Highly microporous SbPO₄/BC_x hybrid anodes for sodiumion batteries

Huiqi Wang ^{a, *}, Li Gou ^a, Weifeng Jing ^a, Duo An ^a, Ying Li ^a, Mei Wang ^a, Ning Li ^a,

Shengliang Hu $^{a,\,*}\!,$ Yan-Bing He $^{b,\,*}$

^a School of Materials Science and Engineering & School of Energy and Power Engineering,

North University of China, Taiyuan 030051, P. R. China

^b Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School,

Tsinghua University, Shenzhen, 518055, P. R. China

*Corresponding authors. E-mail: hqiwang@163.com; hsliang@yeah.net;

he.yanbing@sz.tsinghua.edu.cn

Figure S1 The ratios of Sb species calculated by the quantitative analysis through the Rietveld refinement of XRD pattern in Figure 3d. (a) $SbPO_4/BC_x$, (b) Sb/BC_x and (c) Sb/C. The red line is the original XRD pattern, the black line is the fitted profile and the short vertical lines mark the line positions of the standards. The spectrum in the top panel is the difference spectrum.

Figure S2 The high-resolution XPS spectra. (a) Sb 3d of the Sb/BC_x sample, (b) C 1s of the Sb/BC_x sample, (c) B 1s of the Sb/BC_x sample, (d) Sb 3d of the Sb/C sample, and (e) C 1s of the Sb/C sample.

 Table S1 Physical parameters of as-prepared samples.

Sample	Bonding states	Weight ratio of Sb	Boron concentration ^b	I /I	\mathbf{S}_{BET}
		species ^a	(at. %)	I_{D}/I_{G}	(m ² g ⁻¹)
Sb/C	Sb/Sb ₂ O ₃	28.4: 71.6	0	2.21	13.53
Sb/BC _x	Sb/Sb_2O_3	78.1: 21.9	14.40	1.08	183.92
SbPO ₄ /BC _x	Sb/SbPO ₄	11.4: 88.6	12.93	1.11	428.24

^a The value was obtained by Rietveld refinement of XRD pattern.

^b Boron concentration was obtained by XPS.

Type of materials	Current density	Initial capacity	Remained capacity after n	Ref. ^a	
	(mA g^{-1})	$(\text{mAn } g^{-1})$	cycles (mAn g ⁻¹)		
Sb	200	521	438/250	1	
Sb/Sb_2O_3	660	550	510/180	2	
Sb/C	100	670	461/200	3	
Sb@C	1000	230	129/2000	4	
Sb/C	500	371	349/100	5	
Sb@C	1000	280	237/200	6	
Sb-C	1000	250	225/200	7	
Sb/Acetylene Black	100	504	474/70	8	
Sb/MWCNT	200	502	382/120	9	
Sb-Graphene	50/300	517 (50)	305/100 (300)	10	
SnSb@C/Graphene	100	396	305/100	11	
ZnS-Sb ₂ Se ₃ @C	100	630	384/120	12	
SbPO ₄ /rGO	500	306	280/100	13	
	200	756	410/150		
SbPO ₄ /BC _x	500	393	389/10	This work	
	1000	369	367/10		

Table S2 Comparison of sodium storage performance in this work with previously reported in the literature.

 Table S3 Kinetic parameters calculated by fitting an equivalent circuit of three electrodes.

Sample	Conductivity ^a (× 10^4 S cm ⁻¹)	$R_{s}\left(\Omega\right)$	$R_{ct}\left(\Omega ight)$	σ
Sb	0.04	23.09	476.23	149.63
Sb/C	0.05	16.21	327.51	132.90
Sb/BC _x	0.13	9.35	74.01	37.88
SbPO ₄ /BC _x	0.15	27.55	44.43	9.18

^a The data were calculated by using 4-point probe method.

Figure S3 SEM images of $SbPO_4/BC_x$ electrode before cycling (a, b, c) and after 500 cycles

(d, e, f), respectively.

References

- L. Liang, Y. Xu, C. Wang, L. Wen, Y. Fang, Y. Mi, M. Zhou, H. Zhao and Y. Lei, *Energy Environ Sci*, 2015, 8, 2954-2962.
- J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, Y. Qian and J. J. N. R. Yang, *Nano Research*, 2017, 10, 1794-1803.
- 3. P. Li, L. Yu, S. Ji, X. Xu, Z. Liu, J. Liu and J. Liu, *Chem Eng J*, 2019, **374**, 502-510.
- 4. Z. Liu, X.-Y. Yu, X. W. Lou and U. Paik, *Energy Environ Sci*, 2016, 9, 2314-2318.
- J. Duan, W. Zhang, C. Wu, Q. Fan, W. Zhang, X. Hu and Y. Huang, *Nano Energy*, 2015, 16, 479-487.
- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F.-K. Chiang, R. Hu, J. Liu, L. Sun, L. Gu, J. Maier, Y. Yu and M. Zhu, *Nano Lett*, 2017, 17, 2034-2042.
- T. Ramireddy, N. Sharma, T. Xing, Y. Chen, J. Leforestier and A. M. Glushenkov, ACS Appl Mater Interfaces, 2016, 8, 30152-30164.
- H. Hou, Y. Yang, Y. Zhu, M. Jing, C. Pan, L. Fang, W. Song, X. Yang and X. Ji, Electrochim Acta, 2014, 146, 328-334.
- 9. X. Zhou, Z. Dai, J. Bao and Y.-G. Guo, *J Mater Chem A*, 2013, **1**, 13727-13731.
- Y.-L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Small*, 2015, 11, 6026-6035.
- L. Li, K. H. Seng, D. Li, Y. Xia, H. K. Liu and Z. Guo, *Nano Research*, 2014, 7, 1466-1476.
- 12. S. Dong, C. Li, X. Ge, Z. Li, X. Miao and L. Yin, ACS Nano, 2017, 11, 6474-6482.
- J. Pan, S. Chen, Q. Fu, Y. Sun, Y. Zhang, N. Lin, P. Gao, J. Yang and Y. Qian, ACS Nano, 2018, 12, 12869-12878.