Electronic Supplementary Information

Nanoscopically and uniformly distributed SnO₂@TiO₂/C composite with highly mesoporous structure and bichemical bonds for enhanced lithium ion storage performances[†]

Meisheng Han^{a,b}, Yongbiao Mu^a, and Jie Yu *a,c

^aSongshan Lake Materials Laboratory Dongguan, Guangdong 523808, China ^bBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

^cShenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen 518055, China

Table S1 The chemical composition of the TiO_2/C and $SnO_2@TiO_2/C$ samples are from XPS results. The chemical composites of TOT and 0.2 g MO/1 g TOT are from molecule structure.

Samples	Ti (wt/at%)	Sn (wt/at%)	O (wt/at%)	C (wt/at%)	H (wt/at%)
TOT	19.8/2.6	0/0	21.5/8.8	49.5/27.2	9.2/61.4
TiO ₂ /C	36.0/13.6	0/0	25.5/28.7	38.5/57.7	0/0
MO/TOT	16.5/0.25	9.5/0.6	20.4/9.1	45.1/26.9	8.5/63.15
SnO ₂ @TiO ₂ /C	26.6/10.1	9.8/1.5	20.3/23.0	43.3/65.4	0/0

Fig. S1 XPS survey peaks of the obtained samples.

by the AFS spectra of C 1s.					
Samples	Ti-O-C (%)	C-O/Sn-O-C (%)			
TiO ₂ /C	20.7	3.4 totally from C-O bonds due to absence of			
		Sn			
SnO ₂ @TiO ₂ /C	25.5	7.5			

Table S2 The percentages of Ti-O-C and Sn-O-C bonds in the samples calculated by the XPS spectra of C 1s.

The percentages of Sn-O-C bonds in the $SnO_2@TiO_2/C$ can be calculated by the total percentage minus C-O (2.9%) as 4.1%.

Fig. S2 (a) XPS survey peak, (b-e) XPS spectra of Ti 2p (b), Sn 3d (c), O 1s (d), and C 1s (e) of $SnO_2@TiO_2/C$.

The percentages of Ti-O-C bonds and C-O/Sn-O-C bonds are about 26.1% and 7.1%, which are similar with the results of $SnO_2@TiO_2/C$ in Table S2, suggesting that the Ti-O-C and Sn-O-C bonds are uniformly distributed in the whole $SnO_2@TiO_2/C$.

Table S3 Chemical composition of the obtained samples. The mass percentages of Ti and Sn were obtained from ICP-AES. The mass percentage of O was calculated from TiO_2 and SnO_2 based on the mass of Ti and Sn. The mass percentages of C is calculated as a difference between 100wt% and mass percentages of Ti, Sn, and O.

Samples	Ti (wt%)	Sn (wt%)	O (wt%)	C (wt%)	
TiO ₂ /C	50.3	0	33.6	16.1	
SnO ₂ @TiO ₂ /C	36.8	10.2	27.3	25.7	

 Table S4 The electrical conductivity (EC, S/cm), carbon content (wt%) and chemical bond content of the samples.

Samples	EC	Carbon content	Sn-O-C	Ti-O-C
TiO ₂ /C	7.8×10^{0}	16.1	0	20.7
SnO ₂ @TiO ₂ /C	9.1x10 ²	25.7	4.1	25.5

Table S5 The charge capacity (mAh g^{-1}) and charge capacity retention (%) after 100 cycles of the samples.

Samples	First capacity	Final capacity	Capacity retention
TiO ₂ /C	165.3	169.6	102.6
SnO ₂ @TiO ₂ /C	823.4	830.7	100.9

Table S6 Electrochemical performances of TiO₂-based materials for LIB anodes in open reports. C_C-charge capacity after cycling (mAh g^{-1}), C_R-capacity retention (%), M_L-mass loading (mg cm⁻²), J-current density (C or A g^{-1}), N_C-cycle number, NA-not available. 1 C indicates the current density when the anodes are charged to the theoretical capacity in one hour.

Samples	C _C	C_R	M_{L}	J	N _C	References
SnO ₂ @TiO ₂ /C	830.7	100.9	1.2	0.5 C	100	This work
SnO ₂ @TiO ₂ /C	438.5	96.0	1.2	10 C	1000	This work
SnO ₂ @TiO ₂ /C	217.7	NA	1.2	50 C	NA	This work
2S-AB-TiO ₂ -HoMS	215.4	76.4	1.5-2	1 C	100	Adv. Mater. 31 (2019) 1805754
2S-AB-TiO ₂ -HoMS	125.7	70	1.5-2	20 C	1000	Adv. Mater. 31 (2019) 1805754
TiO ₂ -B nanowires	192.4	68.7	NA	10 C	3600	J. Mater. Chem. A 7 (2019) 3842-3847
CNF-S@TiO ₂	607	90	NA	0.2 A g ⁻¹	150	Small (2019) 1902201
N-doped carbon@ TiO ₂ nanoparticles	223.1	94.5	0.5-0. 8	1 C	200	J. Power Sources 420 (2019) 38–45
S-doped carbon@TiO ₂	440	81.2	1.5	0.2 A g ⁻¹	200	Energy Storage Mater. 13 (2018) 215–222
S-doped carbon@TiO ₂	215	64.6	1.5	2 A g ⁻¹	1000	Energy Storage Mater. 13 (2018) 215–222
TiO ₂ films	254	76.9	NA	0.33 C	200	Adv. Funct. Mater. 28 (2018) 1801849
$TiO_2(A)/TiO_2(B)$	260.1	98	NA	1 C	500	Adv. Funct. Mater. 27 (2017) 1703270
TiO ₂ -δ/Ti nanomembranes	135	~100	0.5	10 C	5000	ACS Nano 11 (2017) 821–830
N-doped a-TiO ₂	100	NA	NA	10 C	NA	J. Mater. Chem. A 5 (2017) 20651-20657
TiO ₂ -CNT	215	~100	2-3	2 C	200	Nano Energy 35 (2017) 44–51
TiO ₂ (B)-BH	186.6	~100	0.8-1	5 C	1000	Nano Energy 31 (2017) 1–8

Fig. S3 (a) SEM image, (b) XRD pattern, (c) Raman spectrum, (d) First charge and discharge curves, and (e) Cycling performance of the sample obtained by pyrolysis of MO in the sealed vessel.

From SEM image (Fig. S3a), the sample is composed of nanoparticles with an average size of about 30 nm. From XRD pattern (Fig. S3b), the sample shows a series of diffraction peaks of SnO₂ (JCPDS No. 41-1445), indicating that the sample contains SnO₂ nanocrystals. From Raman spectrum (Fig. S3c), the sample shows typical D and G peaks of carbon material, indicating the presence of free carbon. The above results indicate the sample contains SnO₂ and C, labeled as SnO₂/C nanocomposite. Fig. S4d and e show the SnO₂/C nanocomposite has a high reversible capacity of 1419.5 mAh g⁻¹.

Fig. S4 Fitted equivalent circuit (a) and corresponding fitting spectra of EIS after the 100th cycle (b).

1	0, 0	
Cycling number	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{ct}}\left(\Omega ight)$
before cycling	1.9	85.9
after the 1st cycle	2.2	103.4
after the 10th cycle	2.4	79.5
After the 100th cycle	2.7	64.7

Table S7 The EIS parameters during cycling.

Table S8 Rate capability of different kinds of materials for LIB anode in open reports. C_{C} -charge capacity (mAh g⁻¹), J-current density (C or A g⁻¹). 1 C indicates the current density when the anodes are charged to the theoretical capacity in one hour.

Samples	Cc	J	References
SnO ₂ @TiO ₂ /C	516.8	5 C	This work
SnO ₂ @TiO ₂ /C	333.5	20 C	This work
SnO ₂ @TiO ₂ /C	217.7	50 C	This work
Sn hybrid composite	150	20 C	Nano Lett. 18 (2018) 467-474.
$Nb_{18}W_{16}O_{93}$	70	100 C	Nature 559 (2018) 556-563.
Si-nanolayer-embedded	222.3	5 C	Nat. Energy 1 (2016) 16113.
graphite/carbon hybrids			
SiO _x /SiO _y nanomembrane	4	10 A g^{-1}	Adv. Mater. 26 (2014) 4527-4532.
Si nanotube	540	20 C	Nat. Nanotechnol. 7 (2012) 310-315.
Li ₄ Ti ₅ O ₁₂ nanowire	119.4	30 C	Adv. Mater. 24 (2012) 6502-6506.

Fig. S5 (a,b) SEM images, (c) TEM images, and (d) HRTEM image of $SnO_2@TiO_2/C$ nanocomposites.