Supporting Information

Electron transfer induced magnetic ordering of metal-cyanide magnets

Yulong Huang,[†] Yong Hu,[†] Lu An,[†] Zheng Li,[†] Jason N. Armstrong,[†] and Shenqiang Ren^{†, ‡,*}

[†] Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA

[‡] Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA

[⊥] Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.

Corresponding Author

*E-mail: shenren@buffalo.edu.

Table S1. The stoichiometry y in all Fe(TCNE)_y samples of different synthesis temperature of 368 K and 410 K.

368 K	n (TCNE/mmol)	0.4	0.8	3.2	
	У	0.19	0.88	1.00	
410 K	n (TCNE/mmol)	0.8	1.6	3.2	6.4
	У	1.02	1.67	3.75	5.59

Figure S1. X-ray diffraction patterns (XRD) of $Fe(TCNE)_y$ synthesized at 368 K by FeSe template. (a) The whole XRD patterns from 5° to 60° show the structure evolution from FeSe to $Fe(TCNE)_y$ due to the Se substitution by TCNE. (b) New XRD peaks at around 24° of $Fe(TCNE)_y$ differ from that of FeSe. (c) Peak split at 29° identifies the new structure emerging during the substitution reaction.

Figure S2. Infrared (IR) transmittance of $Fe(TCNE)_y$ (y =0. 88) at room temperature.

Figure S3. Magnetic field dependent of magnetization of $Fe(TCNE)_y$ (y = 0.19, 0.88 and 1.00) synthesized at 368 K.

Figure S4. Magnetic field dependent of magnetization of $Fe(TCNE)_y$ (y = 1.02, 1.67, 3.75 and 5.59) synthesized at 410 K.

Figure S5. Temperature dependent of magnetic susceptibility of $Fe(TCNE)_y$ (y = 0.19, 0.88 and 1.00) synthesized at 368 K.

Figure S6. Temperature dependent of magnetic susceptibility of $Fe(TCNE)_y$ (y = 1.02, 1.67, 3.75 and 5.59) synthesized at 368 K.

Figure S7. Magnetic field dependent of magnetization of $Fe(TCNE)_y$ (y = 3.75) at high temperature above 300 K.

Figure S8. Thermal weigh and heat flow analysis of Fe(TCNE)_y.