194–205.
- 91 H. Gargama, A. K. Thakur and S. K. Chaturvedi, J. Appl. Phys., 2015, 117, 224903.

- 92 X. Huang, B. Dai, Y. Ren, J. Xu and P. Zhu, J. Nanomater., 2015, 2015, 1–7.
- 93 J. Li, S. Qi, M. Zhang and Z. Wang, J. Appl. Polym. Sci., DOI:10.1002/app.42306.
- 94 N. M. Abbasi, H. Yu, L. Wang, Zain-ul-Abdin, W. A. Amer, M. Akram, H. Khalid, Y. Chen, M. Saleem, R. Sun and J. Shan, *Mater. Chem. Phys.*, 2015, 166, 1–15.
- 95 F. Fang, Y.-Q. Li, H.-M. Xiao, N. Hu and S.-Y. Fu, J. Mater. Chem. C, 2016, 4, 4193–4203.
- 96 M. Arjmand, A. A. Moud, Y. Li and U. Sundararaj, RSC Adv., 2015, 5, 56590–56598.
- 97 A. A. Al-Ghamdi and F. El-Tantawy, Compos. Part A Appl. Sci. Manuf., 2010, 41, 1693–1701.
- 98 M. H. Al-Saleh, G. A. Gelves and U. Sundararaj, Compos. Part A Appl. Sci. Manuf., 2011, 42, 92– 97.
- 99 X. Luo and D. D. L. Chung, *Carbon N. Y.*, 1996, **34**, 1293–1294.
- 100 Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo and D. Zhu, J. Alloys Compd., 2016, 666, 359–365.
- 101 M.-Q. Ning, M.-M. Lu, J.-B. Li, Z. Chen, Y.-K. Dou, C.-Z. Wang, F. Rehman, M.-S. Cao and H.-B. Jin, *Nanoscale*, 2015, 7, 15734–15740.
- 102 B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang and J. Yuan, *Adv. Mater.*, 2014, **26**, 3484–3489.
- 103 B.-W. Li, Y. Shen, Z.-X. Yue and C.-W. Nan, Appl. Phys. Lett., 2006, 89, 132504.
- 104 S. Varshney, A. Ohlan, V. K. Jain, V. P. Dutta and S. K. Dhawan, *Ind. Eng. Chem. Res.*, 2014, **53**, 14282–14290.
- 105 Y.-Q. Li, Y. A. Samad, K. Polychronopoulou and K. Liao, ACS Sustain. Chem. Eng., 2015, **3**, 1419–1427.
- 106 P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang and B. Zhang, *J. Phys. Chem. B*, 2008, **112**, 2775–2781.
- 107 A. Ohlan, K. Singh, A. Chandra and S. K. Dhawan, ACS Appl. Mater. Interfaces, 2010, 2, 927–933.
- 108 Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou and X. Liu, Solid State Sci., 2009, 11, 1319–1324.
- 109 S. H. Hosseini and A. Asadnia, J. Nanomater., 2012, 2012, 1-6.
- 110 K. Singh, A. Ohlan, P. Saini and S. K. Dhawan, Polym. Adv. Technol., 2008, 19, 229–236.
- 111 X. Han and Y.-S. Wang, *Phys. Scr.*, 2007, **T129**, 335–339.
- 112 M. Sui, X. Lü, A. Xie, W. Xu, X. Rong and G. Wu, Synth. Met., 2015, 210, 156–164.
- H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen and X. Tian, *Mater. Res. Express*, 2018, 5, 125304.
- 114 G. Kulkarni, P. Kandesar, N. Velhal, V. Phadtare, A. Jatratkar, S. K. Shinde, D.-Y. Kim and V. Puri, *Chem. Eng. J.*, 2019, **355**, 196–207.
- 115 N. Joseph, J. Varghese and M. T. Sebastian, J. Mater. Chem. C, 2016, 4, 999–1008.
- 116 V. Bhavsar and D. Tripathi, *Polym. Bull.*, 2018, **75**, 2085–2104.