Electronic Supplementary Information

Surface-enhanced resonance Raman scattering of dye molecule adsorbed on two-dimensional titanium carbide $Ti_3C_2T_x$ (MXene) film

Satheeshkumar Elumalai,*a, d John R. Lombardib and Masahiro Yoshimuraa, c

^aHi-GEM, Department of Material Science and Engineering, Promotion Center for Global Materials Research (PCGMR), National Cheng Kung University, Tainan 701, Taiwan. E-mail: <u>analyticalsathi@gmail.com</u> (S.E)

^bDepartment of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.

^cTokyo Institute of Technology, Tokyo 152-8550,

^dPresent Address: Biophotonics and Advanced Microscopies Laboratory, Institute of Biochemistry and Cell Biology-IBBC, National Research Council, Via Pietro Castellino n.111, 80131 Napoli-Italy. E-mail: <u>satheesh@ibbc.cnr.it</u> (S.E)

Experimental section.

Chemicals and Apparatus.

Ultrasonicator (Bransonic M3800 Ultrasonic bath, 110 W and Frequency 40 kHz) was purchased from Branson Ultrasonics Corp., USA. The organic solvents (DMSO, methanol, ethanol, acetone, acetonitrile, isopropyl alcohol-IPA, isobutanol and THF) were purchased from the Sigma-Aldrich (USA). The Raman probe molecules such as crystal violet (CV), rose bengal (RB), rhodamine 6G (R6G), p-nitrothiophenol (*p*NTP), p-aminothiophenol (*p*ATP), *p*-hydroxy thiophenol (*p*HTP) and p-mercaptobenzoic acid (*p*MBA) were purchased from the Sigma-Aldrich (USA). All these chemicals were reagent grade and used as received.

Intercalation and delamination of $Ti_3C_2T_x$.

The Ti₃C₂T_x-MXene was prepared by soaking in hydrochloric acid (HCI) containing the fluoride salt (as a LiF) to etching out of Al elements from the Ti₃AlC₂ (MAX phase) at 35 °C for 24 h. For intercalation, a powder of Ti₃C₂T_x-MXene (0.3 g) was dispersed in 5 mL of various solvents (such as DMSO, methanol, ethanol, acetone, acetonitrile, isopropyl alcohol-IPA, isobutanol and THF) and stir for 24h at room temperature at 500 rpm. The unreacted solvents (non-intercalated solvent molecules) were removed from the mixture by centrifuged them at 3500 rpm for 5 min. For delamination step, the corresponding base solvents (150 mL) were used to produce Ti₃C₂T_x-MXene flakes, expect the DMSO. The deionized water (150 mL) was used only for the delamination of DMSO-intercalated Ti₃C₂T_x sample to produce aqueous colloidal solution of Ti₃C₂T_x flakes.

The above mixture was further bath sonicated for 10h with/without Ar gas bubbling (to avoid the mechanical oxidation of $Ti_3C_2T_x$ sample during the delamination step) at the given experimental condition (the temperature of the bath sonicator was kept at $32\pm5^{\circ}C$ as constant). The supernatant solution of delaminated $Ti_3C_2T_x$ flakes (*d*- $Ti_3C_2T_x$) was then obtained by centrifuged at 3500 rpm for 1 h. The concentration

 $Ti_3C_2T_x$ flakes in aqueous supernatant solution was found to be 1.25 mg/mL, which was estimated by freeze-dry method.

The transparent $Ti_3C_2T_x$ -MXene film@glass.

The residual DMSO was removed in the *d*-Ti₃C₂T_x solution by purging the Ar (gas) before the film deposition on glass substrate. The various thickness of the Ti₃C₂T_x film was fabricated by repeating the number of spin-cast called as *run*. For each *run*, 200 µL volume of delaminated Ti₃C₂T_x-MXene (*d*-Ti₃C₂T_x; *50* µg/ml) aqueous suspension was spin-cast (200s, 1000 rpm) onto the glass substrate (18mm x 18mm; Area *a*=3.24 cm²). This step was then repeated for three times (r_1 =200µL*1; r_2 =200µL*2 and r_3 =200µL*3), which can ensure that uniform film deposition of Ti₃C₂T_x flakes onto the glass substrate. Note: before the spin-cast, the glass substrate was pre-treated with the mixture solution containing 12.5 mL deionized water+2.5 mL 30wt% H₂O₂+2.5 mL of NH₄OH solution. The glass substrate was removed from the mixture solution and then washed several times with distilled water, dried at N₂ gas before the spin-cast of Ti₃C₂T_x.

The SERS measurement.

The serious concentration of Raman dyes molecule (such as Crystal violet-CV; Rhodamine 6G-R6G and Rose Bengal-RB as a resonant molecule). The nonresonant Raman probe molecules such as para Nitrothiophenol-pNTP, para Amino thiophenol-pATP, para hydroxy thiophenol-pHTP and para Mercapto benzoic acidpMBA) were also prepared in ethanol solution with a stock concentration of ~1 mM. The enhancement factor (EF) is calculated using the equation [I_{SERS}/C_{SERS}]/[I_{Normal}/C_{Bulk}] where I_{SERS} and I_{Normal} were the intensity of the surfaceenhanced Raman scattering (SERS) (at 1619 cm⁻¹ and normal Raman spectra of the probe molecule, respectively. C_{SERS} and C_{Bulk} are the concentration of probe molecule in the SERS and bulk samples, respectively.

Crystal violet (MW: 407.99 g/mol) stock:

0.001 M*407.99 g/mol *20 ml/1000 ml =0.00815 g (actual weight taken= 0.0088 g in 20 ml C₂H₅OH) Actual concentration of CV in C₂H₅OH: 0.0088 g in 20 mL C₂H₅OH (1.07845 mM) 0.0088 g*1000 = 8.8 mg/20 mL C₂H₅OH Mg/L = ppm 8.8 mg/20 mL (20/1000=0.02), then, 8.8*0.02 = 0.176 mg/L or 0.176 ppm Dilution _1: 100 µL of 0.176 mg/L was added in 8 mL C₂H₅OH (0.013480 mM) 0.1 ml*0.176 mg/L /8 mL of C₂H₅OH = 0.1*0.176/8 =0.0022 mg/L

Dilution _2 500 μ L of 0.0022 mg/L (from dillution_1) dissolve in 8 mL C₂H₅OH (0.0008425 mM = 0.8425 μ M = 842.5 nM)

0.5 ml*0.0022 mg/L /8 mL = 0.5*0.0022/8 =0.0001375 mg/L

300 µL of dilution_2 solution was deposited on glass (18 mm*18 mm, Area, a^2 = 3.24 cm²) substrate with/ without Ti₃C₂T_x thin film@glass substrate,

300 μ l*0.0001375 mg/l= 0.3 ml*0.0001375 mg/L 0.0003 L*0.0001375 mg/L = 0.0003*0.0001375 mg 0.00000004125 mg/3.24 cm². 0.04125 ng/3.24 cm². 0.04125/3.24 (ng/cm²) 0.012732 ng/cm² 12.732 pg/cm².

<u>RG6 (MW: 479.01 g/mol) stock</u>: 0.001 M*479.01 g/mol*20 ml/1000 ml =0.00958 g (actual weight taken= 0.010 g in 20 ml C₂H₅OH)

Actual concentration of R6G in C_2H_5OH : 0.010 g in 20 mL C_2H_5OH (1.04382 mM) 0.010 g*1000 = 10 mg/20 mL C_2H_5OH Mg/L = ppm 10 mg/20 mL (20/1000=0.02), then, 10*0.02 = 0.2 mg/L or 0.2 ppm

Dilution _1 100 μ L of 0.2 mg/L dissolve in 8 mL C₂H₅OH (0.01305 mM)

0.1 ml*0.2 mg/L /8 mL = 0.1*0.2/8 =0.0025 mg/L

Dilution _02 500 µL of 0.0025 mg/L (from dillution_1) dissolve in 8 mL C₂H₅OH (8.1548e-4 mM = 0.81549 µM = 815.485 nM)

0.5 ml*0.0025 mg/L /8 mL = 0.5*0.0025/8 = 0.00015625 mg/L

300 µL of dilution_2 solution was deposited on glass (18 mm*18 mm, Area, a^2 = 3.24 cm²) substrate with/ without Ti₃C₂T_x thin film@glass substrate,

300 μ l*0.00015625 mg/l= 0.3 ml*0.00015625 mg/L 0.0003 L*0.00015625 mg/L = 0.0003*0.00015625 mg 0.000000046875 mg/3.24 cm². 0.046875 ng/3.24 cm². 0.046875/3.24 (ng/cm²). 0.0144676 ng/cm². 14.4676 pg/cm².

Rose bengal (MW: 1017.64 g/mol) stock: 0.001 M*1017.64 g/mol*20 ml/1000 ml =0.02035 g (actual weight taken= 0.0230 g in 20 ml C_2H_5OH)

Actual concentration of RB in C_2H_5OH : 0.0230 g in 20 mL C_2H_5OH (1.1301 mM) 0.0230 g*1000 = 23 mg/20 mL C_2H_5OH Mg/L = ppm 23 mg/20 mL (20/1000=0.02), then, 23*0.02 = 0.46 mg/L or 0.46 ppm

Dilution _1 100 μ L of 0.46 mg/L dissolve in 8 mL C₂H₅OH (0.01413 mM) 0.1 ml*0.46 mg/L /8 mL = 0.1*0.46/8 =0.00575 mg/L

Dilution _2 500 μ L of 0.00575 mg/L (from dillution_1) dissolve in 8 mL C₂H₅OH (0.00088289 mM = 0.882890625 μ M = 882.890625 nM)

0.5 ml*0.00575 mg/L /8 mL = 0.5*0.00575/8 = 0.000359375 mg/L

300 µL of dilution_2 solution was deposited on glass (18 mm*18 mm, Area, a^2 = 3.24 cm²) substrate with/ without Ti₃C₂T_x thin film@glass substrate,

300 μ l*0.000359375 mg/L = 0.3 ml*0.000359375 mg/L 0.0003 L*0.000359375 mg/L = 0.0003*0.000359375 mg 0.0000001078125 mg/3.24 cm². 0.1078125 ng/3.24 cm². 0.1078125/3.24 (ng/cm²) 0.0332755 ng/cm².

NIR-UV-Vis spectroscopy analysis of colloidal $Ti_3C_2T_x$ *in various solvents.* The delaminated MXene (d-Ti₃C₂T_x) nanosheets were dispersed in a various solvent medium and the corresponding base solvent was used as reference.

NIR-UV-Vis and Raman spectroscopy analysis of $Ti_3C_2T_x$ film.

The various thickness of $Ti_3C_2T_x$ film (the colloidal nanosheets was obtained by sonication of DMSO-intercalated MXene in aqueous solution) were deposited onto the glass substrate ($Ti_3C_2T_x$ @glass) based on number run, which is denotated as " r_n " where n is number of spin-cast (when n=1, 200 µL of colloidal $Ti_3C_2T_x$ solution (concentration = 50 µL/ml) was deposited on glass, which is referring to be r_1 , and subsequent spin-casting are also referred to be r_2 and r_3). $Ti_3C_2T_x$ @glass samples are dried at room temperature. The NIR-UV-Vis (UV-VIS-NIR Spectrophotometer V-670, JASCO Inc. USA with 1 cm optical path length cell) spectrum of each film was measured using bare glass as a reference background. The Raman probe molecules (CV, RB, R6G, *p*NTP, *p*ATP and *p*MBA) were drop cast onto the film and dried at room temperature. The NIR-UV-Vis Spectra were measured for the all Raman probe molecules drop-cast films before the SERS. For normal Raman and SERS measurement, both were acquired using a confocal Micro-Raman spectrometer (HORIBA Jobin Yvon) with lasers at an excitation wavelength (λ_o) of 633 nm and 785

nm lasers (50×, 17 mW with the size of the laser spot was ~0.72 μ m²). The spectral acquisition time (t_{aq}) was 30s for all the samples with 2 accumulations averaged with the spectral resolution is about 0.4 cm⁻¹ using CCD detector. Before Raman analysis, the wavenumber was calibrated using the Si peak at 520 cm⁻¹ as a reference.

FE-SEM and TEM analysis.

The morphology of delaminated MXene film $(d-Ti_3C_2T_x)$ on glass (without Pt deposition) were analyzed by both electron microscopy such as field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM) analysis (HT7700, Hitachi, Tokyo, Japan).

Figure S1. The graphical representation on fabrication of transparent SERS substrate based on thin film of $Ti_3C_2T_x$ prepared onto the glass by spin-coating. An aqueous solution of delaminated $Ti_3C_2T_x$ -MXene (d- $Ti_3C_2T_x$) flakes was used for the fabrication of SERS substrate and subsequent drop-casting of both resonant (dyes: Crystal violet–CV; Rhodamine 6G–R6G and Rose Bengal–RB) and non-resonant Raman probe molecules (para Nitrothiophenol–*p*NTP, para Amino thiophenol–*p*ATP, para hydroxy thiophenol–*p*HTP and para Mercapto benzoic acid–*p*MBA).

Figure S2. The SERS spectra of CV dye (*ca.* 12.732 ng/cm²) on $Ti_3C_2T_x$ film (the spincasted film prepared by r_{10} (a and b) and r_3 (c and d) using aqueous solution of *d*- $Ti_3C_2T_x$ flake with a concentration of 50 µg/ml). The SERS spectra were acquired from the center and middle of the substrate with excitation laser wavelength of 633 nm with 30 s with 2 accumulation averaged (50×, 17 mW with the size of the laser spot was ~0.72 µm²).

Figure S3. The SERS spectra of R6G dye (*ca*. 14.4676 ng/cm²) on $Ti_3C_2T_x$ film (the spin-casted film prepared by r_{10} using aqueous solution of d- $Ti_3C_2T_x$ flake with a concentration of 50µg/ml). The SERS spectra were acquired from the center and middle of the substrate with excitation laser wavelength of 785 nm with 30 s with 2 accumulation averaged.

Figure S4. The SERS spectra of CV dye (*ca.* 33.2755 ng/cm²) on $Ti_3C_2T_x$ film (the spin-casted film prepared by r_{10} using aqueous solution of d- $Ti_3C_2T_x$ flake with a concentration of 50µg/ml). The SERS spectra were acquired from the center and middle of the substrate with excitation laser wavelength of 785 nm with 30 s with 2 accumulation averaged.

Figure S5. The SERS spectra non-resonant Raman probe molecules (Ethanol solution of para Nitrothiophenol–*p*NTP (ca. 61.30 ng/cm²), para Amino thiophenol–*p*ATP (ca. 15.26 ng/cm²), para hydroxy thiophenol–*p*HTP (ca. 49.94 ng/cm²) and para Mercapto benzoic acid–*p*MBA (ca. 49.94)) were drop-casted on Ti₃C₂T_x film (the spin-casted film prepared by r3 using aqueous solution of *d*-Ti₃C₂T_x flake with a concentration of 50µg/ml). The SERS spectra is acquired with excitation wavelength of 633 nm laser with 30 s with 2 accumulation averaged (50×, 17 mW with the size of the laser spot was ~0.72 µm²).

Vibrational mode, cm ⁻¹	Assignment [†]
1619 [⊥]	a1 mode [†]
1583 [⊥]	e mode [†]
1370	Asymmetric stretching $v_{as}(C-C_{center}C)$ /bending $\delta(CCC)_{ring}/\delta(C-H)$
1292	Asymmetric stretching $v_{as}(C-C_{center}C)$ /bending $\delta(CCC)_{ring}/\delta(C-H)$
1175 [⊥]	Asymmetric stretching $v_{as}(CC_{center}C)$
915 [⊥]	Bending δ (C–C _{center} C)
800⊥	e mode [†]
553	Out-of-plane deformation γ (CCC)/ bending δ (C–N–C)/ bending δ (C–C _{center} C)
528	Bending δ (C–N–C)
436	Bending δ (C–N–C)
418	Bending $\delta(C-N-C)$ / bending $\delta(C-C_{center}C)$
341	Out-of-plane deformation γ (C–N–C)/ ρ r(CH ₃)
206	Torsion τ (CH ₃) or A _{1g} vibration of Ti, C, O [‡]

Table S1:

- † Maria Vega Can[~]amares, Cat Chenal, Ronald L. Birke, and John R. Lombardi. DFT, SERS, and Single-Molecule SERS of Crystal Violet. J. Phys. Chem. C 2008, 112, 20295–20300.
- Pol Salles, Evan Quain, Narendra Kurra, Asia Sarycheva, Yury Gogotsi. Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small 2018, 14, 1802864.
- ✓ Vibrational modes for the single-molecules SERS (SM-SERS) detection of crystal violet molecules adsorbed on plasmonic substrate with excitation wavelength of 633 nm laser.