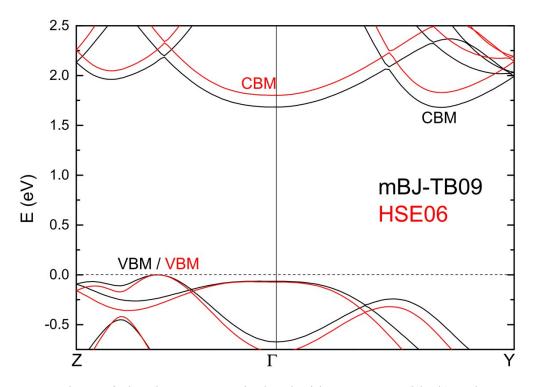
Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

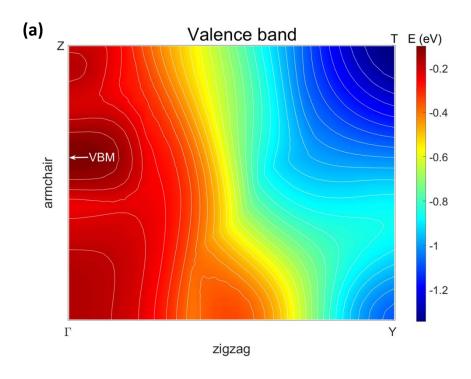
Supporting Information for


Anisotropic optical properties of GeS investigated by optical absorption and photoreflectance

Agata Tołłoczko*, Robert Oliva, Tomasz Woźniak, Jan Kopaczek, Paweł Scharoch, and Robert Kudrawiec

Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

*Corresponding author.


E-mail address: agata.tolloczko@pwr.edu.pl

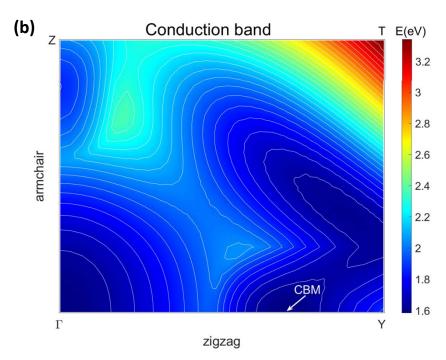


Fig. S1. Electronic band structures calculated with mBJ-TB09 (black) and HSE06 (red). Positions of VBM and CBM are indicated.

Table S1. The energies of optical transitions E_0 , E_1 and E_2 calculated using mBJ-TB09 potential and HSE06 hybrid functional.

Transition	Assignation	Energy (eV)		
		Experiment	Calculation – mBJ-TB09	Calculation – HSE06
E_0	Γ-Z→ Δ	1.685	1.607	1.829
E_1	Γ	1.701	1.628	1.875
E_2	Δ	1.797	2.039	2.322

Fig. S2. Valence band (a) and conduction band (b) on Γ -Z-T-Y plane.

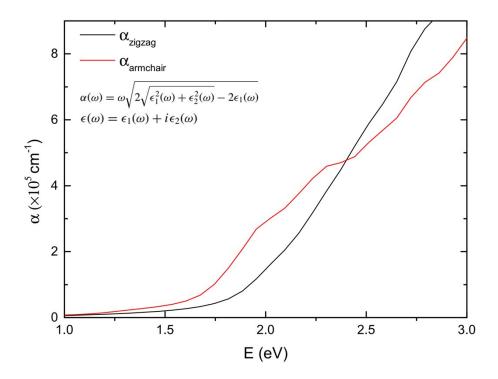


Fig. S3. Calculated absorption coefficient on zigzag and armchair directions.