Electronic Supplementary Material (ESI) for Materials Advances.
This journal is © The Royal Society of Chemistry 2020

Supporting Information

Porous Organic Polymer-Coated Permselective Separator Mitigating
Self- Discharge for Lithium-Sulfur Batteries

Deepa Elizabeth Mathew®, Sivalingam Gopi®®, Murugavel Kathiresan®b*, G. Jenita Rani¢,
Sabu Thomas¢, A Manuel Stephan®b*

a CSIR- Central Electrochemical Research Institute, Karaikudi 630 003, India.

b Academy of Scientific and Innovative Research (AcSIR), CSIR-CECRI Campus, Karaikudi,
India

¢ Department of Physics, Fatima College (Autonomous), Madurai 625 017, India

 International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma
Gandhi University, Kottayam, 686560, India.

*Corresponding authors

Tel: +91 4565 241426 Fax: +91 4565 27779

e-mail: amstephan(@cecri.res.in
kathiresan(@cecri.res.in



mailto:amstephan@cecri.res.in

-8.70
—-7.35
—4.83

rrrrrrrrerr-rerre=r+r+prvrererertrrrrrt Tttt
12.0 11.0 10.0 9.0 8.0 7.0 €0 5.0 4.0 3.0 20 1.0

3 (ppm)
Figure S1 a. Solid-state '"H NMR of TP-POP
The aromatic phenylene groups of the POP were observed at 6 8.70 ppm, whereas the terminal
groups of the POP were observed at & 7.35 ppm with low intensity. A slight upfield shift in the
terminal protons indicates that these groups belong to phenylenediamine with NH, terminals. ‘NH’

group of phenylene diamine interconnection was observed at 6 4.83 ppm.
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Figure S1 b. Solid-state 13C NMR of TP-POP



13C CP-MAS solid-state NMR of the TP-POP sample showed three peaks at 166.6, 136.6, and 123.1

ppm and are ascribed to three sp? carbons of the POP sample. The tertiary triazine carbons were

observed at § 166.6 ppm due to the electron-withdrawing effect of triazine ‘N’ groups. Similarly, the

tertiary carbon attached to NH nitrogen of phenylene diamine was observed at 6 136.6 ppm. The

phenylene group carbon was observed at 6 123.1 ppm. It is noteworthy that we did not observe any

residual cyanuric chloride or 1,4-phenylene diamine carbon peaks which is an indication of

completion of polymerization between cyanuric chloride and 1,4-phenylenediamine.!
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Figure S1 c. Solid-state >’N NMR of TP-POP

Solid-state >N NMR confirmed the presence of two different nitrogen atoms present in the sample,

i.e., triazine ‘N” atd -120.3 ppm and ‘NH’ of the 1,4-phenylenediamine at 6 -116.2 ppm.!
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Figure S1 d. Powder XRD analysis of the TP-POP.



The powder X-ray analysis of the TP-POP sample revealed its amorphous nature with a 26 value of
21.2 degrees (Figure S4). The broad diffraction peak in this range indicates the stacking of layered

conjugated aromatic systems!.
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Figure S1 e. BET surface area analysis of porous organic polymer

The porous nature of the sample was determined by measuring N, adsorption-desorption analysis at

77 K. The sample represents type Il isotherm with a BET surface area of 34 m?/g. The pore

dimension indicates that the sample contains a large fraction of mesopores and a smaller fraction of

macropores. Single point adsorption total pore volume of pores less than 1802.130 A diameter at

P/Po = 0.989153172: 0.039637 cm? g!. The adsorption average pore width (4V/A by BET) and BJH

Desorption average pore diameter (4V/A) was respectively measured as 120.0 A and 142.0 A.
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Figure S2. Digital photographs of a) Celgard 2320 and POP coated CG before heating b) after
heating for 1 hour at 120 °C and c) Tensile stress—strain plots of CG 2320 and POP coated CG.
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Figure S3. The current profile of the cell with Celgard 2320 and POP- coated CG held at a constant

potential of 2.3 V.
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Figure S4. SEM images of (a) CG 2320 (b) POP - CG separator before cycling (c) after cycling.
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Figure S5. Cyclic voltammograms of Li S cell with a) CG 2320 b) POP- CG at different scanning
rates
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Figure S6. The charging capacity vs. Cycle number of Li-S cell with POP-coated Celgard



Table 1. Comparison of electrochemical properties of Li S cells with different permselective

separators
SI. Coating Thickness Sulfur Initial Coulombic | Capacity Reference
No | material (nm) content in | capacity efficiency decay per
electrode | (mAh g (%) cycle
1. POP 7.17 2.47mg 1390 90 - This work
cm 2
2. | Montmorillo 25 80 wt% 1380 97 NA [2]
nite (MMT)
3. | Sulfonated 6 T2wt% 1262 95 NA [3]
acetylene
black
4. | Cus(BTC), NA 0.6-0.8 mg 1207 98 0.019% [4]
(HKUST-1) cm™? (10)
MOF@GO
5. V,0s- NA 2 mg cm? 1432 97 0.03% [5]
decorated 30
CNF
6. | CNT OH NA 3 mg cm? 1056 97 0.11% [6]
(0.50) (050
7. | Organically NA 50 wt% 1179 98 0.1% [7]
modified 20
CNT
8. Mn-BTC 25 65wt% 1430 94 NA [8]
MOF
9. Ui0-66- 55-60 72 wt% 1400 94 NA [9]
NH,@Si0O,
10. | MWCNT/N NA 1.3-1.5 1330.8 96 0.05% [10]
-doped mg cm (0.50)
carbon
quantum dot
11. laponite 3.5 1.0-1.2 1387 98 0.06% [11]
nanosheets/ mg cm
carbon (0.2C)
black
12. | Ni3(HITP), NA 70wt% 1403 99 0.032% [12]
(1C)
13. | RAPOP/AB 10 3-3.5mg 1346 99 NA [13]
-PP cm 2 (mAcm)
14. DMTA- NA 0.6 mg 1415 99.5 0.24% [14]
COF cm 2 (0.50) (0.50)
15. | CNT/ZrO, 14 1.5 mg 1207 95 NA [15]
cm 2
16. | TiO,NS/CN 10 0.86 mg 1247 98 NA [16]
T cm 2 (0.20)
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